水吸收氨填料塔设计
- 格式:doc
- 大小:242.50 KB
- 文档页数:11
2013级过程装备与控制专业《化工原理》课程设计说明书题目:水吸收氨填料塔的设计姓名:张超班级:过控2班指导老师:丁文捷学号:12013243762完成时间:2015年12月10日目录1、设计任务书 (4)2、主要设备设计计算和说明水吸收氨的工艺流程 (5)基础数据 (5)物料衡算 (6)确定塔径和相关参数 (9)计算填料层高度 (11)计算填料层压降 (16)混合气体和吸收剂入口管径的计算 (16)填料塔主要内件和附属设备选型 (17)3工艺设计计算结果汇总表 (18)后记 (19)参考文献 (19)一、设计任务书○1设计题目水吸收氨填料塔设计○2设计条件1、气体混合物成分:空气和氨;2、氨的含量:6%(体积);3、混合气体流量: 5000m3/h;4、操作温度:293K;5、混合气体压力:101.3KPa;6、回收率: 99.0%。
○3设计要求1、完成填料塔的工艺设计与计算,有关附属设备的设计和选型;2、绘制吸收系统的工艺流程图和填料塔装置图;3、编写设计说明书。
二、水吸收氨气的工艺流程○1吸收剂水要循环使用吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低。
所以本设计选择用清水作吸收剂,氨气为吸收质。
水廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。
出于经济上的考虑,水一定要循环使用,因此设计时必须考虑吸收与解吸的组合操作。
为了保证氨气的回收率,宜采用气-液逆流操作吸收流程。
为使水溶剂循环使用,并充分回收解吸的氨气,采用减压解吸。
○2填料的选择 阶梯环是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。
由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。
锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的间隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。
化工原理课程设计-水吸收氨填料吸收塔设计一、背景介绍氨是一种重要的化学制品,用于制造各种类型的化学产品,也可用作氨加热系统的燃料,但它作为强氧化剂挥发到大气中,有害环境,因此必须采取对策进行处理,以保护我们的环境。
水吸收氨填料吸收塔是一种典型的操作过程,通过在塔内部放入一定量的吸收填料,使得氨气更有效地与液体相混合,从而降低氨的挥发率,防止它的溢出。
二、设计目的本设计的目的是设计一种能够有效降低氨气挥发率的水吸收氨填料吸收塔系统。
三、塔结构设计1.水吸收塔的形式:此水吸收塔采用真空反应塔的形式,包括加热装置、塔体及其重要部件。
2.水吸收塔的尺寸:该水吸收塔直径为3m,高度为12m,采用真空式反应塔设计。
3.吸收填料:此设计采用纤维吸收填料,其密度为180 kg/m3,吸附能力0.5%,并选择优质的、耐磨的材料,保证耐久性。
4.液相:选择介质为硝酸钠溶液,介质比重1.1,温度在25℃以下,以确保氨吸收剂的低温稳定性。
5.混合器:采用有效搅拌,减少氨气挥发,氨气完全溶于液体,增加氨气的反应机会,增加吸6.塔内设备:除了加热器,还设有安全阀等设备,以防出现意外。
四、设计步骤1.根据氨吸收水填料吸收塔的工艺特点,研究氨挥发的特性,确定反应条件,估算反应速率和塔的大小及包装密度。
2.确定吸收填料的类型,以保证其对氨气的特性挥发特性。
3.细化设计,考虑塔内混合器及其优势,同时留意水塔设计具体内容,计算安全阀等设备的大小,以及确定塔内设备的位置。
4.确认成本,包括:原材料、安装和实际操作。
五、最终结论本文研究了一套水吸收氨填料吸收塔,设计了其安全阀及其它设备,以及填料的特性,确定了反应条件,估算反应速率,详细设计了塔的形式,尺寸,位置等,通过认真的工作,可以提出设计方案,完成水吸收氨填料吸收塔的设计任务。
前言在近代工业的发展中,塔设备已成为一个非常重要的单元设备,广泛应用于炼油、化工、制药等过程工业上,对吸收、蒸馏和洗涤有着不可或缺的作用。
它性能的优劣、技术水平的高低直接影响到产品的质量、产量、回收率、经济效益等各个方面。
所以研究新型的的塔设备和强化气液两相传质过程及工业生产有着重要的意义。
塔设备主要可分为两种:板式塔和填料塔。
板式塔和填料塔在过去几十年中的发展速度有快有慢,竞争能力时有强弱。
但总的来说,工业生产中因为处理量大所以还是以板式塔为主。
而对于填料塔,一般都是用于小量原料的处理。
但是在近些年来,人们对填料塔进行了大量的研究,却得了突破性的进展,目前应用规模的填料塔最大直径可达14~20m,突破了仅限于小塔的传统观念,并在现代化工生产中得到更为普遍的应用。
对于新型的填料塔来说,它还具有以下几个优点:(1)生产能力大,在需要大理论技术的分离过程中能耗小,可以更容易满足经济的应用热泵得要求。
(2)分离效率高(3)压降小(4)操作弹性大(5)持液量小利用填料塔去分离化工过程中的产物或者处理工业生产中对环境有害的污染物已越来越普遍,而且也趋于主流,对人们的日常生过也起着非常大的作用。
在使用填料塔进行分离物质时,必须事先对整个填料塔进行系统的计算与设计。
结合能效、操作条件、经济等方面去考虑。
充分了解到填料塔中个部分的物料情况和工作效益。
使整个填料塔分离过程能符合安全、环保、节能和高效益,能真正用于工业生产中。
氨是工业生产中一种极为重要的生产原料,在国民经济中占有重要地位。
除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。
合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。
但这种极为重要的化工原料却对人的生命有着严重的危害,如果在工业生产中操作有失误,会威胁这生产人员的性命安全。
化工原理课程设计(水吸收氨填料吸收塔设计)目录第1节前言31.1填料塔的主体结构与特点31.2填料塔的设计任务及步骤31.3填料塔设计条件及操作条件4第2节精馏塔主体设计方案的确定42.1装置流程的确定42.2吸收剂的选择52.3填料的类型与选择52.3.1填料种类的选择52.3.2填料规格的选择52.3.3填料材质的选择62.4基础物性数据62.4.1液相物性数据62.4.2气相物性数据72.4.3气液相平衡数据72.4.4物料横算8第3节填料塔工艺尺寸的计算93.1塔径的计算93.2填料层高度的计算及分段113.2.1传质单元数的计算113.2.2传质单元高度的计算113.2.3填料层的分段143.3填料层压降的计算14第4节填料塔内件的类型及设计154.1塔内件类型154.2塔内件的设计164.2.1液体分布器设计的基本要求:164.2.2液体分布器布液能力的计算16注:171.填料塔设计结果一览表 (17)2.填料塔设计数据一览 (18)3.参考文献 (19)4.后记及其他 (19)附件一:塔设备流程图20附件二:塔设备设计图20表索引表 21工业常用吸收剂 (5)表 22 常用填料的塔径与填料公称直径比值D/d的推荐值 (6)图索引图 11 填料塔结构图 (3)图 31 Eckert图 (15)第1节前言1.1填料塔的主体结构与特点结构图错误!文档中没有指定样式的文字。
1所示:图错误!文档中没有指定样式的文字。
1 填料塔结构图填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。
液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。
因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。
1.2填料塔的设计任务及步骤设计任务:用水吸收空气中混有的氨气。
天津农学院化工原理课程设计任务书设计题目:水吸收氨过程填料吸收塔的设计专业:食品科学与工程(1)班学生姓名: xx学号: xxx起迄日期: 2014.12.15指导教师:王步江化工原理课程设计任务书化工原理课程设计任务书天津农学院课程设计说明书设计名称化工原理课程设计设计题目水吸收氨过程填料吸收塔设计设计时间2014年12月系别食品科学系专业食品科学与工程班级1班姓名xxx指导教师xxx20114 年12 月15 日化工原理课程设计说明书目录一.设计方案简介 (1)二.设计计算 (2)(一)设计方案的确定 (2)(二)填料的选择 (2)(三)基础物性数据 (2)1.液相物性数据 (2)2.气相物性数据 (2)3.气液相平衡数据 (2)(四)物料衡算 (3)(五)填料塔的工艺尺寸的衡算 (3)1.塔径计算 (3)2.填料层高度计算 (4)(六)填料层压降计算 (6)(七)液体分布器简要设计 (6)1.液体分布器的选型 (6)2.分布点密度计算 (7)3.布液计算 (7)(八)计算结果列表 (8)三.设计体会 (8)四.参考文献 (8)一、设计方案简介:塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备,根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。
板式塔内设置一定数量的塔板,气体以鼓泡或喷射形式穿过板上的液层,进行传质与传热。
在正常操作下,气相为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。
填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上流动,气液两相密切接触进行传质与传热。
在正常操作下,气相为连续相,液相为分散相,气相组成呈连续变化,属微分接触逆流操作过程。
工业上,塔设备主要用于蒸馏和吸收传质单元操作过程。
蒸馏过程多选用板式塔,而吸收过程多选用填料塔。
本次题目要求设计一座填料吸收塔,用于脱除混于空气中的氨气。
混合气体的处理量为341310m3/h,其中含氨为5%(体积分数),要求塔顶排放气体中含氨低于0.12%(体积分数)。
一、设计任务书(一)设计题目试设计一座填料吸收塔,用于脱除混于空气中的氨气。
混合气体的处理量为1000 m3/h,其中含氨气为8%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数),采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。
(20℃氨在水中的溶解度系数为H=0.725kmol/(m3.kPa)(二)操作条件1.操作压力为常压,操作温度20℃.2.填料类型选用聚丙烯阶梯环填料,填料规格自选。
3.工作日取每年300天,每天24小时连续进行。
(三)设计内容1.吸收塔的物料衡算;2.吸收塔的工艺尺寸计算;3.填料层压降的计算;4.吸收塔接管尺寸计算;5.吸收塔设计条件图;6.对设计过程的评述和有关问题的讨论。
二、设计方案(一)流程图及流程说明该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,和从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。
经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。
(二)填料及吸收剂的选择该过程处理量不大,所用的塔直径不会太大,可选用25×12.5×1.4聚丙烯阶梯环塔填料,其主要性能参数如下:比表面积at :22332/mm空隙率ε:0.90湿填料因子Φ:1172m-填料常数 A:0.204 K:1.75见下图:根据所要处理的混合气体,可采用水为吸收剂,其廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。
三、工艺计算(一)基础物性数据 1.液相物性数据3998.2(/)L kg m ρ=6100410() 3.6(/)L Pa s kg m h μ-=⨯⋅=272.6(d y n /c )940896(/)L m k g h σ==931.7610(/)L D m s -=⨯2. 气相物性数据混合气体平均密度:31.166(/)v kg m ρ=c σ=427680(2/kg h )空气黏度:51.8110()0.065(/)v Pa s kg m h μ-=⨯⋅= 273K ,101.3Kpa.氨气在空气中扩散系数:200.17(/)D m s = (二)物料衡算,确定塔顶、塔底的气液流量和组成20℃,101.3Kpa 下氨气在水中的溶解度系数 30.725/H kmol m kpa =998.20.7540.72518101.3s S E m P HM P ρ====⨯⨯进塔气相摩尔比: 10.080.087010.08Y ==-出塔气相摩尔比:20.00020.00020010.0002Y ==- 对于纯溶剂吸收过程,进塔液相组成:20X =混合气体流量 :1100027341.59629322.4V ⨯==⨯ kmol/h进塔惰性气体流量: 41.596(10.08)38.268V =⨯-= kmol/h吸收过程属于低浓度吸收,平衡关系为直线,最小液气比可按下式计算:12min 120.08700.0002000.752(0.0870/0.754)0e Y Y L V x X --⎛⎫=== ⎪--⎝⎭ 11e Y x m =取操作液气比为最小液气比的1.5倍,可得吸收剂用量为:0.75238.268 1.543.166/L Kmol h =⨯⨯= 根据全塔物料衡算式:()()()121212120.08700.0002000.07700.752 1.5V Y Y L X X V Y Y X LX L-=---=+==⨯液气比 :43.166180.6661000 1.166l v W W ⨯==⨯ (三)塔径的计算 1.塔径的计算考虑到填料塔内塔的压力降,塔的操作压力为101.3KPa()()()()33330.08170.922928.04/101.31028.0410 1.166/8.314527320998.2/v L M Kg Kmol PM Kg m RT Kg m ρρ-=⨯+⨯=⨯⨯⨯∴===⨯+=液体密度可以近似取为采用贝恩----霍夫泛点关联式:112480.23lg f t v v L L L v L u a W A K g W ρρμρρε⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即()20.231184223 1.166lg () 1.0049.81998.20.90 1.1660.204 1.750.666998.20.476f u ⎡⎤⎢⎥⎢⎥⎣⎦⎛⎫=-⨯⨯ ⎪⎝⎭=-3.017/f u m s = ()0.50.85f u u =-取泛点率为0.6. 即 0.60.6 3.017 1.810/f u u m s ==⨯=()4410000.4423.14 1.8103600sV D m u⨯===π⨯⨯圆整后取 ()()0.4400D m mm ==2.泛点率校核:210003600 2.212/0.7850.4u m s ==⨯ 2.2120.7333.017F u u ==(在0.5到0.85范围之间) 3.填料规格校核:40016825D d ==> 4.液体喷淋密度校核:取最小润湿速率为:)/(08.0)(3min h m m L W ⋅=23223/t a m m = 所以得32min min ()0.0822317.84/()W t U L a m m h =⋅=⨯=⋅263220.78543.16618998.2 6.17510/()0.7850.4hL U D m m h =⋅⨯⨯==⨯⋅⨯min U U >故满足最小喷淋密度的要求.(四)填料层高度计算 1.传质单元高度计算273K ,101.3kpa 下,氨气在空气中的扩散系数20.17(/)o D cm s =.由3/2000V p T D D p T ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则293K ,101.3kpa 下,氨气在空气中的扩散系数20.189(/)v D cm s =293K ,101.3kpa 下,氨气在水中的扩散系数()921.7610/L D m s -=⨯ (查化工原理附录)*110.7540.07700.0581Y mX ==⨯= *220Y mX ==脱吸因数为:0.7540.6680.752 1.5mV S L ===⨯ 气相总传质单元数为:()*12*221ln 11OGY Y N S S S Y Y ⎡⎤-=-+⎢⎥--⎣⎦=()10.08700ln 10.6680.66810.6680.0002000-⎡⎤-+⎢⎥--⎣⎦=14.992气相总传质单元高度采用修正的恩田关联式计算:0.050.20.10.752221exp 1.45w c L t L L t L t L L L t L a U a U U a a a g σσμρσρ-⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=--⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭液体质量通量为:22243.166186186.21/()0.7850.7850.4L L W U Kg m h D ⨯===⋅⨯⨯ 气体质量通量为:2221000 1.1669283.44/()0.7850.7850.4v v W U Kg m h D ⨯===⋅⨯⨯ 故20.750.10.052820.24276806186.216186.212231exp{ 1.45()()()940896223 3.6998.2 1.27106186.21()}998.29408962230.2476w t a a -⨯=--⨯⨯⨯⨯⨯⨯⨯⨯⨯=气膜吸收系数:10.7310.74340.2379283.440.0652230.1891036000.2372230.0658.3142931.1660.189103600 0.1273V V t V G t V V V U a D k a D RT μμρ--⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭=液膜吸收系数:211323121833290.00956186.21 3.6 3.6 1.27100.00950.2476223 3.6998.2998.2 1.761036000.3037(/)L L L L w L L L L U g k a D m h μμμρρ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⨯⨯⎛⎫⎛⎫=⨯⨯⨯ ⎪⎪ ⎪⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭=查表得ψ=1.35 故1.1G G W K a K a ψ==0.1273⨯0.2476⨯223⨯ 1.11.35=9.778()3/Kmol m h kpa ⋅⋅ 0.4L L W K a K a ψ==0.3037⨯0.2476⨯223⨯0.41.35=18.907()3/kmol m h kpaf =fuu =0.733>0.5 以下公式为修正计算公式:1.419.50.5G G f u K a K a u ⎡⎤⎛⎫'⎢⎥=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦()()1.4319.50.2339.77821.864/Kmol m h kpa ⎡⎤=+⨯⨯⎣⎦=⋅⋅2.219.50.5L L f u K a K au ⎡⎤⎛⎫⎢⎥'=+- ⎪ ⎪⎢⎥⎝⎭⎣⎦()()2.2319.50.23318.90726.194/kmol m h kpa =+⨯⨯=则 111G G L K a K a HK a =+'' (H 为溶解度系数);=11121.8640.72526.194+⨯=10.1633/()Kmol m h kpa ⋅⋅由 OG Y G V VH K a K aP ==ΩΩ=238.26810.163101.30.7850.4⨯⨯⨯=0.296m 2. 填料层高度的计算由 0.29614.992 4.438OG OG Z H N m =⋅=⨯= 取上下活动系数为1.51.5 1.5 4.438 6.657Z m Z'==⨯=故 取填料层高度为7m.查[2]化工原理课程设计213页表5-41散装填料分段高度推荐值查得:塑料阶梯环 h/D ⊂8~15 max 6h m ≤ 取h/D=10 得 h=10⨯0.4=4m故 填料层需要分为二段,高度分别为3.5m. (五) 填料塔压降的计算采用Eckert 通用关联图计算填料层压降横坐标为:0.50.51.1660.666998.2V LVL WW ρρ⎛⎫⎛⎫=⨯ ⎪ ⎪⎝⎭⎝⎭=0.0228查[2]P 215表5-44得:189P m -Φ=纵坐标为:220.20.22.212891 1.166 1.0040.05239.81998.2V P L L u g ρψμρΦ⨯⨯⋅⋅=⨯⨯=查图得859.81833.85/Pp a m Z∆=⨯= 填料层压降为:833.857 5.84P pa Kpa ∆=⨯=Eckert 图(六) 吸收塔的主要接管尺寸的计算 1、气体进料管由于常压下塔气体进出口管气速可取12~20/m s ,故若取气体进出口流速近似为16m/s ,则由公式24V q d u π=可求得气体进出口内径为41000/3600148.710.78516V q d mm u π===⨯ 采用直管进料,由《化工原理》 第三版 上册 [谭天恩等主编 化学工业出版社]P269查得选择1563mm mm Φ⨯热轧无缝钢管,则 2241000/3600'15.73/0.785(0.1560.0032)V q u m s d π===⨯-⨯(在符合范围内) 气体进出口压降:进口:()221111.16615.73144.2522p u Pa ρ∆==⨯⨯= 出口:()222110.50.5 1.16615.7372.1322p u Pa ρ∆=⨯=⨯⨯⨯=2、液体进料管由于常压下塔液体进出口管速可取13/m s ,故若取液体进出口流速近似为 2.6m/s ,则由公式24V q d u π=可求得液体进出口内径为46186.210.029998.236000.785 2.6V q d m u π===⨯⨯⨯ 采用直管进料,由《化工原理》第三版 上册 [谭天恩等主编 化学工业出版社]P368查得选择384mm mm Φ⨯热轧无缝钢管,则 2246186.21/(998.23600)' 2.44/0.785(0.0380.0042)V q u m s d π⨯===⨯-⨯(在符合范围内) (七)吸收塔设计条件图表 吸收塔类型聚丙烯阶梯环吸收填料塔混合气体处理量(m 3/h ) 1000 塔径D (m ) 0.4 填料层高度Z (m ) 7 气相总传质单元高度(m ) 0.296 气相总传质单元数 14.992 泛点气速(m/s ) 3.017 泛点率 0.733 压降(kpa ) 5.15 操作压力(kpa ) 101.3 操作温度(℃) 20 填料直径(mm ) 25 孔隙率ε0.90水吸收氨吸收塔设计填料比表面积a(㎡/m 3) 223 填料常数A 0.204 填料常数K1.75四、符号说明a ——填料层的有效传质比表面积(m ²/m ³)w a ——填料层的润滑比表面积m ²/m ³A ——吸收因数;无因次d ——填料直径,mm ;p d ——填料当量直径,mmD ——扩散系数,m ²/s ; 塔径E ——亨利系数,KPag ——重力加速度,kg/(m².h)H ——溶解度系数,kmol /(m ³.KPa)OG H ——气相总传质单元高度,mG k ——气膜吸收系数, kmol /(m ³.s.KPa)OG N ——气相总传质系数,无因次L k ——气膜吸收系数, kmol /(m ³.s.KPa)R ——气体通用常数,8.314kJ/(kmol.K)S ——解吸因子T ——温度,0Cu ——空塔速度,m/sf u ——液泛速度,m/sV ——惰性气体流量,kmol/hS V ——混合气体体积流量,m 3/h1V ——混合气体流量,kmol/hL ——是吸收液量 kmol/hΦ——填料因子, m-1S L ——吸收剂用量kmol/h; kmol/sΦp ——压降填料因子, m -1Ψ——液体密度校正系数x ——溶质组分在液相中的摩尔分率 无因次y ——溶质组分在液相中的摩尔分率 无因次Z ——填料层高度 mmin ——最小的max ——最大的μ——粘度 Pa.sρ——密度 kg/m 3σ——表面张力 N/mε——孔隙率m ——相平衡常数,无因次五、对设计过程的评述水吸收氨吸收塔设计这次我的课程设计题目是水吸收氨过程填料塔的设计,这是关于吸收中填料塔的设计。
可编辑修改精选全文完整版设计题目3000Nm3/h含氨5%填料吸收塔的设计试设计一座填料吸收塔,用于脱出混于空气中的氨气。
混合气体的处理量为3000Nm3/h,其中含氨为5%(体积分数),采用清水进行吸收。
要求塔顶排放气体中含氨低于0.02%(体积分数)。
操作条件(1)操作压力101.33 kPa(常压);(2)操作温度20℃;(3)吸收剂用量为最小用量的1.9倍填料类型:选用聚丙烯阶梯环填料。
工作日:每年300天,每天24小时连续运行厂址:合肥设计内容(1)设计方案的说明及流程说明;(2)吸收塔的物料衡算;吸收塔的工艺尺寸计算;(3)填料层压降的计算;(4)液体分布器简要设计;(5)吸收塔接管尺寸计算;(6)绘制生产工艺流程图;(7)绘制吸收塔设计条件图;(8)绘制液体分布器施工图;(9)对设计过程的评述和有关问题的讨论。
目录第1章设计方案的简介 (1)1.1选定塔型 (1)1.2确定填料吸收塔的具体方案 (2)1.2.1装置流程的确定 (2)1.2选择吸收剂 (3)1.3操作温度与压力的确定 (3)1.3.1操作温度的确定 (3)1.3.2操作压力的确定 (3)第2章填料的类型与选择 (4)2.1填料的类型 (4)2.1.1散装填料 (4)2.1.2规整填料 (4)2.2填料的选择 (5)2.2.1填料种类的选择 (5)2.2.2填料规格的选择 (6)2.2.3填料材质的选择 (7)第3章填料塔工艺尺寸 (9)3.1设计基础数据 (9)3.1.1液相物性数据 (9)3.1.2气相物性数据 (9)3.2.3气液相平衡数据 (9)3.2.4物料衡算 (10)第4章填料塔的工艺尺寸的计算 (11)4.1塔径的计算 (11)4.2填料层高度计算 (12)4.3填料塔压降的计算 (14)第5章液体分布器简要设计 (16)5.1液体分布器 (16)5.2液体再分布器 (17)5.3 塔底液体保持管高度 (18)第6章吸收塔接管尺寸计算 (19)6.1气体进料管 (19)6.2液体进料管 (19)6.3 离心泵的选型 (19)6.4风机的选型 (20)第7章塔体附件设计 (22)7.1塔的支座 (22)7.2其他附件 (22)附图1 填料塔工艺图 (23)附图2 工艺流程图 (24)附录1 吸收塔设计条件图 (25)附录2 符号说明 (26)附录3 设计一览表 (27)附录4 Eckert通用关联图 (28)参考文献 (29)第1章设计方案的简介1.1选定塔型塔器是关键设备,例如在气体吸收、液体精馏(蒸馏)、萃取、吸附、增湿中、离子交换等过程中都有体现。
水吸收氨填料塔设计目录一前言 (3)二设计任务 (3)三设计条件 (3)四设计方案 (3)1.吸收剂的选择 (3)2.流程图及流程说明 (3)3.塔填料的选择 (4)五工艺计算 (4)1.物料衡算,确定塔顶、塔底的气液流量和组成 (4)2.塔径的计算 (5)3.填料层高度计算 (6)4。
填料层压降计算 (8)5。
液体分布装置 (8)6.液体再分布装置 (9)7.填料支撑装置 (10)8.气体的入塔分布 (10)六设计一览表 (10)七对本设计的评述 (11)八参考文献 (11)七主要符号说明 (14)八附图(带控制点的工艺流程简图、主体设备设计条件图)二、设计任务:完成填料塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和填料塔装置图,编写设计说明书。
三、设计条件1、气体混合物成分:空气和氨;2、氨的含量: 4。
5%(体积);3、混合气体流量: 4000m3/h;4、操作温度:293K;5、混合气体压力:101。
3KPa;6、回收率: 99。
8%。
四、设计方案1.吸收剂的选择根据所要处理的混合气体,可采用水为吸收剂,其廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。
2.流程图及流程说明该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。
经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。
(如右图所示)3.塔填料选择 该过程处理量不大,所用的塔直径不会太大,可选用38mm聚丙烯阶梯环塔填料,其主要性能参数如下:比表面积a:132.532/m m 空隙率ε:0。
91 干填料因子Φ:1175-m 五、工艺计算对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据.混合气体的黏度可近似取为空气的黏度。
空气和水的物性常数如下: 空气:35/205.1)/(065.01081.1mkg h m kg s Pa =⋅=⋅⨯=-ρμ水:sPa m kg L L ⋅⨯==-53104.100/2.998μρ1. 物料衡算,确定塔顶、塔底的气液流量和组成查表知,20C 下氨在水中的溶解度系数)/(725.03kpa m kmol H ⋅= 亨利系数SLHM E ρ=相平衡常数754.03.10102.18725.02.998=⨯⨯===P HM PE m S Lρ进塔气相摩尔比为:04712.0045.01045.01=-=Y出塔气相摩尔比为:00009424.0045.01)998.01(045.02=--⨯=Y 对于纯溶剂吸收过程,进塔液相组成为:02=X (清水)混合气体的平均摩尔质量为:)/(46.2829)045.01(17045.0kmol kg M =⨯-+⨯= 混合气体流量:)/(382.1664.2212932734000h kmol =⨯⨯惰性气体流量:)/(895.158)045.01(382.166h kmol V =-⨯=最小液气比:752.00754.004712.000009424.004712.0)(21212121min =--=--=--=*X mY Y Y X X Y Y V L取实际液气比为最小液气比的1.5倍,则可得吸收剂用量为:)/(233.1795.1895.158752.0h kmol L =⨯⨯=04169.05.1752.000009424.004712.0)(211=⨯-=-=LY Y V X液气比682.0183.1400018233.179=⨯⨯=V L ωω 2.塔径计算混合气体的密度 333/183.1293315.81046.28103.101m kg RT M P G =⨯⨯⨯⨯==-ρ 采用贝恩-霍根泛点关联式计算泛点速度:s m u g a u a g u F L LG t F L LG t F /942.3004.1183.15.1322.99891.081.93304.03304.0481.0)2.998183.1()183.1400018233.179(75.1204.0]lg[2.032.03281412.032=⨯⨯⨯⨯⨯==⋅-=⨯⨯⨯⨯-=⋅⋅⋅μρερμρρε取泛点率为0。
水吸收氨填料吸收塔设计1 题目含氨为5%的混合气体, 处理量为500m3/h, 尾气中含氨低于0.02%,采用清水进行吸收, 吸收剂的用量为最小用量的1.5倍. (均为体积分数).,2 设计任务和操作条件:(1)操作压力常压。
(2)操作温度 20℃(3)年工作300天,每天24小时运行.3 填料类型 聚丙烯阶梯环填料,规格自选.4 设计内容(1)吸收塔的物料衡算(2)填料层压降的计算(3)液体分布器的简单设计(4)吸收塔塔体工艺尺寸的计算(5)绘制分布器施工图(6)对本设计进行评述5 基础数据20℃下氨在水中的溶解度系数为0.725Kmol/( m3. kpa)一吸收工艺流程的确定采用常规逆流操作流程.流程如下。
二物料计算(l). 进塔混合气中各组分的量取塔平均操作压强为101.3kPa,故:混合气量= 500()×= 20.80kmol/h混合气中氨量=20.80×0.543 =1.129 kmol/h = 19.2kg/h混合气中空气量=20.80-1.129 = 19.671kmol/h=570.5kg/h (2).混合气进出塔的(物质的量)组成==0.05430;(3).混合气进出塔(物质的量比)组成Y1==0.0574Y2=(1-)=0.0574×=0.0002296(以塔顶排放气体中氨含量0.02%计)三 平衡曲线方程查表知:20℃时,氨在水中的亨利系数E=277.3Kpa;m = = = 2.737故操作线方程为:Y=2.737X.吸收剂(水)的用量Ls由操作线方程知:当Y1=0.0574时,X1*=0.021,计算最小吸收剂用量=19.671×=53.77 kmol/h取安全系数为1.5,则Ls=1.5×53.77=80.65kmol/h = 1451.7kg/h依物料衡算式塔底吸收液浓度= 19.671×= 0.014四塔径计算塔底气液负荷大,依塔底条件(混合气20℃),101.325kPa图1 通用压降关联图(1).采用Eckert通用关联图法(图1)计算泛点气速①有关数据计算塔底混合气流量V`S=570.5+19.2=589.7kg/h吸收液流量L`=1451.7kg/h进塔混合气密度=×=1.206kg/(混合气浓度低,可近似视为空气的密度)吸收液密度=998.2kg/吸收液黏度=1.005 mP a·s经比较,选DN38mm聚丙烯阶梯环。
广东石油化工学院化工原理课程设计题目: 水吸收氨填料塔的设计指导教师: 李燕成绩评阅教师目录第一节前言 (3)1.1 填料塔的主体结构与特点 (3)1.2 填料塔的设计任务及步骤 (3)1.3 填料塔设计条件及操作条件 (3)第二节填料塔主体设计方案确实定 (4)2.1 装置流程确实定 (4)2.2 吸收剂的选择 (4)2.3填料的类型与选择 (4)2.3.1 填料种类的选择 (4)2.3.2 填料规格的选择 (4)2.3.3 填料材质的选择 (5)2.4 根底物性数据 (5)2.4.1 液相物性数据 (5)2.4.2 气相物性数据 (5)2.4.3 气液相平衡数据 (6)2.4.4 物料横算 (6)第三节填料塔工艺尺寸的计算 (7)3.1 塔径的计算 (7)3.2 填料层高度的计算及分段 (8)3.2.1 传质单元数的计算 (8)3.2.3 填料层的分段 (10)3.3 填料层压降的计算 (11)第四节填料塔内件的类型及设计 (11)4.1 塔内件类型 (11)4.2 塔内件的设计 (11)4.2.1 液体分布器设计的根本要求: (11)4.2.2 液体分布器布液能力的计算 (12)注:1填料塔设计结果一览表 (12)2 填料塔设计数据一览 (12)3 参考文献 (14)4 对本设计的评述或有关问题的分析讨论 (14)第一节前言1.1填料塔的主体结构与特点结构:图1-1 填料塔结构图填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量肖,有腐蚀性的物料及要求压降小的场合。
液体自塔顶经液体分布器喷洒于填料顶部,并在填料的外表呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。
因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。
1.2填料塔的设计任务及步骤设计任务:用水吸收空气中混有的氨气。
设计步骤:〔1〕根据设计任务和工艺要求,确定设计方案;〔2〕针对物系及别离要求,选择适宜填料;〔3〕确定塔径、填料层高度等工艺尺寸〔考虑喷淋密度〕;〔4〕计算塔高、及填料层的压降;〔5〕塔内件设计。
化工原理课程设计——水吸收氨填料塔设计姓名:罗红平专业:化学工艺学号:002001041目录一前言 (3)二设计任务 (3)三设计条件 (3)四设计方案 (3)1.吸收剂的选择 (3)2.流程图及流程说明 (3)3.塔填料的选择 (4)五工艺计算 (4)1.物料衡算,确定塔顶、塔底的气液流量和组成 (4)2.塔径的计算 (5)3.填料层高度计算 (6)4.填料层压降计算 (8)5.液体分布装置 (8)6.液体再分布装置 (9)7.填料支撑装置 (10)8.气体的入塔分布 (10)六设计一览表 (10)七对本设计的评述 (11)八参考文献 (11)七主要符号说明 (14)八附图(带控制点的工艺流程简图、主体设备设计条件图)一.前言课程设计是本课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性、学习化工设计基本知识的初次尝试。
通过课程设计,要求学生能综合利用本课程和前修课程的基本知识,进行融会贯通的独立思考,在规定的时间内完成指定的化工设计任务,从而得到化工工程设计的初步训练。
通过课程设计,要求学生了解工程设计的基本内容,掌握化工设计的程序和方法,培养学生分析和解决工程实际问题的能力。
同时,通过课程设计,还可以使学生树立正确的设计思想,培养实事求是、严肃认真、高度责任感的工作作风。
课程设计是增强工程观念,培养提高学生独立工作能力的有益实践。
二、设计任务:完成填料塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和填料塔装置图,编写设计说明书。
三、设计条件1、气体混合物成分:空气和氨;2、氨的含量: 4.5%(体积);3、混合气体流量: 4000m3/h;4、操作温度:293K;5、混合气体压力:101.3KPa;6、回收率: 99.8%。
四、设计方案1.吸收剂的选择根据所要处理的混合气体,可采用水为吸收剂,其廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。
2.流程图及流程说明该填料塔中,氨气和空气混合后,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的清水逆流接触,在填料的作用下进行吸收。
经吸收后的混合气体由塔顶排除,吸收了氨气的水 由填料 塔的下端流出。
(如右图所示)3.塔填料选择 该过程处理量不大,所用的塔直径不会太大,可选用38mm聚丙烯阶梯环塔填料,其主要性能参数如下:比表面积a :132.532/m m 空隙率ε:0.91 干填料因子Φ:1175-m五、工艺计算对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。
混合气体的黏度可近似取为空气的黏度。
空气和水的物性常数如下: 空气:35/205.1)/(065.01081.1mkg h m kg s Pa =⋅=⋅⨯=-ρμ水:sPa m kg L L ⋅⨯==-53104.100/2.998μρ1. 物料衡算,确定塔顶、塔底的气液流量和组成查表知,20C 下氨在水中的溶解度系数)/(725.03kpa m kmol H ⋅= 亨利系数SLHM E ρ=相平衡常数754.03.10102.18725.02.998=⨯⨯===P HM PE m S Lρ进塔气相摩尔比为:04712.0045.01045.01=-=Y出塔气相摩尔比为:00009424.0045.01)998.01(045.02=--⨯=Y 对于纯溶剂吸收过程,进塔液相组成为:02=X (清水)混合气体的平均摩尔质量为:)/(46.2829)045.01(17045.0kmol kg M =⨯-+⨯= 混合气体流量:)/(382.1664.2212932734000h kmol =⨯⨯惰性气体流量:)/(895.158)045.01(382.166h kmol V =-⨯=最小液气比:752.00754.004712.000009424.004712.0)(21212121min =--=--=--=*X mY Y Y X X Y Y V L取实际液气比为最小液气比的1.5倍,则可得吸收剂用量为:)/(233.1795.1895.158752.0h kmol L =⨯⨯=04169.05.1752.000009424.004712.0)(211=⨯-=-=LY Y V X液气比682.0183.1400018233.179=⨯⨯=V L ωω 2.塔径计算混合气体的密度 333/183.1293315.81046.28103.101m kg RT M P G =⨯⨯⨯⨯==-ρ 采用贝恩-霍根泛点关联式计算泛点速度:s m u g a u a g u F L LG t F L LG t F /942.3004.1183.15.1322.99891.081.93304.03304.0481.0)2.998183.1()183.1400018233.179(75.1204.0]lg[2.032.03281412.032=⨯⨯⨯⨯⨯==⋅-=⨯⨯⨯⨯-=⋅⋅⋅μρερμρρε取泛点率为0.6,即s m u u F /365.2942.36.06.0=⨯==sm uV D S /7736.03600365.214.3400044=⨯⨯⨯==π圆整后取 m D 8.0= 泛点率校核:s m u /212.28.0785.0360040002=⨯=5611.0942.3212.2==F u u (在允许的范围内) 填料规格校核:805.2138800>==d D 液体喷淋密度校核:取最小润湿速率为:)/(08.0)(3min h m m L W ⋅=32/5.132m m a t =所以 )/(6.105.13208.0)(23min min h m m a L U t W ⋅=⨯=⋅=min23622)/(1041.68.0785.02.99818233.179785.0U h m m D L U h〉⋅⨯=⨯⨯⨯=⋅=经以上校核可知,填料塔直径选用m D 8.0=合理。
3. 填料层高度计算查表知, 0C ,101.3 kpa 下,3NH 在空气中的扩散系数s cm D /17.02=o由23))((o o o T TP P D D G =,则293k ,101.3kpa 下,3NH 在空气中的扩散系数为s cm D D G /189.0)273293)(3.1013.101(223==o液相扩散系数s m D L /1080.129-⨯=液体质量通量为)/(56.64218.0785.018233.17922h m kg U L ⋅=⨯⨯=气体质量通量为)/(79.94188.0785.0183.1400022h m kg U V ⋅=⨯⨯= 003143.004169.0754.02211===⨯==**m X Y m X Y 脱吸因数为6684.05.1752.0754.0=⨯==L mV S气相总传质单元数为:425.15]6684.0000009424.0004712.0)6684.01[(6684.011])1[(112221=+--⨯-⨯-=+--⋅--=**Ln S Y Y Y Y S Ln S N OG气相总传质单元高度采用修正的恩田关联式计算:})()()()(45.1exp{12.0205.0221.075.0t L L LL t L L t L L c t w a U ga U a U a a σρρμσσ⋅⋅⋅⋅⋅--=- 查表知,2/427680/33h kg cm dyn c ==σ所以,2929.0})5.1329408962.99856.6421()1027.12.9985.13256.6421()6.35.13256.6421()940896427680(45.1exp{12.0205.08221.075.0=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯--=-t w a a气膜吸收系数由下式计算:)/(1095.0293314.8103600189.05.132()360010189.0183.1065.0()065.05.13279.9418(237.0)()()(237.0243147.0317.0kpa h m km ol RTDa D a U V t V V V v t V G ⋅⋅=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⋅⋅=--ρμμκ液膜吸收系数由下式计算:3983.0)2.9981027.16.3()36001080.12.9986.3()6.35.1322929.056.6421(0095.0)()()(0095.031821932312132=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⋅⋅⋅⋅⋅⋅=---LL L L L L w L L g D a U ρμρμμκ查表得:45.1=ψ 则ha a kpa h m kmol a a w L L w G G 1935.1745.15.1322929.03983.0)/(3952.645.15.1322929.01095.04.04.031.11.1=⨯⨯⨯=⋅⋅=⋅⋅=⨯⨯⨯=⋅⋅=ψκκψκκ5.05611.0〉=Fu u由a u ua a u ua L FLG FG κκκκ⋅-⋅+='⋅-⋅+='])5.0(6.21[])5.0(5.91[2.24.1 得,ha kpa h m kmol a LG1034.18935.17])5.05611.0(6.21[)/(6087.73952.6])5.05611.0(5.91[2.234.1=⨯-⋅+='⋅⋅=⨯-⋅+='κκ则)/(8097.4034.18725.016087.7111113kpa h m km ol a H a a L GG ⋅⋅=⨯+=⋅+'=κκκ由m P a V a K V H G Y OG 648.08.0785.03.1018097.4895.1582=⨯⨯⨯=Ω⋅⋅=Ω⋅=κ由 m N H Z O G O G 9954.9425.15648.0=⨯=⋅=m Z 99.119954.920.1≈⨯='设计取填料层高度为:m Z 12=查表:对于阶梯环填料,m h Dh6,15~8max ≤=将填料层分为两段设置,每段6m ,两段间设置一个液体再分布器。
4.填料层压降计算:采用Eckert 通用关联图计算填料层压降横坐标为:0235.0)2.998183.1(183.1400018233.179)(5.05.0=⨯⨯⨯=L V V L ρρωω 查表得:1116-=Φm P纵坐标为:0686.0004.12.998183.181.91116212.22.022.02=⨯⨯⨯⨯=⋅⋅ΦL L V P g u μρρψ查图得,m pa ZP/26.451=∆ 填料层压降为:kpa pa P 86.51326.451=⨯=∆5.液体分布装置液体分布器的选型:液体在塔顶的初始均匀喷淋,是保证填料塔达到预期分离效果的重要条件。