《圆与圆的位置关系》导学案4
- 格式:doc
- 大小:820.00 KB
- 文档页数:2
2.5.2 圆与圆的位置关系【学习目标】1.能描述圆与圆的位置关系.2.能根据给定两圆的方程判断两个圆的位置关系.◆ 知识点 圆与圆的位置关系1.两圆的位置关系主要包括:外离、 、 、 和内含.2.两圆的位置关系的判断:(1)代数法:已知圆C 1:x 2+y 2+D 1x+E 1y+F 1=0(D 12+E 12-4F 1>0),圆C 2:x 2+y 2+D 2x+E 2y+F 2=0(D 22+E 22-4F 2>0),由{x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,消元后得到一元二次方程(若得到的是一元一次方程,则要求出方程组的解进行判断),计算判别式Δ的值,按下表中判断标准进行判断.(2)几何法:两圆的半径分别为r 1,r 2,计算两圆的圆心距d ,按下表中判断标准进行判断. (3)判断标准:位置关系 外离外切相交内切内含图示公共点个数 0 121 0 Δ的值 Δ<0Δ=0Δ<0 d 与r 1,r 2 的关系d= r 1+r 2d< |r 1-r 2|【诊断分析】 判断正误.(请在括号中打“√”或“×”) (1)两圆的方程联立,若方程组有两个解,则两圆相交. ( )(2)若两个圆没有公共点,则两圆一定外离. ( )(3)若两圆外切,则两圆有且只有一个公共点;反之也成立. ( ) (4)当两圆的方程组成的方程组无解时,两圆一定外离.( )◆ 探究点一 两圆位置关系的判断及应用例1 (1)已知圆C 1:x 2+y 2-2x+4y+4=0和圆C 2:4x 2+4y 2-16x+8y+19=0,则这两个圆的公切线的条数为( )A .1或3B .4C .0D .2(2)已知圆O1:(x+1)2+(y-1)2=1与圆O2:(x-3)2+(y+2)2=r2(r>0)相内切,则r= ( )A.4B.5C.6D.√13变式 (1)若圆C1:x2+y2=4与圆C2:x2+y2-2mx+m2-m=0外切,则实数m的值为( )A.-1B.1C.1或4D.4(2)已知圆C1:x2+y2=m2(m>0)与圆C2:x2+y2-2x-4y-15=0恰有两条公切线,则实数m的取值范围是.◆探究点二两圆公共弦问题例2 (1)已知圆C1:x2+(y-2)2=5和C2:(x+2)2+y2=5交于A,B两点,则|AB|=( )A.√3B.2√3C.√23D.2√23(2)已知圆O1:x2+y2=1与圆O2:x2+y2-2x+2y+F=0(F<1)相交所得的公共弦的长为√2,则圆O2的半径r=( )A.1B.√3C.√5或1D.√5变式已知圆C1:x2+y2+6x-4=0和圆C2:x2+y2+6y-28=0.(1)求两圆公共弦所在直线的方程;(2)求经过两圆交点且圆心在直线x-y-4=0上的圆的方程.[素养小结]解决两圆公共弦问题的方法如下:(1)当两圆相交时,利用两圆方程相减,可得公共弦所在直线的方程;(2)在由半径、弦心距、弦长的一半为三边边长的直角三角形中,利用勾股定理可求弦长;(3)根据公共弦的中垂线过两圆圆心,可得公共弦的中垂线所在直线的方程.◆探究点三圆与圆的位置关系的综合问题例3 (1)(多选题)在平面直角坐标系中,已知点A(2,0),B(0,2),圆C:(x-a)2+y2=1.若圆C上存在点M,使得|MA|2+|MB|2=12,则实数a的值可能是( )A.-1B.0C.1+2√2D.-2(2)已知圆C与两圆C1:x2+(y+4)2=1,C2:x2+(y-2)2=1均外切,求圆C的圆心的轨迹方程.变式已知线段AB的端点B的坐标是(6,5),端点A在圆C1:(x-4)2+(y-3)2=4上运动.(1)求线段AB的中点P的轨迹C2的方程;(2)设圆C1与曲线C2的两个交点为M,N,求线段MN的长.[素养小结]1.圆与圆的位置关系的综合问题常见的类型有公切线问题、公共弦问题、轨迹问题等,要注意利用图形的几何性质优化思路、减少运算量.2.圆与圆的位置关系问题有时需要通过建立适当的平面直角坐标系,求得满足条件的动点的轨迹方程,从而得到动点的轨迹,通过研究它的轨迹方程与圆的方程的关系,判断所得的轨迹与圆的位置关系.。
圆与圆的位置关系教案【教学目标】1.能根据给定圆的方程,判断圆与圆的位置关系.2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想.3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.【教学重难点】教学重点:能根据给定圆的方程,判断圆与圆的位置关系. 教学难点:用坐标法判断两圆的位置关系.【教学过程】 ㈠复习导入、展示目标问题:如何利用代数与几何方法判别直线与圆的位置关系?前面我们运用直线与圆的方程,研究了直线与圆的位置关系,这节课我们用圆的方程,讨论圆与圆的位置关系.㈡检查预习、交流展示1.圆与圆的位置关系有哪几种呢? 2.如何判断圆与圆之间的位置关系呢?㈢合作探究、精讲精练探究一:用圆的方程怎样判断圆与圆之间的位置关系?例1.已知圆C 1:013222=++++y x y x ,圆C2:023422=++++y x yx ,是判断圆C 1与圆C 2的位置关系.解析:方法一,判断圆与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据连心线的长与两半径长的和或两半径长的差的绝对值的大小关系,判断圆与圆的位置关系. 解:(法一)圆C 1的方程配方,得4923)1(22=+⎪⎭⎫ ⎝⎛++y x . 圆心的坐标是⎪⎭⎫ ⎝⎛--23,1,半径长231=r . 圆C 2的方程配方,得41723)2(22=+⎪⎭⎫ ⎝⎛++y x .圆心的坐标是⎪⎭⎫ ⎝⎛--23,2,半径长2172=r . 连心线的距离为1,217321+=+r r ,231721-=-r r . 因为217312317+<<-, 所以两圆相交. (法二) 方程013222=++++y x yx 与023422=++++y x yx 相减,得21=x 把21=x 代入013222=++++y x yx ,得011242=++y y因为根的判别式016144>-=∆,所以方程011242=++y y有两个实数根,因此两圆相交.点评:巩固用方程判断圆与圆位置关系的两种方法.变式2222(1)(2)(2)1(2)(5)16x y x y ++-=-+-=与的位置关系解:根据题意得,两圆的半径分别为1214r r ==和,两圆的圆心距5.d == 因为 12d r r =+,所以两圆外切.㈣反馈测试 导学案当堂检测 ㈤总结反思、共同提高判断两圆的位置关系的方法:(1)由两圆的方程组成的方程组有几组实数解确定;(2)依据连心线的长与两半径长的和12r r +或两半径的差的绝对值的大小关系.【板书设计】 一.圆与圆的位置关系 (1)相离,无交点 (2)外切,一个交点 (3)相交,两个交点;(4)内切,一个交点;(5)内含,无交点.二.判断圆与圆位置关系的方法例1变式【作业布置】导学案课后练习与提高4.2.2圆与圆的位置关系课前预习学案一.预习目标回忆圆与圆的位置关系有几种及几何特征,初步了解用圆的方程判断圆的位置关系的方法.二.预习内容1.圆与圆的位置关系有哪几种呢?2.如何判断圆与圆之间的位置关系呢?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中课内探究学案一.学习目标1.能根据给定圆的方程,判断圆与圆的位置关系.2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想.3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.学习重点:能根据给定圆的方程,判断圆与圆的位置关系.学习难点:用坐标法判断两圆的位置关系. 二.学习过程探究:用圆的方程怎样判断圆与圆之间的位置关系?例1.已知圆C 1:013222=++++y x yx ,圆C 2:023422=++++y x yx ,是判断圆C 1与圆C 2的位置关系.变式2222(1)(2)(2)1(2)(5)16x y x y ++-=-+-=与的位置关系.三.反思总结判断两圆的位置关系的方法:四.当堂检测 1.圆0222=-+x yx 和0422=++y yx 位置关系是( )A .相离B .外切C .相交D .内切2.两圆012422=++-+y x y x 和014422=--++y x y x 的公切线有_____条. 3.求圆0422=-+y x 和0124422=-+-+y x y x 的公共弦的长.参考答案:1.C 2.4 3.解:(法一)联立方程组,消去二次项,得y=x+2将上式代入0422=-+y x 得,022=+x x .解得x 1=-2,x 2=0.于是有y 1=0,y 2=2,所以两圆交点坐标是A(-2,0),B(0,2).公共弦长22=AB .(法二)联立方程组,消去二次项,得y=x+2圆心到直线y=x+2的距离是22200=+-=d因为圆半径为2,所以公共弦长()2222222=-=AB .课后练习与提高1.若直线0=++a y x 与圆a y x =+22相切,则a 为( ) A.0或2B.2 C.2 D.无解2.两圆094622=+-++y x y x 和01912622=-+-+y x y x 的位置关系是( ) A.外切 B.内切 C.相交 D.外离3.已知圆22:()(2)4(0):30.C x a x a l x y l C -+-=>-+=及直线当直线被截得 的弦长为32时,则a =( )A .2B .22-C .12-D .12+4.两圆094622=+-++y x y x 和01912622=-+--+y x y x 的公切线有___条 5.一圆过圆0222=-+x yx 和直线032=-+y x 的交点,且圆心在y 轴上,则这个圆的方程是________________.6.已知圆C 与圆0222=-+x y x 相外切,并且与直线03=+y x 相切于点)3,3(-Q ,求圆C 的方程.参考答案:1.C 2.A 3.C 4.3 5.06422=-++y yx6.解:设圆C 的圆心为),(b a ,由题意得62 34004 231)1(33322==⎩⎨⎧-==⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧++=+-=-+r r b a b a b a b a a b 或得或解得. 所以圆C 的方程为36)34(4)4(2222=++=+-y x y x 或.。
3.1圆1、从圆的形成过程,我们可以得出:定义1:平面内,线段OA 绕它固定的一个端点O 旋转一周, 另一个端点所形成的_____叫做圆.定义2:平面上到______的距离等于______的所有点组成的图形叫做圆.定点叫做_____,______叫做半径.以点O 为圆心的圆,记作“_____”,读作“______”.外延:①的线段叫做弦;②的弦叫做直径;③部分叫做圆弧,简称,叫做优弧, 小于半圆的弧叫做弧.④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做.能够重合的两个圆叫做______;在同圆或等圆中,能够互相重合的弧叫做______.2、确定圆有两个要素:①_______(确定圆的______);②_________(确定圆的______).二、小组学习:1.以O 为圆心的圆可以画_________个圆,这些圆叫_______________.以2cm 为半径的圆可以画________个圆,这些圆是________________.2.平面内,设⊙O 的半径为r ,点P 到圆心的距离为d ,则有d >r ⇔点P 在⊙O ______;d =r ⇔点P 在⊙O ______;d <r ⇔点P 在⊙O ______.3.下列说法正确的是①直径是弦②弦是直径③半径是弦④半圆是弧,但弧不一定是半圆⑤半径相等的两个半圆是等弧⑥长度相等的两条弧是等弧⑦等弧的长度相等4.如图,圆中有条直径,条弦,以A 为一个端点的劣弧有条.5.在矩形ABCD 中,AB =6cm ,AD =8cm ,(1)若以A 为圆心,6cm 长为半径作⊙A ,则点B 在⊙A ______,点C 在⊙A _______,点D 在⊙A ________,AC 与BD 的交点O 在⊙A _________;D3.2圆的对称性1.如图所示的⊙O 中,将圆心角∠AOB 绕圆心O 旋转到∠A′OB′的位置,你能发现哪些等量关系?结论1:在同一个圆中,相等的圆心角所对的____相等,所对的相等.2.在⊙O 和⊙O′中, 分别作相等的圆心角∠AOB 和∠A′O′B′得到如图2,滚动一个圆,使O 与O′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA 与O′A′重合.在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等吗?结论2:我们可以得到下面的定理:______________________________________.同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角____, 所对的弦也.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角____, 所对的弧也.3.如右图,在⊙O 中,AB、CD 是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF.(1)如果CD AB =,则有,.(2)如果,则有,.(3)如果COD AOB ∠=∠,则有,.(4)如果∠AOB=∠COD,那么OE 与OF 的大小有什么关系?为什么?(5)如果OE=OF,那么弧AB 与弧CD 的大小有什么关系?AB 与CD 的大小有什么关系?∠AOB 与∠COD 呢? 为什么?(6)如果CD AB =,则OE 与OF 相等吗?为什么?B 'B ''A*3.3垂径定理【结构梳理】1.圆是_________图形,其对称轴是__________________的直线.2.垂径定理是由被称为"几何之父"的古希腊数学家欧几里得(Ευκλειδης)提出的.它是圆的重要性质之一,是证明圆内线段相等,角相等,垂直关系的重要依据,也为圆中的计算,证明和作图提供了依据,思路和方法.垂径定理本身的内涵也非常丰富.对于以上①②③④⑤,已知任意两条,可推出其余三条,称为知二推三.请大家以小组为单位探究以上定理的证明过程.(垂径定理:垂直于弦的直径平分,并且平分.)已知:如图,AB是⊙O的一条弦,作直径EF,使EF⊥AB,垂足为D.求证:AD=BD,EF平分AFB,EF平分AEB(垂径定理的一个推论:平分弦()的直径垂直于弦,并且平分.)已知:如图,AB是⊙O的一条弦(不是直径),直径EF平分AB,交AB于点D.求证:EF⊥AB,EF平分AFB,EF平分AEB①垂直于弦:EF⊥AB于点D②过圆心:EF过圆心O③平分弦:AD=BD④平分弦所对的优弧:EF平分AFB⑤平分弦所对的劣弧:EF平分AEB 垂径定理一、预习导学1.叫圆心角.2.在同圆或等圆中,圆心角的度数等于它所对的度数.二、自主学习1.如图,点B、D、E在⊙O上,∠B、∠D、∠E有什么共同的特征?①顶点在_______,②并且两边_______________________的角叫做圆周角.2.度量∠B、∠D、∠E的大小,它们的数量关系是_______________.3.如图,AB为⊙O的直径,∠BOC、∠BAC分别是BC所对的圆心角、圆周角,①∠BA1C=__,∠BA2C=__,∠BA3C=__;②通过计算发现:∠BAC=__∠BOC.4、从一般情况来看,如图,BC所对的圆心角有多少个?BC所对的圆周角有多少个(位置有什么不同)?请在图中画出BC所对的圆心角和圆周角,并与同学们交流.思考与讨论①观察上图,在画出的无数个圆周角,这些圆周角与圆心O有几种位置关系?②设BC所对的圆周角为∠BAC,除了圆心O在∠BAC的一边上外,圆心O与∠BAC还有哪几种位置关系?对于这几种位置关系,结论∠BAC=12∠BOC还成立吗?试证明之.通过上述讨论发现:_________________________.CB【结构梳理】2.如图,在△ABC 中,OA=OB=OC,则∠ACB=°.请证明:二、自主学习1.如图,BC 是⊙O 的直径,它所对的圆周角是锐角、钝角,还是直角?为什么?2.如图,在⊙O 中,圆周角∠BAC=90°,弦BC 经过圆心吗?为什么?3.归纳自己总结的结论:(1)(2)注意:(1)这里所对的角、90°的角必须是圆周角;(2)直径所对的圆周角是直角在圆的有关问题中经常遇到,也是圆中常见辅助线.4.小明在分析几何问题时发现,如果题目中给出条件却没有给出相应的图形,那么就会出现因为图形的位置不确定而需要考虑多种情况的可能.请你与小明通过作图解决以下问题.在直径为4的⊙O 中,弦AB =,点C 是圆上不同于A ,B 的点,求∠ACB 的度数.第1题OCBA第2题番外篇圆内接四边形学习目标:1.识记圆的内接四边形的概念 2.掌握圆内接四边形的性质一、预习导学1.如图1,△ABC叫⊙O的_________三角形,⊙O叫△ABC的_________圆.2.如图1,若的度数为1000,则∠BOC=,∠A=______3.如图2四边形ABCD中,∠B与∠1互补,AD的延长线与DC所夹∠2=600,则∠1=_________,∠B=_________.4.判断:圆上任意两点之间分圆周为两条弧,这两条弧的度数和为3600()二、自主学习1.如图3,四边形ABCD的各顶点都在⊙O上,所以四边形ABCD是⊙O的_________四边形,⊙O叫四边形ABCD的_________圆.2.你能解决下列问题吗?如上图:(1)∵所对圆心角为∠1,所对圆心角为∠2,∴∠1+∠2=的度数+的度数=______度.∵∠BAD=21∠2(___________________________),∠BCD=21∠1(同上)∴∠BAD+∠BCD=21∠2+21∠1=_______(2)为什么∠DCE=∠A?3.如图4,5,四边形ABCD的四个顶点都在⊙O上.⑴如图4,当圆心O在四边形内部时,猜想四边形ABCD的对角的关系,并说明理由.⑵如图5,当圆心O在四边形外部时,⑴中的结论是否成立?并说明理由.归纳:圆内接四边形性质定理:圆内接四边形的对角,任意一个外角都等于.三、达标练习1.如图6四边形ABCD内接于⊙O,则∠A+∠C=____,∠B+∠ADC=_____;若∠B=800,则∠ADC=______∠CDE=______2.圆内接平行四边形必为()A.菱形B.矩形C.正方形D.等腰梯形3.如图7在⊙O中,∠CBD=30°,∠BDC=20°,求∠A的度数.EDCBA21AB CODC EBAo21图2图3图1图6EDBAC80图73.5确定圆的条件探究1:经过不同的点作圆(请你在下面空白处作图探究)(1)作经过已知点A 的圆,这样的圆你能作出多少个?(2)做经过已知点A ,B 的圆,这样的圆有多少个?它们的圆心分布有什么特点?(3)作经过A ,B ,C ,三点的圆,这样的圆有多少个?如何确定它的圆心?由以上作圆可知过已知点作圆实质是确定和,因此(1)过一点的圆有个;(2)过两点的圆有个,圆心在上;(3)过不在同一条直线上的三点作个圆,圆心是.探究2:三角形的外接圆:过三角形ABC 三顶点作一个圆,这个圆叫做三角形的_________,这个圆的圆心叫做三角形的,这个三角形叫做圆的.锐角三角形的外心在;直角三角形的外心在;钝角三角形的外心在.二、合作学习1.如图,直角坐标系中一条圆弧经过网格点A ,B ,C ,其中B 点坐标为(4,4),则该圆弧所在圆的圆心坐标为.2.学校花园里有一块矩形的空地,空地上有三棵树A ,B ,C ,学校想修建一个圆形花坛,使三棵树都在花坛的边上.(1)请你把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若△ABC 中,BC =4米,AC =3米,∠C =90°,试求圆形花坛的面积.3.6.1直线和圆的位置关系直线和圆的位置关系相离相切相交图形公共点个数及名称d 与R 的大小关系直线名称探究1:切线的性质定理1.圆的切线的半径.如图:已知直线l 是⊙O 的切线,切点为A ,连接0A,用符号语言来表示定理:∵∴2.常用的辅助线:连接与.探究2:切线的性质定理的推论若一条直线满足:①过圆心,②过切点,③垂直于切线,这三个条件中的任意个,就必然满足第个,即:①②O A3.6.2直线和圆的位置关系--切线的判定与三角形内切圆【结构梳理】1.探究:如图,点A 在⊙O 上,请过点A 画一条直线l ,使得 l OA ,判断直线l 与⊙O 的位置关系.由此得切线的判定定理(文字语言):的直线是圆的切线.符号语言:2.分别作出锐角三角形,直角三角形,钝角三角形的内切圆,并说明与它们内心的位置情况?二、合作学习判断(1)过半径的外端的直线是圆的切线()(2)与半径垂直的的直线是圆的切线()(3)过半径的端点与半径垂直的直线是圆的切线()这说明我们要牢记一条直线是圆的切线必须满足1:2三、总结提升1.判定切线的方法有哪些?2.常用的添辅助线方法?⑴直线与圆的公共点已知时,则⑵直线与圆的公共点不确定时,则*3.7切线长定理如图,点P 在⊙O 外,过点P 作⊙O 的切线,能作出条,它们的数量关系是.证明:二、合作学习问题提出:如图1,一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西120km 处(即点O 的位置),受影响的范围是半径长为40km 的圆形区域.已知港口位于台风中心正北50km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?探究思路:为了解决这个实际问题,先将其转化成数学问题,如图2,⊙O 表示台风影响的范围,O 是台风中心,圆的半径长为40km ,AB 表示这艘轮船的航线.请结合以下解题思路,尝试解决本题.(1)本题主要研究哪些图形之间的关系?(2)应比较哪些量之间的关系?(3)最终你是如何判断轮船受不受影响?图13.8圆内接正多边形正多边形边数内角中心角边长边心距周长面积3456n lr 21小明同学在学习了课本P 98提供的利用尺规作正五边形的方法之后,想借助这个图形得到一个正三角形,以下是他设计的尺规作图过程.如图,正五边形ABCDE 内接于⊙O ,第1步.作直径AF .第2步.以F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N .第3步.连接AM ,MN ,NA .(1)请根据小明设计的作法补全图形(要求:尺规作图,保留作图痕迹);(2)请你帮小明求出∠ABC 的度数.(3)小明想说明△AMN 是正三角形,他的部分推理过程如下,请你帮他补全推理过程.理由:连接ON ,NF ,…3.9弧长及扇形的面积【结构梳理】一、温故知新:圆的周长公式是,圆的面积公式是.二、自主探究:1.圆的周长可以看作______度的圆心角所对的弧.1°的圆心角所对的弧长是_______.2°的圆心角所对的弧长是_______.4°的圆心角所对的弧长是_______.……n°的圆心角所对的弧长是_______.2.什么叫扇形?.3.圆的面积可以看作度圆心角所对的扇形的面积,设圆的半径为R,=_______.1°的圆心角所对的扇形面积S扇形2°的圆心角所对的扇形面积S=_______.扇形=_______.5°的圆心角所对的扇形面积S扇形……n°的圆心角所对的扇形面积S=_______.扇形4.比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?(写出推导过程)。
圆与圆的位置关系导学案课 题 圆与圆的位置关系学情分析 学生已经初步了解圆与圆的几种位置关系,但利用圆与圆的位置关系解决简单问题的能力有待加强。
学习目标与 考点分析 1.了解圆与圆的位置关系;2.能利用圆与圆的位置关系解决简单问题。
学习重点 难点1. 掌握圆与圆的5种位置关系;2. 掌握相交两圆的连心线垂直平分两圆的公共弦,相切两圆的连心线经过切点等性质; 3. 会画两圆的内外公切线;4. 掌握正多边形的概念及正多边形内角,中心角,边长,半径,边心距的计算方法。
学习方法讲练结合教学过程一、知识梳理 1. 圆与圆的位置关系两圆外离 r R d +> 两圆外切 r R d += 两圆相交 r R d r R +<<- 两圆内切 r R d -= 两圆内含 r R d -<≤02.相切两圆的性质(1)通过两圆圆心的直线叫做连心线。
(2)如果两个圆相切,那么切点一定在连心线上。
连心线:是指通过两圆圆心的一条直线。
连心线是它的对称轴。
两圆相切时,由于切点是它们唯一的公共点,所以切点一定在对称轴上。
二、知识框架⇔⇔⇔⇔⇔⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧圆与内接正多边形两圆运动类问题圆心距与两圆半径关系圆与圆图形类判断圆与圆位置关系圆与圆的位置关系 三、精选例题(一)圆与圆的位置关系 1.根据图形判断圆与圆的位置关系【例1】(08北京)右图是北京奥运会自行车比赛项目标志,图中两车轮所在圆的位置关系是 A .内含 B .相交 C .相切 D .外离【例2】如图是一个五环图案,它由五个圆组成.下排的两个圆的位置关系是A .内含B . 外切 C. 相交 D. 外离.2.根据圆心距判断圆与圆的位置关系【例3】(2009年台州市)大圆半径为6,小圆半径为3,两圆圆心距为10,则这两圆的位置关系为( ) A .外离 B .外切 C.相交 D .内含【例4】(08内蒙赤峰)如图,⊙O 1,⊙O 2,⊙O 3两两相外切,⊙O 1的半径11r =,⊙O 2的半径22r =,⊙O 3的半径33r =,则123O O O △是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .锐角三角形或钝角三角形【例5】(2009年崇左)如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心.EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的值为 .O 2O 3O 1【例6】分别以梯形ABCD 的上底AD 、下底BC 的长为直径作⊙1O 、⊙2O ,若两圆的圆心距等于这个梯形的中位线长,则这两个圆的位置关系是____________。
4.6圆和圆的位置关系班级姓名小组等级【学习目标】1.了解圆与圆之间的几种位置关系.2.了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.3.经历探索两个圆之间位置关系的过程,训练学生的探索能力.4.通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.教学重点探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.教学难点探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.学法指导:先自学课本,经历自主探索总结过程,并完成课前预习学案,然后学习小组讨论交流。
【课时安排】本节课安排一课时。
温故知新1、点与圆有哪几种位置关系?用数量关系如何判别位置关系?2、直线与圆有哪几种位置关系?用数量关系如何判别位置关系?3、圆与圆有哪些位置关系呢?教学过程一、情境创设我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.二、探究学习学生在透明纸上画2个大小不同的圆,1个固定,另1个从其外部逐渐向其靠近,然后教师用再铁丝做成的两个圆在黑板上演示,引导学生发现、归纳两圆的位置关系。
1.两圆位置关系的定义(1)圆与圆公共点时,这时圆与圆。
其中每个圆上的点都在另一个圆的外部时,就说这两个圆,如图1;当一个圆上的所有点都在另一个圆的内部,就说这两个圆如图5 。
是内含的特例。
(2)圆与圆有个公共点时,就说这两个圆这唯一的公共点叫。
如图2,这种情况是;如图4,这种情况是(3)两圆有个共公点时,就说这两个圆 .如图3注意:找到分类的标准:①公共点的个数;②一个圆上的点是在另一个圆的内部还是外部(2)两圆相切是指两圆外切与内切(3)两圆同心是内含的一种特殊情况2.两圆位置关系与两圆半径、圆心距的数量关系之间的联系若两圆的半径分别为R、r,圆心距为d,那么(1)图形3. 借助数轴进一步理解两圆位置关系与量关系之间的联系三、典型例题例1.已知⊙O1、⊙O2 的半径为R、r,圆心距d=5,R=2. (1)若⊙O1与⊙O2外切,求r;(2)若r=7,⊙O1与⊙O2有怎样的位置关系?(3)若r=4,⊙O1与⊙O2有怎样的位置关系?例2. 定圆⊙O半径为3cm,动圆⊙P半径为1cm.(1)当两圆外切时,OP为 cm?点P在怎样的图形上运动?(2)当两圆内切时,OP为 cm?点P在怎样的图形上运动?(3)当两圆相切时,OP为多少?例3. ⊙O的半径为4cm,点P是⊙O外一点,OP=6cm。
豪仕教育数学学科导学案【预习〃导学】点与圆的位置关系:_____、______、_____没有公共点_____直线与圆的位置关系一个公共点_____两个公共点_____1、实物演示两圆的运动过程,展示圆与圆的几种位置关系图2图4图52.圆与圆的位置关系______没有公共点:(图1、图5和图6___________(______)______一个公共点:(图2和图4____________两个公共点:(图3______3、类似于直线与圆的位置关系可通过数量关系来识别(圆心距d)创引领教师德能提升的乐园外离d>______外切d=______相交______ <d<______(R>r)内切d=______(R>r)内含(同心圆)______≤d<______ (R>r)【自学〃研讨】例1:⊙和⊙的半径分别为2厘米和4厘米,当两圆圆心距为下列值时,分别说出两圆的位置关系。
(1)1厘米(2)2厘米(3)4厘米(4)6厘米(5)8厘米(6)0厘米(二)自我检测例2 如图,⊙O的半径为5cm,点P是⊙O外一点,OP=8cm,以P为圆心作一个圆与⊙O外切,这个圆的半径应是多少?以P为圆心作一个圆与⊙O内切呢?(三)合作攻坚:已知两圆半径长是方程0101332=+-xx的两个根,当两圆外切时,圆心距是多少?解:(四)归纳总结总结本节课所学内容办适合每个学生发展的教育内含内切相交外切外离1o2o1o2o【巩固〃训练】 1、已知圆⊙O1和⊙O2的半径的6cm 和8cm ,当O 1O 2=2cm 时, ⊙O 1和⊙O 2的位置关系为( ) A .外切 B .相交 C . 内切 D .内含 2、已知圆⊙O 1和⊙O 2的半径的3cm 和5cm ,当O 1O 2=2.5cm 时, ⊙O 1和⊙O 2的位置关系为( ) A .外离 B .相交 C . 内切 D .内含 3、已知圆⊙O 1和⊙O 2的半径的6cm 和8cm ,当O 1O 2=12cm 时, ⊙O 1和⊙O 2的位置关系为( ) A .外切 B .相交 C . 内切 D .内含4、两圆的直径分别为6cm 和8cm ,圆心距为7cm ,则两圆的位置关系为( ) A .外离 B .相交 C . 内切 D .外切5、两圆的半径和为24cm ,半径之比为1:2,圆心距为8cm ,则两圆的位置关系为( ) A .外离 B .相交 C . 内切 D .外切6、已知圆⊙O 1和⊙O 2的直径分别为10+m 和10-m ,圆心距为m (0>m )则两圆的位置关系为( ) A .内含 B .相交 C . 内切 D .外切7、在平面直角坐标系中,已知圆⊙O 1和⊙O 2的半径的3和7,圆心O 1的坐标为(0,6),圆心⊙O 2的坐标为(8,0),那么这两个圆的位置关系是( )A .外离B .相交C . 内切D .外切8、若两圆的半径分别为2厘米、7厘米,圆心距为9厘米,则两圆的位置关系为______ 9、已知两圆半径分别为4和5,若两圆相交,则圆心距d 的取值范围为_______ 10、两圆有一个公共点,那么______________(填写d 、R 、r 三者的关系)11、已知两个圆的半径分别为R 和r (R>r ),圆心距为d ,且满足22)(r R d =-,则这两个圆的位置关系是___________。
直线与圆、圆与圆的位置关系导学案
一、知识梳理1.直线与圆的位置关系:设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),
为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.
2.圆与圆的位置关系:设圆1:(-1)+(-1)=1(1>0),圆2:(-2)+(-2)2=r22(r2>0).
3.辨明两个易误点
(1)对于圆的切线问题,尤其是圆外一点引圆的切线,易忽视切线斜率k不存在的情形.
(2)两圆相切问题易忽视分两圆内切与外切两种情形.
[熟记常用结论]
1.圆系方程:(1)同心圆系方程:(x-a)2+(y-b)2=r2(r>0),其中a,b是定值,r是参数;
(2)过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程:x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R);
(3)过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(该圆系不含圆C2,解题时,注意检验圆C2是否满足题意,以防漏解).。
4.2.2圆与圆的位置关系一、学习目标:知识与技能:(1)理解圆与圆的位置的种类;(2)利用平面直角坐标系中两点间的距离公式求两圆的连心线长;(3)会用连心线长判断两圆的位置关系.过程与方法:用类比的思想研究圆与圆的位置关系,进一步将这些直观的事实转化为数学语言。
情感态度与价值观:通过观察图形,理解并掌握圆与圆的位置关系,培养数形结合的思想.二、学习重点、难点:用坐标法判断圆与圆的位置关系.三、学法指导及要求:1、认真研读教材129---130页,认真思考、独立规范作答,认真完成每一个问题,每一道习题,研究最佳答案准备展示,不会的先绕过,做好记号。
2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。
(尤其是:圆与圆的位置关系的几何图形及其判断方法必需牢记)3、A:自主学习;B:合作探究;C:能力提升4、小班、重点班完成全部,平行班完成A.B类题。
平行班的A级学生完成80%以上B级完成70%~80%C级力争完成60%以上。
四、知识链接1.直线与圆的位置关系:相离、相交、相切2.判断直线与圆的位置关系有哪些方法?(1)根据圆心到直线的距离;(2)根据直线的方程和圆的方程组成方程组的实数解的个数;3.圆与圆的位置关系有哪几种?(作图说明)如何根据圆的方程判断圆与圆的位置关系,我们将进一步探究.五、学习过程A问题1:圆与圆的位置关系两个大小不等的圆,其位置关系有内含、内切、相交、外切、外离等五种,在平面几何中,这些位置关系是如何判定的?B问题2:判断圆和圆的位置关系的方法(1)几何法(2)代数法B问题3:已知两圆C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=0,用上述方法判断两个圆位置关系的操作步骤如何?B例1、已知圆C1 : x2+y2+2x+8y-8=0和圆C2:x2+y2-4x-4y-2=0,试判断圆C1与圆C2的位置关系.六、达标测试A1、判断下列两圆的位置关系:(1)(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16(2)x2+y2+6x-7=0与x2+y2+6y-27=0B2、x2+y2=m与圆x2+y2+6x-8y-11=0相交,求实数m的范围A3、已知以(-4,3)为圆心的圆与x2+y2=1相切,求圆C的方程.C4、求过点A(0,6)且与圆x2+y2+10x+10y=0切于原点的圆的方程。
九年级上数学《圆与圆的位置关系》导学案
学习目标
1、 了解两个圆相离(外离、内含),两个圆相切(外切、内切),两圆相交、、圆心距等概念.
2、 理解两圆的位置关系和d 与R 、r 的数量关系并灵活应用它们解题.
学习过程
一、 知识准备
1、直线与圆的位置关系有几种?各种关系中d 与R 的大小关系是怎样的?
2、如何判断直线与圆相切?
二、自学指导
自学教材自学教材 P 98 --P 100 ,完成下列各题 1、学生准备学具,动手试验,填写下列表格
位置关系
图形
交点个数
d 与R 、r 的关系
2、什么叫做圆心距?
三、自学检测:
1.圆与圆的位置关系有 ________________________________.
2.如果两圆的半径分别为R 、r,圆心距为d,则
两圆外离 ________________两圆外切 ________________ 两圆相交 ________________两圆内切 ________________ 两圆内含 ________________
两圆外离和内涵统称为两圆__________,两圆内切和外切统称为两圆__________。
3、 (2009台州)大圆半径为6,小圆半径为3,两圆圆心距为10,则这两圆的位置关系为( ) A .外离 B .外切 C.相交 D .内含
4、 (2009宜宾)若两圆的半径分别是2cm 和3cm ,圆心距为5cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离
5(2009泸州)已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距020=7cm ,则两圆的位置关系为( )
A .外离
B .外切
C .相交
D .内切
6、 (2009湖州)已知1O ⊙与2O ⊙外切,它们的半径分别为2和3,则圆心距12O O 的长是( ) A .12O O =1 B .12O O =5 C .1<12O O <5 D .12O O >5
7、 (2009衡阳)两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是 ( )
A .外离
B .外切
C .相交
D .内切
7、如图,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映出的两圆位置关系有( ).
A.内切、相交
B.外离、相交
C.外切、外离
D.外离、内切
四、例题精析
例1: 如图所示,⊙O 的半径为7cm ,点A 为⊙O 外一点,OA=15cm , 求:(1)作⊙A 与⊙O 外切,并求⊙A 的半径是多少? (2)作⊙A 与⊙O 相内切,并求出此时⊙A 的半径.
A
O
例2:(教材101页例3)如图,⊙O 的半径为5cm ,点P 是⊙O 外一点,OP=8cm,以P 为圆心作一个圆与⊙O 外切,这个圆的半径应是多少?以P 为圆心作一个圆与⊙O 内切呢?
P
B
O
A
⇔⇔⇔
⇔⇔
六、 当堂验收
1、若⊙O 1与⊙O 2的半径分别为4和9,根据下列给出的圆心距d 的大小,写出对应的两圆的位置关系:(1) 当d=4时,两圆_______ ; (2)当d=10时,两圆_______;
(3)当d=5时,两圆_______; (4)当d=13时,两圆_______; (5)当d=14时,两圆_______.
2、两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 .
3、已知两圆的半径分别为5cm 和7cm ,圆心距为8cm ,那么这两个圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离
4、⊙A 与⊙B 相切,圆心距为10cm ,其中⊙A 半径为4cm,则⊙B 半径为( )cm. A . 6 B. 14 C. 6或14 D. 3或7
5、已知:⊙O 1和⊙O 2相交于A 、B 两点,半径分别为4cm 、3cm ,公共弦AB=4cm ,求圆心距12o o 的长。
七、 作业设计
一、填空题:
1. (2009重庆)已知⊙1O 的半径为3cm ,⊙2O 的半径为4cm ,两圆的圆心距21O O 为7cm ,则⊙1
O 与⊙2O 的位置关系为 。
2. (2009宁波)如图,⊙A 、⊙B 的圆心A 、B 在直线l 上,两圆半径都为1cm ,开始时圆心距AB=4cm ,现⊙A 、⊙B 同时沿直线l 以每秒2cm 的速度相向移动,则当两圆相切时,⊙A 运动的时间为 秒
3(2010年金华) 如果半径为3cm 的⊙O 1与半径为4cm 的⊙O 2内切,那么两圆的圆心距O 1O 2= cm.
4、两圆半径之比为3:5,当两圆内切时,圆心距为4 cm ,则两圆外切时圆心距的长为_____.
5、两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 .
6(2010株洲市)两圆的圆心距5d =,它们的半径分别是一元二次方程2540x x -+=的两个根,这两圆的位置关系是 .
7(2010,安徽芜湖)若两圆相切,圆心距是7,其中一圆的半径为10,则另一圆的半径为_______.
8(2010,浙江义乌)已知直线l 与⊙O 相切,若圆心O 到直线l 的距离是5,则⊙O 的半径
是 .
二、选择题 1(2010年兰州)已知两圆的半径R 、r 分别为方程0652
=+-x x 的两根,两圆的圆心距为1,两圆的位置关系是( )
A .外离
B .内切
C .相交
D .外切
2、已知两圆内切,它们的半径分别为3和6,则这两圆的圆心距d 的取值满足 () A .9d > B . 9d = C . 39d << D .3d =
3(2010宁波市)两圆的半径分别为3和5,圆心距为7,则两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离
4(2010年长沙)已知⊙O 1、⊙O 2的半径分别是12r =、24r =,若两圆相交,则圆心距O 1O 2可能取的值是 ( )
A .2
B .4
C .6
D .8 5、(2010年成都)已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是( ) (A )相交 (B )外切 (C )外离 (D )内含 6、(2010年眉山)⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,圆心距O 1O 2=2cm ,这两圆的位置关系是( )
A .外切
B .相交
C .内切
D .内含
7.(2010宁德).如图,在8×4的方格(每个方格的边长为1个单位长) 中,⊙A 的半径为1,⊙B 的半径为2,将⊙A 由图示位置向右平移1个
单位长后,⊙A 与静止的⊙B 的位置关系是( ). A.内含 B.内切 C.相交 D.外切
8、(2010年常州)6.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为( ) A.外离 B.外切 C.相交 D.内切 9、(上海)已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是( )
A.相交或相切
B.相切或相离
C.相交或内含
D.相切或内含
10.已知⊙O 1与⊙O 2相切,⊙O 1的半径为3 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是( ) A .1 cm B .5 cm
C .1 cm 或5 cm
D .0.5cm 或2.5cm
三、解答题
1.已知O 1与O 2的半径分别为R,r(R>r),圆心距为d,且两圆相交,判定关于x 的一元二次方程x 2
—2(d —R )x+r 2=0根的情况
2.已知两个等圆⊙O 1和⊙O 2相交于A 、B 两点,⊙O 1经过点O 2,求∠O 1AB 的度数.
3.已知图中各圆两两相切,⊙O 的半径为2R ,⊙O 1、⊙O 2的半径为R ,求⊙O 3的半径.
第7题图 A
B。