(仅供参考)BP神经网络分类器的实现原理
- 格式:pdf
- 大小:135.90 KB
- 文档页数:2
LabVIEW中BP神经网络的实现及应用
0 引言LabVIEW 是美国NI 公司开发的高效图形化虚拟仪器开发平台,它的图形化编程具有直观、简便、快速、易于开发和维护等优点,在虚拟仪器设计和测控系统开发等相关领域得到了日益广泛的应用,它无需任何文本程序代码,而是把复杂、繁琐的语言编程简化成图形,用线条把各种图形连接起来。
BP 神经网络属于前馈神经网络,它广泛应用函数逼近、模式识别、分类和数
据压缩等领域,若将神经网络与虚拟仪器有机结合,则可以为提高虚拟仪器测控系统的性能提供重要的依据。
1 BP 神经网络学习算法BP 模型是一种应用最广泛的多层前向拓扑结构,以三层BP 神经网络作为理论依据进行编程,它由输入层、隐层和输出层构成。
设输入层神经元个数为I,隐层神经元个数为J,输出层神经元个数为K,学习样本有N 个(x,Y,)向量,表示为:输入向量
X{x1,x2,…,xI},输出向量l,{Y1,Y2,…,Yx),理想输出向量为
T{tl,t2,…,tK}。
(1)输入层节点i,其输出等于xi(i=1,2,…,I,将控制变量值传输到隐含层,则隐层第j 个神经元的输入:
其中:Wji 是隐层第J 个神经元到输入层第i 个神经元的连接权值。
(2)隐层第J 个神经元的输出:
(3)神经网络输出层,第k 个神经元的输入为:
其中:Vkj 是输出层第k 个神经元到隐层第j 个神经元的连接权值。
(4)神经网络输出层,第志个神经元的输出为:
(5)设定网络误差函数E:
(6)输出层到隐层的连接权值调整量△Vkj:
(7)隐层到输入层的连接权值调整量wji:。
bp分类的基本概念BP分类(Backpropagation)是一种基于梯度下降算法的神经网络分类方法。
它是一种监督学习算法,通过反向传播误差来训练神经网络模型。
基本概念如下:1. 前向传播(Forward Propagation):在神经网络中,输入样本通过网络的输入层向前传播,经过隐藏层的计算,最终在输出层得到分类结果。
2. 反向传播(Backward Propagation):反向传播是BP分类算法的核心,通过计算输出层与目标输出之间的误差,并将误差向后传播到隐藏层和输入层,用来更新网络的权重和偏置值。
3. 激活函数(Activation Function):激活函数在神经网络的每个神经元中使用,它们负责将输入信号进行非线性转换,增加网络的表达能力。
常用的激活函数有Sigmoid、ReLU、Tanh等。
4. 损失函数(Loss Function):损失函数衡量了模型的输出值与目标值之间的差距,是用来衡量模型预测的准确性的指标。
常见的损失函数包括均方误差(Mean Squared Error)、交叉熵(Cross-Entropy)等。
5. 权重更新(Weight Update):根据反向传播算法中计算得到的梯度信息,通过梯度下降算法对网络中的权重进行更新,使网络的预测结果逐步逼近目标输出。
6. 学习率(Learning Rate):学习率是用来控制权重更新的步长,它决定了每次权重更新的幅度大小。
合适的学习率可以加快收敛速度,但过大或过小的学习率都会导致训练效果不佳。
7. 批量学习(Batch Learning):在BP分类中,通常会将训练数据集分成若干个批次进行训练,每个批次包含多个样本。
通过计算每个样本的误差平均值来更新权重,以减小计算量和提高训练速度。
以上是BP分类的基本概念,理解这些概念对于掌握BP分类算法的原理和实现是很重要的。
BP神经网络模型第1节基本原理简介近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。
在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。
多层感知机神经网络的研究始于50年代,但一直进展不大。
直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。
BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。
对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。
节点的作用的激励函数通常选取S 型函数,如Qx e x f /11)(-+=式中Q 为调整激励函数形式的Sigmoid 参数。
该算法的学习过程由正向传播和反向传播组成。
在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。
每一层神经元的状态只影响下一层神经输入层 中间层 输出层 图34-1 BP 神经网络模型元的状态。
如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。
社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。
BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。
在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。
首先,需要准备一个数据集来训练和测试BP神经网络。
数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。
一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。
在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。
假设数据集的前几列是输入特征,最后一列是输出。
可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。
可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。
该函数的输入参数为每个隐藏层的神经元数量。
下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。
可以使用`train`函数来训练模型。
该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。
下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。
可以使用`net`模型的`sim`函数来进行预测。
下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。
bp分析法BP分析法:1. 介绍:BP分析法是基于反向传播算法的一种神经网络形式,它是一种深度学习技术,20世纪80年代由Rosenblatt提出,这种神经网络分析技术广泛应用在以分类和标签为基础的商业场景分析中。
BP分析法从传统的传播算法中开发出一种更先进的算法来解决回归和分类问题。
它的优势在于最小化整个网络的误差,在解决复杂的问题时,展现出良好的优势,如此它便可以被引入到许多实际场景中。
2. 基本原理:BP分析法是基于反向传播算法实现的神经网络,它通过输入层、隐藏层和输出层组成一个有规律的神经网络的数据结构,神经元从输入层向隐藏层,再有隐藏层向输出层传递信息,信息在各个层之间通过定义好的权重(weight)来传输,最后在输出层形成一种问题解。
BP分析法是通过反向传播来让网络能够学习出一个最好的结果,为此它必须传递给各层预先设定好的权重大小,当网络接收到新的输入时,它首先根据配置好的权重从输入层出发,沿着神经网络传播到输出层,不断调整权重,最终在神经网络的输出层能够得到一个最好的解。
3. 应用场景:BP分析法广泛应用于以分类和标签为基础的商业场景分析中。
可以应用在客户购买分析、商品推荐系统、预测分析、语音识别系统等等。
4. 优点:1) BP网络可以拟合任何非线性关系;2) BP网络可以将一个完整的问题分解成一系列子问题,每个子问题可以有不同的权重或参数来控制网络的行为;3) BP网络可以用梯度下降算法求解,比较简单而且快速;4) BP网络比较容易拓展维度,可以递归增加训练样本的尺度和分辨率,即层数和个数;5) BP网络可以将大量的训练样本数据快速立体群聚,使得预测和分类能够高效且准确;6) BP网路可以克服噪声干扰,在训练数据中添加噪声对网络准确度几乎没有影响。
5. 缺点:1) 由于BP网络必须要有一定的训练集,所以当训练集的质量较低时,它的训练效果就较差,无法拟合出一个较好的结果;2) BP网络的迭代次数比较多,一般来说迭代次数越多,网络拟合能力越强,但是迭代次数也可能导致网络过拟合,从而出现局部最佳解;3) BP网络有限与复杂模型,它只能用于处理较小的问题,当复杂度增加时,BP 网络就无法解决当前的问题;4) BP网络需要大量的数据训练,这也意味着它所需要的训练时间可能很长;5) BP网络对参数要求比较高,网络不能准确地工作,如果参数不足。
bp 和 ep 标准《BP和EP标准》一、引言BP(BackPropagation,反向传播)和EP(ErrorPropagation,误差传播)是两种常用的神经网络训练算法,广泛应用于各种机器学习和深度学习应用中。
本篇文章将介绍BP和EP标准的基本原理、实现方法和应用场景。
二、BP标准BP算法是一种通过反向传播误差来优化神经网络权重的算法。
在训练过程中,神经网络会根据输入数据输出相应的预测值,并与实际值进行比较,计算误差。
通过不断调整神经元之间的权重,减少误差,提高预测精度。
1.算法原理BP算法的核心是通过反向传播误差来更新神经网络的权重。
具体来说,在神经网络训练过程中,通过前向传播得到预测值和实际值,计算误差。
然后根据误差调整权重,再通过反向传播计算新的误差,不断迭代优化神经网络的性能。
2.实现方法实现BP算法需要以下步骤:(1)初始化权重和偏置;(2)前向传播:根据输入数据计算输出;(3)计算误差:将实际值与预测值进行比较,计算误差;(4)反向传播:根据误差调整权重和偏置;(5)重复步骤(2)-(4),直到达到预设的迭代次数或网络性能达到预期水平。
3.应用场景BP算法广泛应用于各种神经网络模型,如多层感知器、卷积神经网络和循环神经网络等。
在图像识别、自然语言处理、语音识别等领域,BP算法都取得了很好的效果。
三、EP标准EP算法是一种基于误差传播理论的优化算法,用于调整神经网络的权重和偏置。
该算法通过分析误差在神经网络中的传播过程,找到误差较大的区域,并针对性地调整权重和偏置,以提高神经网络的性能。
1.算法原理EP算法通过分析误差在神经网络中的传播过程,找到误差较大的区域,并利用这些信息调整权重和偏置。
具体来说,在神经网络训练过程中,计算输入数据的预测值和实际值之间的误差,并通过分析误差在神经网络中的传播过程,找到误差较大的区域,进而调整权重和偏置。
2.实现方法实现EP算法需要以下步骤:(1)初始化权重和偏置;(2)定义误差函数:将实际值与预测值进行比较,计算误差;(3)定义传播矩阵:根据神经网络的拓扑结构,定义误差在神经网络中的传播矩阵;(4)误差传播:根据误差函数和传播矩阵,计算误差在每个神经元上的大小;(5)反向传播误差:根据误差大小调整权重和偏置;(6)重复步骤(4)-(6),直到达到预设的迭代次数或网络性能达到预期水平。
BP神经网络的发展在人工神经网络发展历史中,很长一段时间里没有找到隐层的连接权值调整问题的有效算法。
直到误差反向传播算法(BP算法)的提出,成功地解决了求解非线性连续函数的多层前馈神经网络权重调整问题。
BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。
输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。
当实际输出与期望输出不符时,进入误差的反向传播阶段。
误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。
周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。
BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。
(1)节点输出模型隐节点输出模型:Oj=f(∑Wij×Xi-qj) (1)输出节点输出模型:Yk=f(∑Tjk×Oj-qk) (2)f-非线形作用函数;q -神经单元阈值。
图1 典型BP网络结构模型(2)作用函数模型作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid函数: f(x)=1/(1 e) (3)(3)误差计算模型误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数:(4)tpi- i节点的期望输出值;Opi-i节点计算输出值。
(4)自学习模型神经网络的学习过程,即连接下层节点和上层节点之间的权重矩阵Wij的设定和误差修正过程。
BP算法的基本原理BP算法(反向传播算法)是一种神经网络训练算法,用于更新神经网络的权重和偏置,以使之能够适应所需任务的输入输出关系。
BP算法基于梯度下降优化方法,通过求解损失函数关于权重和偏置的偏导数来进行参数更新。
其基本原理涉及到神经网络的前向传播和反向传播两个过程。
以下将详细介绍BP算法的基本原理。
1.前向传播:在神经网络的前向传播过程中,输入数据通过网络的各个层,通过各个神经元的激活函数,最终得到网络的输出。
在前向传播过程中,每个神经元接收到上一层的信号,并通过权重和偏置进行加权求和,然后经过激活函数处理后输出。
具体而言,假设神经网络有L层,第l层的神经元为h(l),输入为x,激活函数为f(l),权重为w(l),偏置为b(l)。
其中,输入层为第1层,隐藏层和输出层分别为第2层到第L层。
对于第l层的神经元h(l),其输入信号为:z(l)=w(l)*h(l-1)+b(l)其中,h(l-1)表示第(l-1)层的神经元的输出。
然后,通过激活函数f(l)处理输入信号z(l)得到第l层的输出信号:h(l)=f(l)(z(l))。
依次类推,通过前向传播过程,神经网络可以将输入信号转化为输出信号。
2.反向传播:在神经网络的反向传播过程中,根据网络的输出和真实值之间的差异,通过链式法则来计算损失函数对于各层权重和偏置的偏导数,然后根据梯度下降法则对权重和偏置进行更新。
具体而言,假设网络的输出为y,损失函数为L,权重和偏置为w和b,求解L对w和b的偏导数的过程为反向传播。
首先,计算L对于网络输出y的偏导数:δ(L)/δy = dL(y)/dy。
然后,根据链式法则,计算L对于第L层的输入信号z(L)的偏导数:δ(L)/δz(L)=δ(L)/δy*δy/δz(L)。
接着,计算L对于第(L-1)层的输入信号z(L-1)的偏导数:δ(L)/δz(L-1) = δ(L)/δz(L) * dz(L)/dz(L-1)。
依次类推,通过链式法则得到L对于各层输入信号z(l)的偏导数。