数据作为驱动本轮人工智能浪潮全面兴起的三大基础要素之一, 数据安全风险已成为影响人工智能安全发展的关键因素。与此同时, 人工智能应用也给数据安全带来严峻挑战,如何应对人工智能场景下 的数据安全风险日渐成为国际人工智能治理的重要议题。部分国家已 率先探索人工智能数据安全风险的前瞻研究和主动预防,并积极推动 人工智能在数据安全领域应用,力求实现人工智能与数据安全的良性 互动发展。
图 1 人工智能安全体系架构图 1
人工智能数据安全白皮书(2019 年)
(二) 人工智能数据安全内涵
1、人工智能与数据 人工智能与数据相辅相成、互促发展。一方面,海量优质数据助 力人工智能发展。现阶段,以深度学习为代表的人工智能算法设计与 优化需要以海量优质数据为驱动。谷歌研究提出,随着训练数据数量 级的增加,相同机器视觉算法模型的性能呈线性上升。牛津大学国际 发展研究中心将大数据质量和可用性作为评价政府人工智能准备指 数的重要考察项1。美国欧亚集团咨询公司将数据数量和质量视为衡 量人工智能发展潜力的重要评价指标2。另一方面,人工智能显著提 升数据收集管理能力和数据挖掘利用水平。 人工智能在人们日常生活 和企业生产经营中大规模应用,获取、收集和分析更多用户和企业数 据,促进人工智能语义分析、内容理解、模式识别等方面技术能力进 一步优化,更好地实现对收集的海量数据进行快速分析和分类管理。 而且,人工智能对看似毫不相关的海量数据进行深度挖掘分析,发现 经济社会运行规律、用户心理和行为特征等新知识。基于新知识,人 工智能进一步提升对未来的预测和对现实问题的实时决策能力,提升 数据资源利用价值,优化企业经营决策、创新经济发展方式、完善社 会治理体系。 2、人工智能数据安全 数据安全是人工智能安全的关键。 数据成为本轮人工智能浪潮兴 起发展的关键要素。人工智能算法设计与优化需要以海量优质数据资