免疫磁珠分离技术
- 格式:doc
- 大小:37.00 KB
- 文档页数:2
磁珠分离技术一、原理免疫磁珠法分离细胞基于细胞表面抗原能与连接在磁珠上的特异性单抗相结合,在外磁场中,通过抗体与磁珠相连的细胞被吸附而滞留在磁场中,无该种表面抗原的细胞由于不能与相连着磁珠的特异性单抗结合而没有磁性,不在磁场中停留,从而使细胞得以分离。
免疫磁珠法分正选法和负选法,也称阳性分选法和阴性分选法。
正选法-磁珠结合的细胞就是所要分离获得的细胞;负选法-磁珠结合的细胞为不需要细胞。
一般负选法分选较为常见,因为此方法获得的所需要的细胞表面不含有抗体及磁珠的干扰。
现以两步法分选小鼠CD4+ CD25+ T 细胞的分选为例分别介绍负选法、正选法如下。
1、材料试剂:<1>、生物素化的,小鼠CD4阴性分选抗体混合物[cocktail ,内含抗B 细胞(CD45R ,B220)、CD8+T 细胞(CD8a ,Ly-2)、造血细胞(CD11b,Mac-1),NK 细胞(CD49b,DX5)等非CD4+T 细胞表面标志的抗体]。
<2>、结合有磁珠的抗生物素抗体(Scimall 科学在线提供);含0.5%BSA (或0.5%FCS )及2mmol/L EDTA 的PBS 缓冲液;抗小鼠CD25-PE 抗体;结合有磁珠的抗PE 抗体(Scimall 科学在线提供);磁珠分离器或分离柱。
2、实验步骤<1>、负性分选小鼠CD4+T 细胞<2>、阳性分选小鼠CD25+ T 细胞二、注意事项:1、如果分离细胞用作培养,全过程注意无菌操作。
2、磁珠分离系统分离的细胞纯度可以达到80%-99%,得率在60%-90%左右,仅次于或相当于流式细胞仪的分选效率,与FACS相比,MACS设备简单,耗时极短,故而应用广泛。
设定不同的程序(细胞得率或纯度不可兼得),连续两次过柱分选可进一步提高分选细胞纯度,通常可达到95%-95%。
3、由于阳性分选得到的细胞表面结合有抗体及磁珠,有可能影响细胞的功能,故目前常用阴性分选的方法分离细胞。
免疫磁珠分离阳性杂交瘤细胞株的可行性1、免疫磁珠的性质免疫磁珠由三部分组成, 核心是金属小颗粒(Fe2O3、Fe3O4), 核心的外层包裹一层高分子材料(如聚苯乙烯、聚氯乙烯等),最外层是功能基层, 如氨基(-NH4)、竣基(-COOH)、羟基(-OH)。
磁珠是均匀、球形、具有超顺磁性及保护性壳的粒子。
大小和形状的均一性,可使靶物质迅速和有效地结合到磁珠上,它的球形结构可消除与不规则形状粒子有关的非特异性结合超顺磁性可使磁珠置于磁场时,显示其磁性,从磁场移出时,磁性消除、磁珠分散保护性壳可防止金属微粒漏出[1]。
根据磁珠功能基结合的免疫配基不同分为:包被一抗的磁珠、包被二抗的磁珠、未包被的磁珠和包被抗生物素的磁珠。
2、免疫磁珠分离技术的原理免疫磁珠的功能基团可结合活性蛋白质(如抗体、抗原),利用磁珠上的抗体或抗原与相应的抗原或抗体发生特异性结合,形成免疫磁珠-抗体-抗原的复合物,这种复合物在磁场的作用下,发生力学移动,使复合物与其它物质分离,达到分离纯化的目的[2]。
3、免疫磁珠的应用3.1 免疫检测在免疫检测中,免疫磁珠作为固相载体,磁珠上的抗体与抗原特异性结合,形成抗原-抗体-磁珠复合物,在磁场的作用下,使特异性抗原与其它物质分离,起到了提纯与富集的作用,克服了放射免疫和酶联免疫检测的缺点。
这种分离检测方法具有灵敏度高,特异性强等优点。
磁珠标记的氯霉素直接竞争ELISA方法比常规直接竞争ELISA检测灵敏度提高50倍,达到0.002ng/mL[3]。
此外,免疫磁珠在病原微生物的检测方面也起了重要的作用,例如,能快速、准确的检测水中弓形虫[4]的情况。
3.2 细胞分离早在20 世纪80 年代初期,Ugelstad 就提出用磁性微粒分离细胞,后由挪威Dynal 公司制成免疫磁珠出售,可用于各种细胞的分离。
使用IMB 进行分离细胞有两种方式:直接从细胞混合液中分离出靶细胞的方法,称为阳性分离;用免疫磁珠去除无关细胞,使靶细胞得以纯化的方法,称为阴性分离。
外泌体磁珠分离法是一种基于免疫亲和原理的外泌体分离技术。
外泌体是细胞释放到外部环境中的小囊泡,它们在体内液体中的存在对于疾病诊断和治疗具有重要价值。
外泌体的分离和纯化是研究和应用这些微小囊泡的关键步骤。
磁珠分离法就是这样一种常用的分离方法,它的工作原理如下:
1. 特异性结合:外泌体表面带有特定的蛋白质标记,如CD63、CD9等。
这些蛋白质可以作为外泌体的特异性标记物。
2. 抗体包被磁珠:将针对这些表面蛋白的抗体包被在磁珠上。
当磁珠与外泌体混合孵育时,抗体会与外泌体表面的对应蛋白结合,形成抗体-抗原复合物。
3. 磁性分离:由于磁珠带有磁性,当施加外部磁场时,与磁珠结合的外泌体会被吸附并随磁珠一起从混合物中分离出来,实现外泌体的纯化。
适的磁珠试剂盒和操作流程。
免疫共沉淀磁珠法-概述说明以及解释1.引言1.1 概述概述部分可以简要介绍免疫共沉淀磁珠法的定义和原理。
免疫共沉淀磁珠法是一种利用磁珠载体对特定抗原/抗体进行选择性结合的技术,通过磁场的作用实现对特定分子的快速分离纯化。
这种方法在生物学、医学和生物化学等领域有着广泛的应用,并且具有操作简便、效率高、成本低的优势。
在接下来的文章内容中,我们将对免疫共沉淀磁珠法的方法介绍、应用领域以及优势和局限性进行详细阐述。
1.2 文章结构文章结构部分的内容可以包括对整篇文章的结构和内容进行简要介绍,让读者对文章有一个整体的了解。
可以包括文章的各个章节内容和重点,以及各个部分之间的逻辑关系和连接。
此部分可以是对整篇文章的概述和导读,帮助读者更好地理解和阅读整篇文章。
部分的内容1.3 目的本文旨在介绍免疫共沉淀磁珠法在生物学和医学领域的应用和发展现状。
通过对该方法的详细介绍和分析,旨在帮助读者了解其原理、操作步骤和相关领域的实际应用。
同时,通过评估该方法的优势和局限性,旨在为研究人员提供参考,以便更好地应用和改进该方法。
最终目的是促进免疫共沉淀磁珠法在生物医学研究和临床诊断中的应用,并为未来的研究方向和方法改进提供启示。
2.正文2.1 方法介绍免疫共沉淀磁珠法是一种利用磁珠载体进行免疫共沉淀的方法,在生物医学领域有着广泛的应用。
该方法可以分为直接法和间接法两种。
直接法是指将特异性抗体直接连接到磁珠表面,然后将混合物中的抗原与抗体结合,再利用外加磁场将磁珠与非特异性物质分离。
该方法操作简单,灵敏度高,适用于大多数免疫学试验。
间接法是指首先将特异性抗体连接到磁珠表面,然后将待检测样品中的抗原与抗体结合,再加入第二抗体结合抗原,最后利用外加磁场将磁珠与非特异性物质分离。
该方法对于多肽和蛋白质分析有着较高的灵敏度和特异性。
免疫共沉淀磁珠法具有操作简便、试验时间短、结果准确等优点,同时也存在着磁珠分离效率与特异性抗体结合的选择性等局限性。
免疫磁珠分离法原理与应用标题:免疫磁珠分离法:原理与应用引言:随着生物技术的快速发展,分离和纯化靶标蛋白成为许多研究人员和生物制药公司关注的重要领域。
在过去的几十年里,形形色色的方法被开发用于从复杂的混合物中纯化特定蛋白质。
其中一种高效且广泛应用的方法是免疫磁珠分离法。
本文将深入探讨免疫磁珠分离法的原理、优点、应用领域以及未来的发展趋势。
一、原理:免疫磁珠分离法是一种基于抗原-抗体相互作用的技术,通过免疫磁珠与靶标蛋白质之间的特异性结合,实现目标蛋白的高效分离和纯化。
其基本原理可以概括为以下几个步骤:1. 免疫反应:免疫磁珠是一种通过磁力控制的微米级磁性颗粒,表面覆盖着特异性抗体。
当样品与免疫磁珠混合时,抗体会与目标蛋白发生特异性结合,形成免疫复合物。
2. 磁珠分离:通过外加磁场,免疫磁珠可以被快速沉降到离心管底部,而其它非特异性成分则会在上清中保持。
这种磁珠分离的特异性和高效性使得目标蛋白质能够被有效地分离和纯化。
3. 洗脱:经过磁珠分离后,目标蛋白质与非特异性成分被分离,而磁珠上的目标蛋白则需要被洗脱下来。
这可以通过改变洗脱缓冲液的pH 值、离子浓度或添加特定的解离剂来实现。
二、优点:免疫磁珠分离法具有许多优点,使其成为生物制药和生物研究领域的重要工具。
以下是一些主要的优点:1. 高度特异性:由于抗体的特异性,免疫磁珠分离法可以实现对目标蛋白的高度特异性结合,从而减少非特异性结合的可能性。
2. 高效性:免疫磁珠分离法可以在短时间内实现目标蛋白的高效分离和纯化。
3. 可逆性:与其他分离方法不同,免疫磁珠分离法可以通过简单地改变外部条件来逆转目标蛋白与磁珠的结合,实现目标蛋白的洗脱和回收。
4. 可扩展性:免疫磁珠分离法可适用于从微量到大规模的样品处理。
三、应用领域:免疫磁珠分离法在多个研究领域和应用中发挥着重要作用。
以下是一些主要的应用领域:1. 生物制药:免疫磁珠分离法已被广泛应用于生物制药领域,用于纯化重组蛋白和单抗等生物药物。
免疫磁珠细胞分选法
免疫磁珠细胞分选法是一种常用的细胞分离技术,用于根据细胞表面特异性标记物的
表达情况,快速高效地分选目标细胞。
1. 准备工作:
- 细胞样品:将待分选细胞样品通过离心步骤得到细胞沉淀。
- 细胞培养基:根据所需的细胞类型选择适当的培养基,添加适量的BSA(牛血清蛋白)以防止非特异性结合。
- 免疫磁珠:选择对目标细胞表面特异性标记物具有高度亲和力的免疫磁珠。
2. 磁珠表面的功能化:
- 将免疫磁珠用细胞培养基悬浮,并离心去除上清液。
- 使用稀释的BSA溶液处理磁珠,以阻断非特异性结合位点。
- 添加富有活性羟基的化合物(如PEG–NH2)处理磁珠,使磁珠表面羟基化。
3. 细胞与磁珠的结合:
- 将培养基悬浮的免疫磁珠与细胞样品混合,在合适的温度和时间条件下进行孵育,
使细胞与磁珠结合。
- 磁珠表面的抗体与目标细胞的表面特异性标记物结合,并形成稳定的复合物。
4. 分离目标细胞与非目标细胞:
- 使用磁力分选系统,将培养基中的磁珠和细胞分离出来。
磁珠上的磁性能够快速吸
附到磁力分选系统上,而非目标细胞则会留在培养基中。
- 可以通过适当的洗涤步骤去除非特异性结合和杂质细胞,以得到纯净的目标细胞
群。
5. 目标细胞的后续处理:
- 可以将分选后的细胞用于进一步的实验研究,如细胞培养、分析、基因组学或蛋白
质组学研究等。
- 可以使用目标细胞进行细胞培养、移植、植入或治疗等应用。
免疫磁珠细胞分选法既快速又高效,适用于实验室中的细胞分离和纯化工作,为细胞生物学、医学研究和临床应用提供了重要的技术支持。
磁珠分离技术摘要:磁珠分离技术是一种分子生物学分离技术, 它利用其表面修饰的磁性颗粒对生物分子或细胞的亲和结合而进行分离, 能对待分离或待检测的靶标进行高效富集, 是一种方便、快速、回收率高、选择性强的方法。
磁珠分离技术在生物学方面的应用始于20世纪70年代后期, 目前已经在分子生物学、细胞学、免疫学、微生物学、生物化学等领域取得一些令人瞩目的研究成果。
基本概念磁珠磁珠是一种通过一定方法将磁性无机粒子与有机高分子结合形成的具有一定磁性及特殊结构的体积在几纳米到几十微米之间的载体微球。
载体微球的核心为金属小颗粒, 常为铁的氧化物或铁的硫化物, 核心外包裹一层高分子材料, 最外层是功能基团, 载体微球表面可根据需要赋予不同的功能基团(如-OH、-COOH、-CHO、-NH2,—SH、—CONO2、—CONH2、—SO3H、—SiH3、—环氧基、—CHCl等),使其表现具有疏水-亲水、非极性-极性、带正电荷-带负电荷等不同物理性质。
同时具有磁响应性,在外磁场作用下具有磁导向性。
由于载体微球表现的物理性质不同, 可结合不同的免疫配基, 如抗体、抗原、DNA、RNA 等。
应用于磁分离技术的磁性载体微球应具备以下特点: 粒径比较小, 比表面积较大, 具有较大的吸附容量; 物理和化学性能稳定, 具有较高的机械强度, 使用寿命长; 具有可活化的反应基团, 以用于亲和配基的固定化; 粒径均一, 能形成单分散体系; 悬浮性好, 便于反应的有效进行。
载体微球有纳米级、微粒级的, 纳米级的载体微球与微粒级的载体微球相比具有以下优点: 尺寸小, 扩散速度快, 悬浮稳定性好; 比表面积大, 偶联容量大; 超顺磁性, 能快速实现磁性粒子的分散与回收。
磁珠的制备方法:共沉淀法、悬浮聚合法、乳液聚合法、分散聚合法、包埋法及原子转移自由基聚合法等。
免疫磁珠免疫磁珠(Immunomagnetic bead, IMB) 简称磁珠,免疫磁珠由载体微球和免疫配基结合而成。
磁珠分离技术
一、原理
免疫磁珠法分离细胞基于细胞表面抗原能与连接在磁珠上的特异性单抗相结合,在外磁场中,通过抗体与磁珠相连的细胞被吸附而滞留在磁场中,无该种表面抗原的细胞由于不能与相连着磁珠的特异性单抗结合而没有磁性,不在磁场中停留,从而使细胞得以分离。
免疫磁珠法分正选法和负选法,也称阳性分选法和阴性分选法。
正选法-磁珠结合的细胞就是所要分离获得的细胞;负选法-磁珠结合的细胞为不需要细胞。
一般负选法分选较为常见,因为此方法获得的所需要的细胞表面不含有抗体及磁珠的干扰。
现以两步法分选小鼠CD4+ CD25+ T 细胞的分选为例分别介绍负选法、正选法如下。
1、材料试剂:
<1>、生物素化的,小鼠CD4阴性分选抗体混合物[cocktail ,内含抗B 细胞(CD45R ,B220)、CD8+T 细胞(CD8a ,Ly-2)、造血细胞(CD11b,Mac-1),NK 细胞(CD49b,DX5)等非CD4+T 细胞表面标志的抗体]。
<2>、结合有磁珠的抗生物素抗体(Scimall 科学在线提供);含0.5%BSA (或0.5%FCS )及2mmol/L EDTA 的PBS 缓冲液;抗小鼠CD25-PE 抗体;结合有磁珠的抗PE 抗体(Scimall 科学在线提供);磁珠分离器或分离柱。
2、实验步骤
<1>、负性分选小鼠CD4+T 细胞
<2>、阳性分选小鼠CD25+ T 细胞
二、注意事项:
1、如果分离细胞用作培养,全过程注意无菌操作。
2、磁珠分离系统分离的细胞纯度可以达到80%-99%,得率在60%-90%左右,仅次于或相当于流式细胞仪的分选效率,与FACS相比,MACS设备简单,耗时极短,故而应用广泛。
设定不同的程序(细胞得率或纯度不可兼得),连续两次过柱分选可进一步提高分选细胞纯度,通常可达到95%-95%。
3、由于阳性分选得到的细胞表面结合有抗体及磁珠,有可能影响细胞的功能,故目前常用阴性分选的方法分离细胞。
如果只能用阳性分离的方法,Scimall科学在线建议在分离后培养1-2天,使结合在细胞表面的抗体脱落。
4、抗体包被磁珠对死细胞、红细胞常有非特异性结合。
故而分选前去除死细胞、红细胞(如通过Ficoll分离去除)可以提高分离的效果。
三、阳性分选法和阴性分选法的优缺点比较。