连根数构成的康托尔集的豪斯多夫维数研究
- 格式:doc
- 大小:11.81 KB
- 文档页数:1
豪斯多夫豪斯多夫,F.(Hausdorff,Felix)1868年11月8日生于德国布雷斯劳[Breslau,今波兰弗拉茨瓦夫(Wroclaw)];1942年1月 26日卒于波恩.数学.豪斯多夫是犹太人,他的父亲是一位富裕的商人.在豪斯多夫年幼的时候,随着父母迁往莱比锡.在莱比锡读完中学后,又在当地和弗来堡、柏林等地学习数学和天文学.1891年在莱比锡大学毕业并取得博士学位.豪斯多夫的兴趣极为广泛,不仅对数学、天文学和光学有兴趣,而且也酷爱文学、哲学和艺术.他的朋友主要是艺术家和作家.豪斯多夫曾用Dr.Paul Mongre的笔名出版了两本诗集和一本哲学著作(Das Chaos in Kosmischer Auslese, 1898);还有大量的富有哲理的散文和文章.在1904年曾发表一部滑稽戏的剧本(Der Arst Seiner Ehre),这部戏在 1912年上演,获得相当大的成功.他在1891—1896期间,曾发表过4篇天文学和光学的文章以及数学中许多分支的文章.1896年成为莱比锡大学讲师,1902年成为副教授.以后主要致力于数学,逐渐减少了非科学的写作,特别是1904年以后,主要研究集论.1910年,他作为副教授去波恩大学,在那里写出了著名的专题著作?集论根底?(Grundzügeder Mengenlehre),发表于1914年.这本专著影响极大,使豪斯多夫成为公认的一般拓扑的奠基人.1913年,豪斯多夫在格赖夫斯瓦尔德(Greifswald)大学任教授.1921年回到波恩大学任教授,在波恩一直非常活泼,直到1935年,因为他是犹太人而被迫隐退.但他仍继续从事集论和拓扑学的研究工作.他的成果只能在国外发表.1941年,他作为犹太人将被送到拘留营去.当拘留变得紧迫时,豪斯多夫和他的妻子、妻妹一起于1942年1月26日自杀于波恩.豪斯多夫在数学的集合论、拓扑学、连续群理论、泛函分析、数论、概率论、几何学等许多分支中都有建树、最主要的奉献是在集合论和点集拓扑学方面.豪斯多夫将他的前辈导入的一些概念给予适当的概括,导入了许多新的观念、方法和定理,开展为有系统的完美的理论,并为进一步开展提供了强大的动力.他是点集拓扑和度量空间的一般理论的他建者.豪斯多夫的?集论根底?(1914)一书在数学文献中是很珍贵的,他概括了前人广泛的工作,使之成为新理论的支柱,创立并完成了拓扑和度量空间的理论.由于它的阐述清晰、准确而优美,所以很容易读,直到今天仍有价值.他开展了D.希尔伯特(Hilbert)(1902)和H.外尔(Weyl)(1913)分别用公理化方法研究还将有面几何及黎曼曲面时所提出的概念,用邻域的语言给予公理的描述,定义了拓扑空间.在豪斯多夫之前,M.R.弗雷歇(Frechet)F.里斯(Riesz)等虽然都企图建立拓扑空间,给出过各种定义及相关概念,但第一个令人满意的拓扑空间定义是豪斯多夫在?集论根底?中提出的.他定义的拓扑空间建立在抽象集X上,使每个x∈X对应一个子集族 (x),{ (x)}x∈X称为邻域系统,满足(1)对 x∈X, (x)≠,且对 U∈ (x),有x∈U;(2)假设x∈U∈ (y),那么 V∈ (x)使V U(3)对 U1,U2∈ (x), U∈ (x),使U U1∩U2;(4)对 x,y∈X,x≠y,开集U∈ (x),V∈ (y),由{ (x)}x∈X生成的拓扑空间称为豪斯多夫空间.它是最重要的拓扑空间之一.形成拓扑的各种方法,首先由豪斯多夫在1927年给予系统的描述.在欧氏空间的子集类中,G.康托尔(Cantor)曾导入并研究过开集、闭集、闭包、内部等概念,豪斯多夫的?集论根底?将它们推广于抽象空间,并建立了两个可数性公理:(1)对 x∈X,子集族{ (x)}是可数集.(2)所有的{ (x)}x∈X的集是可数集.关于同胚的概念,H.庞加莱(Poincare)曾在狭窄的意义下导入并研究过.弗雷歇于1910年首先讨论了抽象空间上的同胚概念,但在内容上详尽无遗的论述和系统讲解是豪斯多夫在?集论根底?中给出的.1935年,他还首先注意到正规性是闭映射的不变量.关于欧氏空间的子空间,E.L.林德勒夫(Lindel f)曾讨论过集的凝聚点的概念,豪斯多夫在?集论根底?中,在拓扑空间上详尽地讨论了集合的凝聚点及其简单性质,并由此推出任一第二可数空间可表现为两个不相交集的并,其中之一是完全集,另一集是可数集.关于子空间的系统研究也是从豪斯多夫?集论根底?开始的.设{As:s∈S}是X的子集族,如果对S的任意不同元素组成的有限序列s1,s2,…,sk,以及由0和1组成的序列i1,…,ik,有其中A0=A,A1=X\A,那么称{As:s∈S}为独立集组成的.1936年,豪斯多夫得出:基数m≥ 0的集X的所有子集族含有由独立集组成的基数为2m的子族.早在1934年,G.费契田厚茨(Fichlenholz)和Л.B.坎托罗维奇(KaHTopoBИЧ)也曾得出过类似结果.关于实直线的波莱尔集的定义由E.波莱尔(Borel)给予概括表达,H.L.勒贝格(Lebesgue)于1905年给出了欧氏空间的波莱尔集的理论.在此根底上,豪斯多夫创立了关于度量空间的波莱尔集理论(1914).1906年,弗雷歇导入可数紧空间的概念,豪斯多夫于1914年给出了在豪斯多夫空间X 中,X的任一无限子集有聚点为可数紧空间的特征之一,并在度量空间中建立了序列紧性和可数紧性的等价性.他证明了任一可度量化空间X是第二可数的当且仅当X是可分的,以及紧可度量化空间是可分的.关于连续扩张问题,豪斯多夫在1919年建立了:设A为可度量化空间X的闭子空间,那么对X上的任一度量ρ,任一连续函数f:A→I确定X上f的连续扩张F为豪斯多夫?集论根底?指出紧可度量化空间X到可度量化空间Y的任一连续映射f:X→Y 关于空间X和Y上分别为ρ和σ的距离是一致连续的.全有界空间的概念也是豪斯多夫?集论根底?导入的,并在1927年证明了全有界度量空间是可分的[6].1914年,豪斯多夫证明了任一度量空间等距于某完备度量空间的子空间,刻画了度量空间的完备化空间,证明了每个自稠密的完备度量空间含有子空间同胚于康托尔集,还证明了在所有完备可度量化空间中贝尔(Baire)纲定理成立.1927年又证明了完备化空间的唯一性[6].Л.C.亚历山德罗夫(AлeKcaHДpoЬ)对可分空间证明了完备度量化性关于Gδ集是可继承的,豪斯多夫将此结果推广于任意可度量化空间(1924).豪斯多夫和亚历山德罗夫分别于1927和1925年独立地证明了每个非空紧可度量化空间是康托尔集的连续象,即二进空间.这个结果对点集拓扑学的开展富有启发意义.设M是可度量化空间X的闭子空间,豪斯多夫于1930年证明了子空间M上的任一距离可扩张为空间X上的距离.设f:M→L为可度量化空间X的闭子空间M到度量空间L上的连续映射,豪斯多夫证明了如果空间L可作为度量空间Y的闭子空间等距嵌入Y中[14],那么f可扩张为连续映射F:X→Y,使限制F|X\M是X\M到Y\L上的同胚.设2X为度量空间(X,ρ)的所有有界非空闭子集族,令为A和B的距离,那么(2X,ρh)为度量空间.称ρh(A,B)为豪斯多夫距离(1914).(X,ρ)等距于(2X,ρh)的闭子空间.但空间X上两个等价的全有界距离ρ和σ,由ρh和σh 在2X上导入的拓扑未必相同.豪斯多夫距离在度量空间的超空间理论中起着重要作用.W.谢尔品斯基(Sierpinski)于1930年证明了假设度量空间Y是可分完备可度量化空间X在开映射下的连续象,那么Y是完备可度量化的.1934年,豪斯多夫证明了假设可度量化空间Y是完备可度量化空间X在开映射下的连续象,那么Y是完备可度量化的.以后E.麦克(Michael)又推广于仿紧空间Y.连通性的概念是M.E.C.假设尔当(Jordan)于1893年研究平面的紧子集类时导入的.豪斯多夫推广于抽象空间并开始了系统研究.在?集论根底?中包含连通集的一些简单性质,连通分支、拟分支的定义,以及关于紧度量空间的拟连通分支的性质等.该书还导入继承不连通空间.极不连通空间是M.H.斯通(Stone)在1937年定义的,但βN\N不是极不连通的事实本身却是由豪斯多夫证明的(1936).集X上的距离ρ称为非阿基米德的,如果对所有x,y,z∈X,有ρ(x,z)≤max[ρ(x,y),ρ(y,z)].豪斯多夫证明了非空可度量化空间X,IndX=0当且仅当在空间X上存在非阿基米德距离(1934).在描述集合论方面,豪斯多夫?集论根底?中研究了有序集的理论,如将序型分类,序型的有序积,有序集的表示等问题.他引入的极大原理可用来代替超限归纳法,是和选择公理、良序原理、图基(Tukey)引理、库拉托夫斯基(Kuratowski)引理等命题等价的.豪斯多夫提出的Rn中单位球分解(1914),在空间转动理论及变换群的分剖结果的根底上,用选择公理证明了使人感到奇怪的分球定理.以后导致S.巴拿赫(Banach)的分球悖论(1924),即把一个球切成有限个片段,然后重新组合,可得到与原球有相同尺寸的两个球.这一悖论使人疑心选择公理,引起数学界的极大重视,从而推进数学根底的开展.豪斯多夫还彻底解决了波莱尔集的基数定理(1916),这是和亚历山德罗夫同年独立解决的.他还提出了豪斯多夫运算(1927),豪斯多夫递归公式(1914)等.1914年,豪斯多夫提出测度问题:是否存在Rn的每个子集均可测的有限可加测度?1923年,他证明了当n=1,2时存在无限多个解,当n≥3时无解.在数学分析中,豪斯多夫从事矩量问题的研究并获得重要结果,解决了有限区间的矩量问题及矩量的性质.他还得出了求和法及有关傅里叶系数的定理(1921).在连续群理论中,豪斯多夫建立了重要的代数算法,导出并研究了群论符号的指数公式(1906).他也给出华林(Waring)问题的简化证明(1909)并提出过任意非整维数(1919).豪斯多夫的工作对现代数学的形成和开展起着重要作用,以致现代数学中的某些术语是以豪斯多夫的名字命名的.如豪斯多夫公理、豪斯多夫空间、豪斯多夫距离、豪斯多夫一致空间、豪斯多夫拓扑群、豪斯多夫极大原理、豪斯多夫运算、豪斯多夫递归公式、豪斯多夫-杨(Young)定理等.。
标准康托尔集的定义康托尔集是德国数学家康托尔在19世纪提出的一个重要概念,它是集合论中的一个重要概念,对于集合论的发展有着重要的影响。
康托尔集的定义对于我们理解集合论和数学基础有着重要的意义,下面我们将对标准康托尔集的定义进行详细的介绍。
首先,我们来看一下康托尔集的定义。
康托尔集是指一个无限集合,其基数大于可数集合,但小于连续集合。
简单来说,康托尔集是介于可数集合和连续集合之间的一类集合。
康托尔集的特点是具有无限的基数,但不同于连续集合的基数。
康托尔集的定义对于我们理解无限集合的性质和分类有着重要的意义。
其次,我们来看一下康托尔集的构造。
康托尔集的构造是通过对实数区间的分割来实现的。
具体来说,我们可以通过二进制小数的表示来构造康托尔集。
例如,我们可以将实数区间[0,1]分割为三等分,然后取中间的那一部分,再将这一部分分割为三等分,取中间的部分,如此循环下去,我们就可以构造出一个康托尔集。
康托尔集的构造方法对于我们理解集合的构造和基数的概念有着重要的启发作用。
最后,我们来看一下康托尔集的性质。
康托尔集具有许多重要的性质,例如它是不可数的、紧致的、完全不连通的等。
这些性质对于我们理解集合的结构和性质有着重要的启发作用。
康托尔集的性质也为我们理解实数集合和拓扑空间提供了重要的范例。
总的来说,康托尔集是集合论中一个重要的概念,它对于我们理解集合的性质和结构有着重要的意义。
康托尔集的定义、构造和性质都为我们理解集合论和数学基础提供了重要的启发和范例。
通过对康托尔集的研究,我们可以更深入地理解集合论和数学基础的重要概念,对于我们的数学学习和研究有着重要的意义。
在数学领域中,康托尔集的定义是一个重要的概念,它对于我们理解集合的结构和性质有着重要的意义。
通过对康托尔集的研究,我们可以更深入地理解集合论和数学基础的重要概念,对于我们的数学学习和研究有着重要的意义。
康托尔集的定义、构造和性质都为我们理解集合论和数学基础提供了重要的启发和范例。
康托集Hausdorff 维数姓名:彭发醇学号 :13151056学院:宇航学院摘要:在文晓老师的选修课中,我们了解了一些关于在20世纪,伴着分形图形的研究而应运而生一种新的维度---分数维。
而它便是能解释康托集的Hausdorff 维数关键词:Hausdorff 维数康托集正文:康托集是由德国数学家Georg Cantor 引进的。
我们这里给出简单的构造方式——康托五分集.下面求它的五分集的Hausdorff 维数。
由[0,1]区间组成的一条线段。
第一步,把这个线段分成五等份.不妨去掉第二段,即去掉了(1255,),剩下来是有4段闭区间. 第二步,把这4个区间都分成五等份,各自去掉第二段,剩下了16条闭区间,第三步,把这剩下的16条线段再等成五等分,各自去掉第二段,剩下了64条线段.把第k步操作之后剩下k 2个闭区间构成的集合记为K I ,这是一个闭集.那么集合r ln (r)d lim ln rN →∞=-是一个非空的闭集.则这个集合P 称为康托五分集.P 的性质有(1)P 的长度是k 1k k 1415-+∞=-∑=0; (2)P 是不可数的.根据Hausdorff 维数概念,考虑一个度量空间 X 。
记N(r)为用半径为r 的小球去充满整个 X 所需要的小球的最少数目,r ln (r)d lim ln rN →∞=-那么d 就是X 的维数.下面考虑集合P,如果用r=110的小球(即长度为15的区间)来盖住P,那么最少需要4个.如果再用r=150的小球(即长度为125的区间)来盖住P ,那么最少需要16个,如果用r=k 125⋅的小球(即长度为k 15的区间)来盖住P,那么最少需要k 4个小球.因此所求的康托集的维数应该为k k k ln 4ln 4d lim 1ln 5ln 25→∞=-=⋅.它是介于0和1两个整数维数之间,是一个分数维数.由以上的计算和推导过程可以很容易的得到任意有限等分的康托集的维数..即任意有限n 等分的康托集的Hausdorff 维数是ln(n 1)ln n -. 结论:康托五分集的Hausdorff 维数是ln 4ln 5.而由此推广得到任意有限m 等分的康托集的Hausdorff 维数是ln(n 1)ln n -. 参考资料 :1.《Hausdorff 维数讲座讲稿》文晓2.[Hausdorff 维数] 百度百科。
两康托集的交子集的分形维数与测度随着时代的进步,分形维数和测度的研究变得越来越重要,这些研究工作已经成为数学、物理和计算机领域的主要研究课题之一。
在分形维数和测度的研究中,分形理论中的维数是一个重要概念,它表明物体内部结构的复杂性。
分形维数用来表示物体的“形状”或“结构”,从而可以分析物体的模型以及物体的表面的测量。
康托集是一种数学模型,用来描述在一定空间中相互关联的物体。
康托集的“交子集”是一种特殊的康托集,表示求解特定问题的一种方法,其中的物体之间存在相互的联系和依赖。
在交子集的分形维数和测度的研究中,研究者可以分析康托集的物体在各种尺度上的分布,并计算出与之相关的宽度和深度。
交子集的分形维数是指康托集中物体间的分布情况,具体可分为低维、中维和高维的分形维数。
低维的分形维数表示物体之间的联系微弱,中维的分形维数表示物体之间的联系较强,高维的分形维数表示物体之间的联系非常强烈。
交子集的测度是指康托集中物体间关联距离的大小,表示物体之间的联系在非线性空间中的大小。
交子集的测度可以通过宽度指数和深度指数来确定,宽度指数用来表示物体间相互联系的宽度,深度指数用来表示物体间相互联系的深度。
康托集的交子集的分形维数和测度的研究已经成为当今数学和计算机科学的一个重要课题,它在物理、生物、流体力学、医学图像处理等领域得到了广泛的应用。
例如,在拓扑地图计算中,分形维数可以用来表示空间中的物体之间的联系;在流体力学模型中,可以通过宽度指数和深度指数来定义系统的流动特性;在机器学习领域,高维的分形维数可以用来分析大规模数据集中的复杂结构。
综上所述,康托集的交子集的分形维数和测度的研究为许多领域的研究提供了有价值的信息,可以更好地理解系统中物体之间的相互关系和联系,并实现出更加优化和高效的结构。
因此,这项研究工作仍然是当今数学、物理和计算机领域研究工作的主要议题之一,具有重要的理论意义和实际应用价值。
乔治·卡尔纯粹数学与应用数学基本结果汇编乔治·卡尔(George Cantor)是19世纪末20世纪初德国数学家,被誉为无限集合论的创始人。
他的研究领域涵盖了纯粹数学和应用数学,对数学的发展有着深远的影响。
以下是乔治·卡尔在纯粹数学与应用数学领域的基本结果汇编:一、纯粹数学部分1. 无限集合的大小比较乔治·卡尔在无限集合的研究中提出了著名的悖论,即自然数集合与实数集合的大小居然相等。
这引发了数学界对无限集合大小的比较的热烈讨论,也为后来集合论的发展奠定了基础。
2. 康托尔对角线方法在研究实数集合时,乔治·卡尔提出了“对角线方法”,通过构造一种新的实数来证明实数集合是不可数的。
这一方法对于理解无限集合的数量级是至关重要的。
3. 康托尔连续统假说乔治·卡尔提出了连续统假说,即不存在介于可数集合和连续集合之间的集合。
这一假说在20世纪后期引发了大量争论,直至今日仍是数学界的热点问题之一。
4. 凯雷-哈密尔顿定理乔治·卡尔在拓扑学领域提出了凯雷-哈密尔顿定理,指出任意简单闭曲线都将平面分成两个互补区域。
这一结果对于拓扑学的发展有着深远的影响。
二、应用数学部分1. 康托尔集乔治·卡尔研究了一类特殊的自相似集合,即康托尔集。
这一集合在分形几何和混沌动力系统中有着广泛的应用,对于理解非线性系统的行为具有重要意义。
2. 康托尔函数在分析学领域,乔治·卡尔引入了康托尔函数,这是一种非常奇特的函数,具有不连续性和奇异性,对于深入理解实分析有着重要的作用。
3. 康托尔对称性原理在动力系统和物理学中,乔治·卡尔提出了康托尔对称性原理,指出系统中的一些对称性将限制其可能的运动。
这对于探索宇宙中的对称性和规律有着深远的意义。
总结:乔治·卡尔在纯粹数学和应用数学领域的研究成果丰富多彩,对数学的发展和应用都有着重要的影响。
简介集合论或集论是研究集合(由一堆抽象物件构成的整体)的数学理论,包含集合、元素和成员关系等最基本数学概念。
在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言.集合论和逻辑与一阶逻辑共同构成了数学的公理化基础,以未定义的“集合”与“集合成员”等术语来形式化地建构数学物件.在朴素集合论中,集合是被当做一堆物件构成的整体之类的自证概念。
在公理化集合论中,集合和集合成员并不直接被定义,而是先规范可以描述其性质的一些公理。
在此一想法之下,集合和集合成员是有如在欧式几何中的点和线,而不被直接定义。
对集合论的异议一开始,有些数学家拒绝将集合论当做数学的基础,认为这只是一场含有奇幻元素的游戏。
埃里特·比修普驳斥集合论是“上帝的数学,应该留给上帝"。
而且,路德维希·维特根斯坦特别对无限的操作有疑问,这也和策梅罗—弗兰克尔集合论有关。
维特根斯坦对于数学基础的观点曾被保罗·贝奈斯所批评,且被克里斯平·赖特等人密切研究过. 对集合论最常见的反对意见来自结构主义者,他们认为数学是和计算些微相关着的,但朴素集合论却加入了非计算性的元素。
拓朴斯理论曾被认为是传统公理化集合论的另一种选择。
拓朴斯理论可以被用来解译各种集合集的替代方案,如结构主义、模糊集合论、有限集合论和可计算集合论等。
集合论(Set theory)作用按现代数学观点,数学各分支的研究对象或者本身是带有某种特定结构的集合如群、环、拓扑空间,或者是可以通过集合来定义的(如自然数、实数、函数)。
从这个意义上说,集合论可以说是整个现代数学的基础.历史集合论作为数学中最富创造性的伟大成果之一,是在19世纪末由德国的康托尔(1845-1918)创立起来的。
但是,它萌发、孕育的历史却源远流长,至少可以追溯到两千多年前.无穷集合的早期研究概念集合论是关于无穷集合和超穷数的数学理论。
集合作为数学中最原始的概念之一,通常是指按照某种特征或规律结合起来的事物的总体。
康托尔提起“集合”,除了像“集合起来搞事情”的意思,作为名词,上过高中的小伙伴们可能都还记得,这是高中数学最开始学的知识。
内容不多,原理也比较简单,更是高考数学的送分题(做对了送分,做不对送命)。
不过大家可能对集合背后的这个神秘男子不太了解,今天浪子老师就给大家扒一扒“集合论”的创始人:康托尔大神和他的传奇故事。
1.天才求学康托尔(Georg Ferdinand Philip Cantor,1845~1918),德国数学家,集合论的创始者,与其他天才一样,还在幼年时代,康托尔就表现出对数学的强烈兴趣。
1862年,17岁的康托尔离开双亲,考入瑞士苏黎世大学,第二年转入柏林大学,兴趣开始转移到纯数学方面。
于1868年以数论方面的论文获博士学位,1869年进入哈勒大学担任讲师,之后发表多篇论文,1879年成为哈勒大学的教授……巴拉巴拉等,反正都是些数学家的正常操作。
2.集合论诞生康托尔的研究主要是在无穷集合领域,无穷这个东西,看不见摸不着,也数不过来,到底能不能拿来计算,怎么个用法,大家争论很大。
因此大多数数学家,包括像高斯、柯西这样的大数学家,只好对无穷集合采取避而远之的态度。
但是老康却把无穷当作了自己的珍爱,他夜以继日地苦读、研究、计算、论证。
最终,康托尔得出了许多惊人的结论,起初他都不敢相信自己的眼睛,他说,“我见到了,但我不相信。
”按照康托尔研究的理论,下述观点是完全正确的——1厘米长的线段内的点,和太平洋内的点,和地球内部的点竟是“一样多”!这种整体等价于局部的理论,在世人眼里,就好比郭敬明和姚明同时站在你面前,你非得说他俩一样高。
但是天才就是天才,在进行了严密的论证后,他证明了郭敬明和姚明一样高,不对,是发现自己的理论无懈可击。
这样,在1874年,年仅29岁的康托尔在《数学杂志》上发表了关于无穷集合理论的第一篇革命性论文。
这篇论文的发表,标志着集合的诞生。
当时老康估计像这张照片上一样,意气风发,帅的掉渣。
contor集的结构及性质在数学中,康托尔集,由德国数学家格奥尔格·康托尔在1883年引入(但由亨利·约翰·斯蒂芬·史密斯在1875年发现),是位于一条线段上的一些点的集合,具有许多显著和深刻的性质。
通过考虑这个集合,康托尔和其他数学家奠定了现代点集拓扑学的基础。
虽然康托尔自己用一种一般、抽象的方法定义了这个集合,但是最常见的构造是康托尔三分点集,由去掉一条线段的中间三分之一得出。
康托尔自己只附带介绍了三分点集的构造,作为一个更加一般的想法——一个无处稠密的完备集的例子。
取一条长度为1的直线段,将它三等分,去掉中间一段,留剩下两段,再将剩下的两段再分别三等分,各去掉中间一段,剩下更短的四段,……,将这样的操作一直继续下去,直至无穷,由于在不断分割舍弃过程中,所形成的线段数目越来越多,长度越来越小,在极限的情况下,得到一个离散的点集,称为康托尔点集,记为P。
称为康托尔点集的极限图形长度趋于0,线段数目趋于无穷,实际上相当于一个点集。
操作n次后边长r=(1/3)^n,边数N(r)=2^n,根据公式D=lnN(r)/ln(1/r) , D=ln2/ln3=0.631。
所以康托尔点集分数维是0.631。
康托三分集中有无穷多个点,所有的点处于非均匀分布状态。
此点集具有自相似性,其局部与整体是相似的,所以是一个分形系统。
康托三分集具有(1)自相似性;(2)精细结构;(3)无穷操作或迭代过程;(4)传统几何学陷入危机。
用传统的几何学术语难以描述,它既不满足某些简单条件如点的轨迹,也不是任何简单方程的解集。
其局部也同样难于描述。
因为每一点附近都有大量被各种不同间隔分开的其它点存在。
(5)长度为零;(6)简单与复杂的统一。
康托尔集P具有三条性质:1、P是完备集。
2、P没有内点。
3、P的基数为c。
4、P是不可数集。
康托尔集是一个基数为c的疏朗完备集。
cantor set dimension 计算公式摘要:I.康托尔集与维度的概念A.康托尔集的定义B.维度的概念II.计算康托尔集的维度A.康托尔集的性质B.计算维度的方法C.康托尔集维度的公式III.康托尔集维度的应用A.康托尔集在数学领域的应用B.康托尔集在其他领域的应用正文:I.康托尔集与维度的概念康托尔集(Cantor Set)是一个著名的数学集合,它是由德国数学家康托尔于1883年提出的。
它是一个无限可数、不连续、非空、有界、完备的集合。
康托尔集可以通过以下方式构造:首先给定一个线段,然后将中间的三等分,去掉中间的一份,得到两个线段。
接着,对这两个线段重复上述步骤,不断重复下去,最终得到一个越来越小的集合,这就是康托尔集。
维度(Dimension)是拓扑学中描述空间的一个重要概念,通常用来度量空间的大小。
对于一个平面上的点,我们称它为零维;对于一条线段,我们称它为一维;对于一个平面,我们称它为二维。
一般来说,n维空间可以看作是由n个相互垂直的坐标轴组成的。
II.计算康托尔集的维度康托尔集的维度是一个有趣且复杂的问题。
首先,我们需要了解康托尔集的一些性质。
康托尔集具有如下性质:1.康托尔集是无限可数的,即它包含无限多个元素,但每个元素都可以用自然数序列来表示。
2.康托尔集是不连续的,即它没有连续的区间。
3.康托尔集是有界的,即它包含在一个有限的区间内。
4.康托尔集是完备的,即它的每个子集都可以与全集构造一一对应。
计算康托尔集的维度的方法之一是通过豪斯多夫维数(Hausdorff Dimension)。
豪斯多夫维数是一种较为普遍的计算维度的方法,适用于各种形状的集合。
计算康托尔集的豪斯多夫维数的公式为:dim(Cantor Set) = log(len(Cantor Set)) / log(2)其中,len(Cantor Set)表示康托尔集的长度,log表示以2为底的对数。
III.康托尔集维度的应用康托尔集在数学领域有着广泛的应用,例如在分形理论、集合论、拓扑学等领域。
hausdorff的数学成就豪斯多夫(Felix Hausdorff),出生于华沙的一个犹太人家庭,是数学领域的重要人物,他在拓扑学、集合论和泛函分析等数学分支领域有所研究。
豪斯多夫的数学成就主要包括:- Hausdorff度量:在集合论方面,豪斯多夫提出了“Hausdorff度量”的概念,这是一种度量空间中的距离函数。
他证明了在任何具有有限Hausdorff维的集合上,任何满足三角形不等式的度量都可以由一个有限的“距离矩阵”定义。
- 外测度:在测度论方面,豪斯多夫引入了“外测度”的概念,这是测度论中的一个重要概念。
他还研究了测度的可加性和可数可加性,并提出了著名的“Hausdorff测度”的概念。
- Hausdorff维度:一种用于描述集合维度的概念,由菲赫金哥尔茨在1918年提出。
在此之前,人们一般认为维度只有整数值,如一维的线、二维的平面和三维的立体。
而菲赫金哥尔茨发现,于某奇怪的集合,如分形集合,它们的维度可非整数值。
他用Hausdorff维度来描述这集合的维度,这个概念在分形几何得到了广泛的应用。
- Hausdorff距离:一种用于衡量两个集合之间的相似性的概念,由菲赫金哥尔茨在1914年提出。
它的定义基于两个集合A和B,它们之间的Hausdorff距离为A每个点到B的最短距离的最大值和B每个点到A 的最短距离的最大值的较大值。
Hausdorff距离在图像处理、模式识别和计算机视觉等领域得到了广泛的应用。
- Hausdorff-Besicovitch维度公式:一种用于计算分形集合维度的公式,由菲赫金哥尔茨和Besicovitch在1919年提出。
这个公式将Hausdorff 维度和Besicovitch覆盖数结合起来。
康托尔(g.cantor)实数理论及其基本思想康托尔是世界上著名的数学家,他出生于年,在去世。
他是集合论和超穷数理论的创始人,他的成就改变了世界上人们对于数学研究的趋势,解决了长期以来数学家都难以解决的问题。
下面来看康托尔简介:康托尔是德国数学家,但是他的出生地并不在德国,因为他生于在俄国列宁格勒,也就是现在俄罗斯的圣彼得堡。
他是犹太人,他的父亲是一名除恶色的犹太血统的丹麦商人,而母亲也出身高贵,她出身于艺术世家。
康托尔学习成绩出色,所以才可以步入知名的德国柏林大学修读数学和神学。
他的导师就是库默尔、维尔斯特拉斯和克罗内克,这几个人都就是当时非常知名的人物,在学术上存有很高的成就。
从康托尔简介中了解,康托尔在早期数学方面的兴趣并不是他最大的成就,而是数论。
后来康托尔受到了魏尔斯特拉斯的直接影响,所以他的研究方向开始转变,从数论转向严格的分析理论的研究,由于他才能出众,思维方式独特,所以不久就崭露头角。
在后来的研究中康托尔更进一步,将自己的研究展开总结,最终构成了自己的数学理论。
这就是当时最了不起的数学成就,因为他总结出来了集合论和逊于穷数理论,这在当时的数学界和神学界引发了极为非常大的反响。
但是康托尔的数学理论当时受到了人们的反对和打击,这一度导致他精神失常,虽然后来经过治疗好转,但是一直被病魔缠身,最终病逝。
康托尔就是德国知名的数学家,他对数学的贡献就是无以伦比的,康托尔的成就就是集合论和逊于穷数理论。
这两项理论沦为当时世界上最为关键的数学理论,为当时的很多数学家提供更多了指导,推动了整个数学的发展。
康托尔的成就之一就是集合论,康托尔在寻找函数展开为三角级数表示的唯一性判别准则的研究中发现了不一样,经过他长期的研究终于认识到无穷集合的重要性,于是他就开始了对无穷集合的理论研究。
康托尔为了将存有愁子集的元素个数概念推展至无穷子集,他已经开始采用一一对应的原则,最终明确提出了全面性的子集等价概念。
康托尔的集合理论(2011-08-18 06:39:53)标签:杂谈分类:杂七杂八康托尔,1862年入苏黎世大学学工,翌年转入柏林大学攻读数学和神学,受教于库默尔(Kummer,Ernst Eduard,1810.1.29-1893.5.14)、维尔斯特拉斯(Weierstrass,Karl Theodor Wilhelm,1815.10.31-1897.2.19)和克罗内克(Kronecker,Leopold,1823.12.7-1891.12.29)。
1866年曾去格丁根学习一学期。
1867年在库默尔指导下以解决一般整系数不定方程ax2+by2+cz2=0求解问题的论文获博士学位。
毕业后受魏尔斯特拉斯的直接影响,由数论转向严格的分析理论的研究,不久崭露头角。
他在哈雷大学任教(1869-1913)的初期证明了复合变量函数三角级数展开的唯一性,继而用有理数列极限定义无理数。
1872年成为该校副教授,1879年任教授。
由于学术观点上受到的沉重打击,使康托尔曾一度患精神分裂症,虽在1887年恢复了健康,继续工作,但晚年一直病魔缠身。
1918年1月6日在德国哈雷(Halle)-维滕贝格大学附属精神病院去世。
康托尔爱好广泛,极有个性,终身信奉宗教。
早期在数学方面的兴趣是数论,1870年开始研究三角级数并由此导致19世纪末、20世纪初最伟大的数学成就——集合论和超穷数理论的建立。
除此之外,他还努力探讨在新理论创立过程中所涉及的数理哲学问题.1888-1893年康托尔任柏林数学会第一任会长,1890年领导创立德国数学家联合会并任首届主席。
集合论的建立19世纪由于分析的严格化和函数论的发展,数学家们提出了一系列重要问题,并对无理数理论、不连续函数理论进行认真考察,这方面的研究成果为康托尔后来的工作奠定了必要的思想基础。
康托尔是在寻找函数展开为三角级数表示的唯一性判别准则的工作中,认识到无穷集合的重要性,并开始从事无穷集合的一般理论研究。
cantor set dimension 计算公式(实用版)目录1.康托尔集的简介2.康托尔集的维度计算公式3.康托尔集的重要性和应用正文1.康托尔集的简介康托尔集(Cantor set)是一种在数学领域中具有重要地位的集合。
它是由德国数学家格奥尔格·康托尔(Georg Cantor)在 19 世纪末提出的,用于证明无穷集合的存在以及探讨无穷集合的性质。
康托尔集具有很多独特的性质,例如它是一个无穷集合,但是它的任何非空子集的基数都等于势(即无穷集合的基数)。
2.康托尔集的维度计算公式康托尔集的维度是一个比较抽象的概念,通常用符号 N 表示。
为了计算康托尔集的维度,我们可以使用一种名为“对数”的方法。
对数是一种将某个数的指数表示为以某个底数为底的幂运算的方法。
在计算康托尔集的维度时,我们可以使用对数函数将集合中的元素表示为以 2 为底的幂。
康托尔集的维度计算公式为:= log2(card(A))其中,N 表示康托尔集的维度,card(A) 表示集合 A 的基数,即集合 A 中元素的个数。
3.康托尔集的重要性和应用康托尔集在数学领域具有重要的地位,它对无穷集合的研究起到了关键作用。
康托尔集的出现使得数学家们开始关注无穷集合的性质和特点,从而推动了集合论的发展。
集合论是现代数学的一个重要分支,它研究了集合的概念、性质以及集合之间的关系。
除了在数学领域,康托尔集在其他领域也有广泛的应用。
例如,在计算机科学中,康托尔集可以用于数据压缩和图像处理;在信号处理领域,康托尔集可以用于信号的采样和重建;在生物学中,康托尔集可以用于描述基因组序列等。
康托尔是19世纪末20世纪初德国伟大的数学家,集合论的创立者。
是数学史上最富有想象力,最有争议的人物之一。
19世纪末他所从事的关于连续性和无穷的研究从根本上背离了数学中关于无穷的使用和解释的传统,从而引起了激烈的争论乃至严厉的谴责。
然而数学的发展最终证明康托是正确的。
他所创立的集合论被誉为20世纪最伟大的数学创造,集合概念大大扩充了数学的研究领域,给数学结构提供了一个基础,集合论不仅影响了现代数学,而且也深深影响了现代哲学和逻辑。
康托尔的生平1845年3月3日,乔治·康托尔生于俄国的一个丹麦—犹太血统的家庭。
1856年康托和他的父母一起迁到德国的法兰克福。
像许多优秀的数学家一样,他在中学阶段就表现出一种对数学的特殊敏感,并不时得出令人惊奇的结论。
他的父亲力促他学工,因而康托在1863年带着这个目地进入了柏林大学。
这时柏林大学正在形成一个数学教学与研究的中心。
康托很早就向往这所由外尔斯托拉斯占据着的世界数学中心之一。
所以在柏林大学,康托受了外尔斯特拉斯的影响而转到纯粹的数学。
他在1869年取得在哈勒大学任教的资格,不久后就升为副教授,并在1879年被升为正教授。
1874年康托尔在克列勒的《数学杂志》上发表了关于无穷集合理论的第一篇革命性文章。
数学史上一般认为这篇文章的发表标志着集合论的诞生。
这篇文章的创造性引起人们的注意。
在以后的研究中,集合论和超限数成为康托研究的主流,他一直在这方面发表论文直到1897年,过度的思维劳累以及强列的外界刺激曾使康托患了精神分裂症。
这一难以消除的病根在他后来30多年间一直断断续续影响着他的生活。
1918年1月6日,康托在哈勒大学的精神病院中去世。
集合论的背景为了较清楚地了解康托在集合论上的工作,先介绍一下集合论产生的背景。
集合论在19世纪诞生的基本原因,来自数学分析基础的批判运动。
数学分析的发展必然涉及到无穷过程,无穷小和无穷大这些无穷概念。
在18世纪,由于无穷概念没有精确的定义,使微积分理论不仅遇到严重的逻辑困难,而且还使实无穷概念在数学中信誉扫地。
康托尔李娜张锦文(河南大学)(中国科学院软件研究所)康托尔,G.F.L.Ph.(Cantor,Georg FerdinandLudwig Philipp)1845年3月3日生于俄罗斯圣彼得堡;1918年1月6日卒于德国萨克森的哈雷.数学、集合论.康托尔的祖父母曾居住在丹麦的哥本哈根,1807年英国炮击哥本哈根时,他们家几乎丧失了一切,随后迁往俄罗斯的圣彼得堡,那里有康托尔祖母的亲戚.康托尔的父亲乔治•魏特曼•康托尔(George Woldemar Cantor)年轻时,曾在圣彼得堡经商.后来,在汉堡、哥本哈根、伦敦甚至远及纽约从事国际买卖.1839年由于某种原因破产了.但不久,他又转到股票交易上,并很快取得了成功.1842年4月21日,魏特曼与们婚后有六个孩子,康托尔是他们的长子.1856年,康托尔随同全家移居德国的威斯巴登,并在当地的一所寄宿学校读书.后来在阿姆斯特丹读六年制中学.1862年,开始了他的大学生活.他曾就学于苏黎世大学、格丁根大学和法兰克福大学.1863年,他父亲突然病逝,为此,康托尔回到了柏林,在柏林大学重新开始学习.在那里,他从当时的几位数学大师K.W.T.魏尔斯特拉斯(Weierstrass)、E.E,库默尔(Kummer)和L.克罗内克(Kro-nechen)那里学到了不少东西.特别是受到魏尔斯特拉斯的影响而转入纯粹数学.从此,他集中全力于哲学、物理、数学的学习和研究,并选择了数学作为他的职业.可是,最初他父亲并不希望他献身于纯粹科学,而是力促他学工.但是,康托尔越来越多地受到数学的吸引.1862年,年轻的康托尔做出了准备献身数学的决定.尽管他父亲对他的这一选择是否明智曾表示怀疑,但仍以极大的热情支持儿子的事业.同时还提醒康托尔要广泛学习各科知识,他还极力培养康托尔在文学、音乐等方面的兴趣.康托尔在绘画方面表现出的才能使整个家庭为之自豪.由于康托尔一开始就具有献身数学的信念,这就为他创立超穷集合论,取得数学史上这一令人惊异的成就,奠定了基础.尽管19世纪末他所从事的关于连续性和无穷的研究从根本上背离了数学中关于无穷的使用和解释的传统,从而引起了激烈的争论乃至严厉的谴责,但是他不顾众多数学家、哲学家甚至神学家的反对,坚定地捍卫了超穷集合论.也正是这种坚定、乐观的信念使康托尔义无反顾地走向数学家之路并真正取得了成就.1866年12月14日,康托尔的第三篇论文“按照实际算学方法,决定极大类或相对解”(In re mathematica ars proponendlpluris facienda est quam solvendi)使他获得了博士学位.这时,他的主要兴趣在数论方面.1869年,康托尔在哈雷大学得到教职.他的授课资格论文讨论的是三元二次型的变换问题.不久,任副教授,1879年任教授,从此一直在哈雷大学担任这个职务直到去世.1872年以后,他一直主持哈雷大学的数学讲座.在柏林,康托尔是数学学会的成员之一.1864—1865年任主席.他晚年积极为一个国际数学家联盟工作.他还设想成立一个德国数学家联合会,这个组织于1891年成立,康托尔是它的第一任主席.他还筹办了1897年在苏黎世召开的第一届国际数学家大会.1901年,康托尔被选为伦敦数学会和其他科学会的通讯会员或名誉会员,欧洲的一些大学授予他荣誉学位.1902年和1911年他分别获得来自克里斯丁亚那(Christiania)和圣安德鲁斯(St.Andrews)的荣誉博士学位.1904年伦敦皇家学会授予他最高的荣誉:西尔威斯特(Sylvester)奖章.1874年初,康托尔经姐姐G.索菲(Sophie)介绍,与瓦雷•古德曼(Vally Guttmann)订婚,并于同年仲夏结婚.他们共有五个孩子.那时,哈雷大学教授的收入很微薄,康托尔一家一直处在经济困难之中.为此,康托尔希望在柏林获得一份收入较高、更受人尊敬的大学教授的职位.然而在柏林,康托尔的老师克罗内克几乎有无限的权力.他是一个有穷论者,竭力反对康托尔“超穷数”的观点.他不仅对康托尔的工作进行粗暴的攻击,还阻碍康托尔到首都柏林工作,使康托尔得不到柏林大学的职位.由于他的攻击,还使数学家们对康托尔的工作总抱着怀疑的态度,致使康托尔在1884年患了抑郁症.最初发病的时间较短,1899年,来自事业和家庭生活两方面的打击,使他旧病复发.这年夏天,集合论悖论萦绕在他的头脑中,而连续统假设问题的解决仍毫无线索.这使康托尔陷入了失望的深渊.他请求学校停止他秋季学期的教学,还给文化大臣写信,要求完全放弃哈雷大学的职位,宁愿在一个图书馆找一份较轻松的工作.但他的请求没有得到批准.他不得不仍然留在哈雷,而且这一年的大部时间是在医院度过的.同时,家庭不幸的消息也不断传来.在他母亲去世三年后,他的弟弟G.康士坦丁(Constantin)从部队退役后去世.12月16日,当康托尔在莱比锡发表演讲时,得到了将满13岁的小儿子G.鲁道夫(Rudolf)去世的噩耗.鲁道夫极有音乐天赋,康托尔希望他继承家族的优良传统,成为一个著名的小提琴家.康托尔在给F.克莱因(Klein)的信中不仅流露出他失去爱子的悲痛心情,而且使他回想起自己早年学习小提琴的经历,并对放弃音乐转入数学是否值得表示怀疑.到1902年,康托尔勉强维持了三年的平静,后又被送到医院.1904年,他在两个女儿的陪同下,出席了第三次国际数学家大会.会上,他的精神又受到强烈的刺激,他被立即送往医院.在他生命的最后十年里,大都处在一种严重抑郁状态中.他在哈雷大学的精神病诊所里度过了漫长的时期.1917年5月他最后一次住进这所医院直到去世.康托尔的工作大致分为三个时期,早期,他的主要兴趣在数论和经典分析等方面;之后,他创立了超穷集合论;晚年,他较多地从事哲学和神学的研究.康托尔的成就不是一直在解决问题,他对数学最重要的贡献是他询问问题的特殊方法,从而开创了大量新的研究领域.这使他成为数学史上最富于想象力,也是最有争议的人物之一.1874年,29岁的康托尔就在《克雷尔数学杂志》(Crelles Jo-urnal f ür Mathematik)上发表了关于超穷集合理论的第一篇革命性文章,引入了震憾知识界的无穷的概念.这篇文章的题目叫:“关于一切代数实数Zahlen).尽管有些命题被指出是错误的,但这篇文章总体上的创造性引起了人们的注意.康托尔的集合论理论分散在他的许多文章和书信中,他的这些文章从1874年开始分载在《克雷尔数学杂志》和《数学年鉴》(Mathemati-sche Annale)两种杂志上.后被收入由E.策梅罗(Zermelo)编的康托尔的《数学和哲学论文全集》(Gesammelte Abhandlangenmathematischen und philosophischen Inhelts)中.1879年至1884年间,康托尔相继发表了六篇系列文章,并汇集成《关于无穷线性点集》四篇直接建立了集合论的一些重要的数学结果.1883年,康托尔认识到,要想对无穷的新理论作进一步推广,必须给出较前四篇系列文章更为详尽的阐述.随后他又发表了第五和第六两篇文章,简洁而系统地阐述了超穷集合论.他在第五篇文章里,还专门讨论了由集合论产生的数学和哲学问题,其中包括回答反对者们对实无穷的非难.这篇文章非常重要,后来曾以《集合通论基础,无穷理论的数学和哲学的探讨》(Grundlageneiner allgemeinen Mannigfaltigkeits lehre,ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen)(以下简称《集合通论基础》)为题作专著单独出版.康托尔最著名的著作是1895—1897年Mengenlehre)(共两卷).下面分述康托尔的主要工作.1.三角级数康托尔早年对数论、不定方程和三角级数极感兴趣.似乎是微妙的三角级数激发他去仔细研究分析的基础.与三角级数和傅里叶级数唯一性有关的问题,促使他研究E.海涅(Heine)的工作.康托尔从寻找函数的三角级数表示的唯一性的判别准则开始了他的研究.后来,他在H.施瓦兹(Schwarz)的启发下证明了:假定对同一函数f(x),存在两个对每个x都收敛到同一值的三角级数表达式,将两式相减,得到一个0的表达式,同样对所有x的值收敛:0=C0+C1+C2+...+Cn+ (1)1870年3月,康托尔发表了一个关于唯一性定理所需要的初步结果.后来,人们把它叫康托尔-勒贝格(Lebesgue)定理.同年4月,康托尔证明了(pp.80—83):当f(x)用一个对一切x都收敛的三角级数表示时,就不存在同一形式的另一级数,它也对每个x收敛并且代表同一函数f(x).在另一篇论文(pp.84—86)中,他给出了上述结果的一个更好的证明.康托尔还证明了唯一性定理可以重新叙述为:如果对一切x,有一个收敛的三角级数等于零,则系数an和bn都是零.1871年,康托尔将这个结果推广到可以存在着有穷多个例外的点.到了1872年,他又将结果进一步推广到无穷多个例外的点([8],pp.92—108).为了描述这种点所构成的集合,他引进了点集的导出集的概念.为了说明这些无穷例外点的性质,他以一集合的导出集的性质为标准,对无穷集作了一次分类.2.无穷集的分类(Ⅰ)设给定一集合P,P的一阶导出集为P',二阶导出集为P″,…,v 阶导出集为P(v).P为第二种集合,如果P′,P″…P(v),…皆为无穷.此处,P′可不包含于P,但P″,,…中的点皆属于P′.P为第一种集合,如果P(v)只含有有穷多个点.在第二种集合的情况下,P'可含有不属于P的点,而高阶导出集并没有引入新点.他还定义P(∞)为包括那些属于一切P(v)的点集,称为“p的∞次导出集”.3.无理数理论由于定义导出集要用到极限的概念,而极限的存在又必须以实数系为前提,因之,康托尔在不预先假定无理数存在的条件下,利用有理数,建立了一个令人满意的无理数理论.他通过“基本级数”(现在我们叫做基本序列或柯西序列)引入了无理数.他的作法与R.戴德金(Dedekind)从几何方面作的处理截然不同.对于有理数,他在1883年的一篇文章([8],pp.165—204)中说,巳经没有必要去讨论它,因为这方面的工作已经由H.G.格拉斯曼(Grassmann)在他的《算术教本》(Lehrbuch der Arithmetik,1861)和J.H.T.缪勒(Müller)在他的《一般算术教程》(Lehrbuch der allgemeinen Arithmetik,1855)中完成了.康托尔在他的《关于无穷线性点集(5)》中,给出了无理数理论较详细的内容.他引进一个新的数类——实数,它既包含有理数又包含无理数.他从有理数序列{an}开始研究,这种序列满足:对于任何一个给定的正有理数ε>0,序列中除去有限个项以外,彼此相差都小于ε,亦即对于任意的正整数m一致地有lim(an+m-an)=0成立.这样的序列叫基本序列.每个这样的序列定义一个实数,记作b.在这篇文章里,康托尔还定义了实数的四则运算和两个实数的不等关系,证明了:实数系是完备的.康托尔进一步得到:任意的正实数r可以通过如下形式的级数来表示:其中系数cr,满足不等式:0≤cr≤r-1.(2)式现在叫做康托尔基数.实数系建立以后,可知直线上每一点都有对应的实数.但是,对每一实数,是否直线上都有一相应的点?这必须通过公理才能保证.康托尔在这篇论文里把它作为公理提了出来.因此这条公理又被称为康托尔公理.据此,实数集与直线上的点集就有了一一对应.4.无穷集的分类(Ⅱ)康托尔对无穷集的第二种分类标准是建立在集合论中的.他的这种思想出自1873年11月他给在布伦兹维克的伙伴戴德金的一封交流信中,并在1874年的论文“关于一切代数实数的一个性质”里正式提出.他以“一一对应”为标准,对于凡能和正整数构成一一对应的集合都称为可数集.这是最小的无穷集.不久,康托尔证明了:有理数是可数的;而全体实数是不可数的.1873年11月他给出了有理数集合可数的第一个证明([8],pp.115—118);但他的第二个证明([8],pp.283—356)是现在常采用的.康托尔把有理数排列成如下的形式(下图):在一个半平面上,最上面一排称为第一行,标以数1,从上而下,分别称为第二行,第三行,…,顺次标以数2,3,….每行正中间为0列,标以数0.从中间开始向右,顺次为1列,2列,…,从0列向左,顺次为-1列,-2列,…等等.在m行n列相交处放置有理数集与正整数集构成一一对应.这就证明了有理数集可数.更让人惊讶的是,康托尔还证明了所有代数数的全体所构成的集也是可数的.这里所谓代数数就是满足下面代数方程a0xn+a1xn-1+…+an=0的数,其中ai(i=0,1,2,…,n)都是整数.为了证明这一点,康托尔对任一个n次代数方程指定一个数(叫高)N 如下:N=(n-1)+|a0|+|a1|+…+|an|.其中ai(i=0,1,…,n)都是这个方程的系数.数N是一个正整数.对每一个N,以N为高的代数方程只有有限个.因此它们的全部解也只有有限个,除去重复的之外,所对应的代数数也只有有限个,设为φ(N).他从N=1开始,对于所对应的代数数从1到n1给以标号;对应于N=2的代数数从n1+1到n2给以标号;依次下去.由于每一个代数数一定会编到号,并且必与唯一的一个正整数相对应,从而所有代数数的集合是可数的.1873年12月7日,康托尔还成功地证明了实数集和正整数集之间不存在一一对应.他曾给出两个证明,第一个证明在前面提到过的1874年的那篇文章里.第二个证明([8],pp.278—281)比第一个证明复杂得多,但它不依赖于无理数的技术.今天大多数教科书中采用的是他的第二个证明.其实,他主要证明区间(0,1]中的点不可数.在十进制下,0与1之间的每个实数都可以写成0.p1p2p3…这样形式的无穷小数.并约定将有理数写成无穷小数,如假设实数集(0,1]是可数的,将其元素全部枚举出来,得到序列a1,a2,a3,...,an, (3)于是正整数集与实数集(0,1]之间可构成一一对应:现在构造一个数b=0.b1b2b3…bk…,其中则b是0与1之间的其数字都是4或5的一个无穷小数.并且它的第K位数字bk≠pKK,所以b与(3)中任何一个数都不相同.这就是说,数列(3)并没有把(0,1]中的数枚举完.因此,假设(0,1]可数是错误的.故(0,0]不可数.值得注意的是:上述证明中,康托尔在构造数b时,那里的数字4和5并不起什么特殊的作用.只用了b的一种性质:即b的第K位数字bk与(3)式中第K个数的第K位数字pkk不同.其实,与pkk不同的其余九个数字都可以作为bk.在证明中起决定作用的是对角线上的数字pkk.这种证明方法称为康托尔对角线法.在发现了两个不同的无穷集(整数集和实数集)以后,康托尔开始考虑是否还有更大的无穷.他首先想到,平面上的所有的点构成的集合是否就是那更大的无穷.三年之后,他证明了:一条直线上的点和整个Rn(n维空间)中的点可以构成一一对应.这个结果和他始料的相反.1877年6月他写信给戴德金,请审查他的证明,并说:“我见到了,但是简直不能相信它.”(Briefweichsel Cantor-Dedekind,p.34)康托尔关于一直线中的点和Rn中的点构成一一对应的思想是:把单位正方形中的点和(0,1)线段上的点之间构成一一对应.设(x,y)是单位正方形内的一个点.x是(0,1)中的点.设x,y都表示成无穷小数(当为有限小数时,写成9的无限循环).我们把x和y的小数分成一组一组的,每一组都终止在第一个非零的数字上.例如令z=0.3 01 02 7 4 06 005 8 6 04 …其中各组数字是:先排x的第一组,再排y的第一组,然后排x的第二组,y的第二组,依次下去.如果两个x或两个y有不同的小数位数字,则所对应的两个x不同.这说明(x,y)→z是一对一的.反之,对于任意的z∈(0,1),把z的小数也像上面那样分组,并把上述过程倒过去使用,作出相应的x和y,则(x,y)是单位正方形中的点,所以上述映射是一一的.但它是不连续的.粗略地说,对应于彼此靠近的x点的(x,y)点不一定靠近,反之亦然.5.点集理论康托尔的点集理论,包含了大量的定义、定理和例子.例如,“闭包”、“稠密集”和“良定义集”等概念.康托尔还把一个闭的并且在它自身是稠密的集合叫“完备的”.他还给出了一个著名的三分集的例子,后来人们把它叫做“康托尔集”,它是一个完备的不连续集.这个集合被定义在[0,1]区间,它的所有点满足公式其中Cr取值0或2.他还给出了“处处稠密”集的定义,指出了处处稠密集和导集之间的联系.康托尔点集理论中的第二个重要问题是:讨论无穷集合的基数,并按基数对集合进行分类.他给出了一些很重要的结果.另外,康托尔的可除容度理论使一些数学家感兴趣,并将其应用到微积分的某些定理的推广上.6.初等集合论康托尔把集合定义为“把我们的感觉或思维所确定的不同对象(称之为集合的元素)汇合成一个总体”(《数学年竖》,1895,pp.481—512).在他早年的论文中,他有时使用“杂多”(Mannig-faltigkeit)一词代替集合.一个集合包含它的元素(或分子),反过来这些元素属于集合.一给定集合S的一个子集是:它的所有元素都是S的元素;子集与元素不同,它是S的一部分.一个集合可以用列出它所有元素的方法来表示,如集合{1,2};或者用一个性质来刻画它的元素.在每一种情况下,有相同元素的两个集合A和B,称为相等.记作A=B.至此可以看到,康托尔的集合论类似于G.布尔(Boole)的类理论,但更加复杂.两个集合S和T称之为等价的,如果在它们之间存在一一对应,记作S T.一个集合的基数是一切等价集合所共有而其他集合不具有的东西.集合P的基数被记作.这里两道水平线表示双重抽象.如果P有穷,就是一个自然数;如果P无穷,不是自然数,这个推广可借助对无穷所下的新定义而极易达到.我们说,一个集合是无穷的,当且仅当它能与它的一个真子集一一对应.正如有穷集合的基数可比较,无穷集合的基数也可比较.因为如果任一集合S等价于集合T的某一子集但不等价于T本身,那么S的基数小于T的基数.康托尔还借已知集合定义了构成新集合的并、交、笛卡儿积和嵌入等运算.除此之外,还定义了一种特别重要的集合,叫集合S的幂集.它是S的一切子集的集合(在S的子集中包括S本身和空集),他常用“S”表示,这里的字母取自德文词Untermenge.现在人们则喜欢用P(S)表示S的幂集.引进集合的运算以后,康托尔又定义了基数的一般算术,包括加、乘和幂运算.当考虑无穷集时,由定义所得的结果在许多方面与自然数算术不同.7.超穷数康托尔关于良序集和序数的理论,发表在1879年到1884年的《数学年鉴》杂志上.后来这些文章都被收入题为《关于无穷线性点集(5)》中.康托尔指出:自然数序列1,2,3,...是从1开始,并通过相继加1而产生的.他把这种通过相继加1定义有穷序数的过程概括为“第一生成原则”.将全体有穷序数集称为第一数类,用(Ⅰ)表示,显然其中无最大元.但康托尔觉得,用一个新数ω来表示它的自然顺序没有什么不妥,这个新数ω是紧跟在整个自然数序列之后的第一个数——第一个超穷序数.从ω出发运用第一生成原则,可以得到一个超穷序数序列:ω,ω+1,ω+2,...,ω+n, (4)在(4)里,没有最大数.不妨用2ω来表示它.继续使用第一生成原则,得2ω,2ω+1,2ω+2,…,2ω+n,…在这一过程中,可以把ω看成自然数(单增序列)的一个永远达不到的极限.不过,康托尔仅仅强调ω是作为紧跟在全体自然数n∈N之后的第一个序数.它比所有的自然数n都大.第二生成原则是:给定任意有特定顺序、但其中无最大元素的集合,可以作为原集合的极限或后继者而得一新序数.反复运用这两个生成原则,就能产生无穷多个序数,如ω,ω+1,…,n0ωμ+n1ωμ-1+…+nμ-1ω+nμ,…,ω∞,…等等.它们的全体构成第二数类,记为(Ⅱ).这些序数的基数都是可数的.接着,康托尔证明了:第二数类的基数不可数,他把这个基数记作,第二数类中也无最大序数.根据第二生成原则,在这些新序数之后又有一新序数ω1.这是第三数类的始数.如此逐步上升可以得到一系列的始序数ω1,ω2,ω3,…,与其相应的基数为:1,2,3,….如果无限制地使用第一和第二生成原则,第二数类似乎不存在最大元素.为此,康托尔引出了第三生成原则——限制原则.限制原则的目的在于保证,一个新数类的基数大于前一数类的基数而且是满足这个条件的最小数类.值得注意的是,康托尔的超穷数理论,不同于以往数学家们在变量意义下使用的无穷.他说,有穷集和无穷集的重要差别在于:在有穷集的情况下,不论其中元素的顺序如何,所得的序数相同;对无穷集来说,由于元素顺序不同,从一无穷集可以形成无穷多个不同的良序集,因而得到不同的序数.为了强调超穷序数是一种实无穷,是被看作象实数那样具有真实数学意义的数,在这篇文章中,他选用了ω代替∞.他还期望所引进的这些超穷序数能像无理数、复数那样,最终被数学家们所接受.限制原则引进后,康托尔考虑了数集的顺序和它们的基数.他指出:(Ⅰ)和(Ⅱ)的重要区别在于(Ⅱ)的基数大于(Ⅰ)的基数.(Ⅰ)和(Ⅱ)的基数分别称为第一种基数和第二种基数,康托尔在引进超穷基数以及相应的超穷算术的过程中,用了一个很重要的概念——良序集.定义给定良定义集,如果它的元素按确定的顺序排列.依照这个顺序,存在这个集合的第一个元素,而且对每个元素都存在一个确定的后继(除非它是最后一个元素).这样的集合称为一个良序集.显然,自然数集是良序的.数类(Ⅰ)与(Ⅱ)都是良序的.良序集的概念对于区别有穷集和无穷集起了重要的作用.接下来,康托尔引进了无穷良序集的编号——它用于刻画给定集合中元素出现的顺序.他还指出,这个新概念赋予超穷数一种直接的客观性.他证明了:给定任何一个可数无穷的良序集,总存在(Ⅱ)中的一个数能够唯一地表示它的顺序或编号.因此,从一个简单的可数集出发,就可以产生不同的良序集,如正整数这个可数无穷集,可以形成序数为ω,ω+1,ω+2,…,2ω,…,ωω,…等无穷多个良序集.如果两个良序集相似,则它们有相同的编号.因此,给定任意的(Ⅰ)或(Ⅱ)中的数α,按照自然顺序选出先于α的所有元素,则所有与之相似的良序集的编号由α唯一确定.以下三个良序集{α1,α2,α3,…,αn,αn+1,…},{α2,α1,α4,…,αn+1,αn,…},{1,2,3,4,…,n,…}的编号均为ω.下面的三个良序集{α2,α3,…,αn,…,α1},{α3,α4,…,αn+1,…,α1,α2},{α1,α3,…,α2,α4,…}的编号分别为ω+1,ω+2和2ω.康托尔还用数和编号之间的差别,给出了有穷集和无穷集的新解释.有穷集中不管元素怎样排列,编号总是相同的.有趣的是,具有相同基数的无穷集,其元素的个数相同,也可有不同的良序并产生不同的编号.因此,集合的编号完全依赖于集合无素所选取的顺序.他还强调,有穷集的基数和编号的概念是一致的.对于无穷集,基数和编号之间的区别是重要的.康托尔还把编号看成是计数概念的一种推广.一个无穷集的编号由它的一个超穷数给定.另外,良序的概念还为定义超穷算术提供了基础.8.康托尔定理和边续统假设n维空间的点与直线上的点相比,并不是更大的无穷.那么,是否能从已知的无穷集合出发,根据正确的数学运算,构成更大的无穷集呢?康托尔在1891年的论文“集合论的一个根本问题”( ber eine elementare Frage der Mannigfaltig keitslehre)里作了肯定的回答.他用对角线方法证明1899年,康托尔在给戴得金的信中说,1891年论文里的结果可以表示成:2a>a.这里a为某一集合的基数,不管这个集合是什么,这个命题在康托尔的理论中都具有重要意义.它还被叙述为:一集合的幂集,其基数比原集合的基数大.因此,给定一集合,我们可以通过其幂集来形成一更大的集合;给定一基数,我们可以得到一更大的基数.所以没有最大的集合,也没有最大的基数.给定集合S,用求幂。
2.计算下列分形维数:(1)康托尔集合(the Cantor set)l o g l o g20.631l o g l o g3smDc=-=≈(2)科赫曲线(Koch)log41.262log3sD=-≈(3)谢尔平斯基(Sierpinski)地毯、垫片、海绵地毯:log log81.893log log3fDβκ==≈垫片:log log31.585log log2fDβκ==≈海绵:log log202.763log log3fDβκ==≈(4)阿波罗尼斯垫圆:解:不在此圆内部的点形成一个面积为零的集合,可以说它多于一条线但少于一个面,因此它的分形维数(5)皮亚诺曲线:log ln921ln3log()sNDβ===1.求按下列各图所示方法生成的分形图的分维初始元:生成元:(a)(b)(c)(a)log ln81.51ln4log()sNDβ==≈(b)log ln51.4651ln3log()sNDβ==≈(c)log ln51.4651ln3log()sNDβ==≈2、计算康托尔三分集相似维、Hausdorff 维 解:相似维:log ln 20.63111log()ln3s N D β==≈Hausdorff 维:log log 20.631log log3f D βκ==≈ 3、计算不规则分形盒维数(只计算右下端)ε=1/10 ()N ε=N(1/10)()ln ln 54ln 541.7321ln ln10ln 10B N D εε=-=-=≈二、求下面一维16点离散信号Haar 小波2级分解与重构计算过程及结果,并与Matlab 编程计算结果比较。
x=[ 3 7 8 5 6 5 9 8 3 7 8 5 13 3 9]解: Haar 小波对应的尺度函数为1t 0 1 0{)(≤≤=其它t ϕ低通滤波器系数)(0k h :⎩⎨⎧===⎰--02/1)()()(),()(*,1,10R kk dt t t t t k h ϕϕϕ 其它,==k k 10 )(0k h ={1,1,0,0,…….0}/2)(0k h -={0,0,0,0,……0,1,1}/2={1,1}/2由0h 求高通滤波系数1h⎪⎩⎪⎨⎧-=--=02/12/1)1()1()(01k h k h k其它===k k k 102/}0,.......0,0,1,1{)(1-=k h2/}1,1{2/}1,0,...,0,0{)(1-=-=-k h 1 级尺度系数212,9]/,13,6,4,6,7,11,10,1511,11,14,1[10,15,13, )(*)()(001=-=k c k h k C抽偶 2/]12,4,13,10,17,11,13,10[= 2 级尺度系数2/]16,2823,23[ 6,12]/227,23,17,1[23,24,28, )(*)()(102==-=抽偶k c k h k c 1 级小波系数2]/,-2,0,-6,9,-4,-1,3,41,1,-4,1,5[-4,-1,3,- )(*)()(011=-=k c k h k d抽偶 2/]6,2,3,4,1,1,3,4[----= 2 级小波系数2]/2,-3,9,-8,1[-3,2,-6,7 )(*)()(112=-=k c k h k d抽偶2/]8,3,6,3[ ----= 重构:(逐级重构) 2/]8,3,6,3[)(2----=k d2/]8,0,3,0,6,0,3,0[----=−−→−插值器2/]16,0,23,0,28,0,23,0[2/]16,23,28,23[)(插值器2=−−−−→−=k c2,24]/234,20,26,8[20,26,22, 22/]8,0,3,0,6,0,3,0[*]1,1[2]/2,0,23,0,16[0,23,0,28*[1,1] )(*)()(*)()(21201=-----+=+=k d k h k c k h k c2/]6,0,2,0,3,0,4,0,1,0,1,0,3,0,4,0[2/]6,2,3,4,1,1,3,4[)(1----=−−→−----=插值器k d22/]24,0,8,0,26,0,20,0,34,0,22,0,26,0,20,0[22/]24,8,26,20,34,22,26.20[)(1=−−→−=插值器k c9]3 13 5 8 7 3 8 9 5 6 5 8 7 [3 2,0,-6]/2-4,0,3,0,-0,1,0,1,0,[0,-4,0,3,*[1,-1] /4,0,8,0,24],0,20,0,26,0,22,0,34[0,20,0,26*[1,1] )(*)()(*)()(11100=+=+=k d k h k c k h k c一、已知)(t ϕ(尺度函数)求小波函数)(t ψ⎩⎨⎧=01)(t ϕ其它210≤≤t解:1)⎩⎨⎧=01)(t ϕ其它210≤≤t 易知,{})(n t -ϕ关于n 为一正交归一基.2)求n h()⎰∞--==0,1)2()(2),(dt n t t t t h n n ϕϕϕϕ其中,⎩⎨⎧=-01)2(n t()其它2/2/12/n t n +≤≤当0=n 时,⎩⎨⎧=01)2(t ϕ其它4/10≤≤t当1=n 时,⎩⎨⎧=-01)12(t其它4/32/1≤≤t故当0=n 时,⎩⎨⎧=-01)2().(n t t ϕϕ 其它0=n当0=n 时,⎩⎨⎧=-01)2().(n t t ϕϕ其它4/10≤≤t故⎩⎨⎧=-=⎰022/1)2().(2dt n t t h n ϕϕ 其它0=n3)求n g ⎩⎨⎧=-=022/1)1(n nn h g0=n4)求)()()(0,10,1t g t g t nn--==∑ϕϕψ⎰=⋅=021)2(222/1t ϕ 其它4/10≤≤t1)(t ϕt)(t ψ(ϕ。
连根数构成的康托尔集的豪斯多夫维数研究如果a1,a2,a3,…是正实数,那么,被称为在a1,a2,a3…之下的一个连根数。
限制ai属于集合S={a,b},其中a、b是自然数,这些在实数集上的连根数就可以构成一个康托尔集C({a,b})。
T. Clark·T. Ri chmond研究了这种康托尔集的厚度、测度、以及他们之和的性质。
T. Clark.T. Richmond[3]计算出康托尔集C({a,b})的厚度τ({a,b}),并表示成仅仅关于a和b有关的连根式的极限形式。
在[29]中,康托尔集C{(a,b})的豪斯多夫维数dimH(C{a,b})与它的厚度之间的关系:于是,得到了康托尔集C({a,b})的豪斯多夫维数的下界。
T.Clark·T.Richmond[3]发现康托尔集C({a,b})的n阶基本区间中长度最长的小区间是最左边的那一个小区间。
我们以2n个长度为最左边的小区间的长度的区间去覆盖n阶基本区间。
对这个长度进行适当的不等式放缩,得到一个关于n的一个表达式。
再给这个表达式配上一个为常数的指数,使得2n与这个表达式的常数次方的乘积也是一个常数。
那么,这个指数就是我们所要寻找的康托尔集C({a,b})的豪斯多夫维数的一个上界。
而关于康托尔集C({a,b})的豪斯多夫维数的准确值,可以通过类似的压力
方程给出则,P(—slog|f’|)=0的唯一实数解就是它的豪斯多夫维数。