数字图像处理课程设计报告
- 格式:docx
- 大小:41.18 KB
- 文档页数:12
数字图像处理实验报告实验一数字图像处理编程基础一、实验目的1. 了解MATLAB图像处理工具箱;2. 掌握MATLAB的基本应用方法;3. 掌握MATLAB图像存储/图像数据类型/图像类型;4. 掌握图像文件的读/写/信息查询;5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法;6. 编程实现图像类型间的转换。
二、实验内容1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。
2. 运行图像处理程序,并保存处理结果图像。
三、源代码I=imread('cameraman.tif')imshow(I);subplot(221),title('图像1');imwrite('cameraman.tif')M=imread('pout.tif')imview(M)subplot(222),imshow(M);title('图像2');imread('pout.bmp')N=imread('eight.tif')imview(N)subplot(223),imshow(N);title('图像3');V=imread('circuit.tif')imview(V)subplot(224),imshow(V);title('图像4');N=imread('C:\Users\Administrator\Desktop\1.jpg')imshow(N);I=rgb2gary(GRB)[X.map]=gary2ind(N,2)RGB=ind2 rgb(X,map)[X.map]=gary2ind(I,2)I=ind2 gary(X,map)I=imread('C:\Users\dell\Desktop\111.jpg');subplot(231),imshow(I);title('原图');M=rgb2gray(I);subplot(232),imshow(M);[X,map]=gray2ind(M,100);subplot(233),imshow(X);RGB=ind2rgb(X,map);subplot(234),imshow(X);[X,map]=rbg2ind(I);subplot(235),imshow(X);四、实验效果实验二 图像几何变换实验一、实验目的1.学习几种常见的图像几何变换,并通过实验体会几何变换的效果;2.掌握图像平移、剪切、缩放、旋转、镜像等几何变换的算法原理及编程实现;3.掌握matlab 编程环境中基本的图像处理函数。
数字图像处理课程设计--基于Matlab的数字图像处理数字图像处理课程设计基于Matlab的数字图像处理——图像的运算院系信息技术学院专业班级电气6班学号 201107111282姓名何英娜指导教师章瑞平课程设计时间 2012年11月目录一、摘要 (3)二、图像代数运算1、1图像的加法运算 (4)1、2图像的减法运算 (4)1、3图像的除法运算 (4)1、4绝对差值运算 (7)1、 5 图像的求补运算 (7)3三、图像的几何运算2、1 图像插值 (7)2、2图像的旋转 (8)2、3图像的缩放 (9)2、4图像的投影变换 (10)2、4图像的剪切 (11)四、课程设计总结与体会 (13)五、参考文献 (14)摘要图像运算涵盖程序设计、图像点运算、代数运算、几何运算等多种运算;设计目的和任务:1、熟悉图像点运算、代数运算、几何运算的基本定义和常见方法;2、掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法3、掌握在MATLAB中进行插值的方法4、运用MATLAB语言进行图像的插值缩放和插值旋转5、学会运用图像的投影变换和图像的剪切46、进一步熟悉了解MATLAB语言的应用,将数字图像处理更好的应用于实际7、通过各类算法加强图像各种属性、一、图像的几何运算何运算图像代数运算是指对两幅或两幅以上输入图像对应的像素逐个进行和差积商运算以产生增强效果的图像。
图像运算是一种比较简单有效的增强处理手段是图像处理中常用方法。
四种图像处理代数运算的数学表达式如下:C(x,y)=A(x,y)+B(x,y)C(x,y)=A(x,y)-B(x,y)C(x,y)=A(x,y)*B(x,y)C(x,y)=A(x,y)/B(x,y)1图像加法运算一般用于多幅图像求平均效果,以便有效降低具有叠加性的随机噪声,在matlab中imadd用于图像相加,其调用格式为z=imadd(X,Y);程序演示如下:I=imread('rice.png');subplot(2,2,1),imshow(I),title('原图像1'); J=imread('cameraman.tif');subplot(2,2,2),imshow(J),title('原图像52');K=imadd(I,J,'uint16'););subplot(2,2,3),imshow(K,[]),title('相加后图像'2、图像减法运算也称差分运算,是用于检测图像变化及运动物体的方法;用imsubtract函数实现。
数字图像表示课程设计一、教学目标本课程旨在通过数字图像表示的教学,使学生掌握数字图像的基本概念、表示方法和处理技术。
具体目标如下:1.理解数字图像的基本概念,包括数字图像的定义、特点和分类。
2.掌握数字图像的表示方法,包括像素表示、矢量表示和图像文件格式。
3.了解数字图像的处理技术,包括图像增强、图像滤波和图像压缩。
4.能够使用常用的数字图像处理软件进行图像编辑和处理。
5.能够运用数字图像处理技术解决实际问题,如图像去噪、图像分割和特征提取。
情感态度价值观目标:1.培养学生的创新意识和实践能力,鼓励学生进行图像创作和应用开发。
2.培养学生的团队合作意识,通过小组讨论和合作完成图像处理项目。
二、教学内容本课程的教学内容主要包括数字图像的基本概念、表示方法和处理技术。
具体安排如下:第1章:数字图像概述1.1 数字图像的定义和特点1.2 数字图像的分类和应用第2章:数字图像表示2.1 像素表示法2.2 矢量表示法2.3 图像文件格式第3章:数字图像处理技术3.1 图像增强3.2 图像滤波3.3 图像压缩第4章:图像处理软件应用4.1 Photoshop图像处理软件4.2 MATLAB图像处理工具箱第5章:图像处理项目实践5.1 图像去噪5.2 图像分割5.3 特征提取三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过教师的讲解,向学生传授数字图像的基本概念和理论知识。
2.讨论法:学生进行小组讨论,促进学生之间的交流和合作,培养学生的创新思维和问题解决能力。
3.案例分析法:通过分析典型的数字图像处理案例,使学生了解数字图像处理技术在实际中的应用。
4.实验法:安排实验课程,让学生亲自动手进行图像处理实践,提高学生的实际操作能力和实践能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:《数字图像处理》2.参考书:《数字图像处理教程》3.多媒体资料:教学PPT、图像处理软件教程视频4.实验设备:计算机、图像处理软件、实验素材以上是本课程的教学目标、教学内容、教学方法和教学资源的设计。
实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用和意义;4、观察图像点运算和几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算和几何变换的基本原理及编程实现步骤图像灰度直方图是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以看作是“从象素到象素”的复制操作,而这种复制操作是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值和输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸和均衡等。
图像几何变换是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放和图像旋转等,其理论基础主要是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算和几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法和频域法,点运算和几何变换属于空域法。
《数字图像处理》课程建设汇报杨淑莹(教授、博士)天津理工大学计算机与通信工程学院课程简介数字图像处理是计算机、通信、信息、控制等相关专业的核心课,同时也是绝大部分专业的选修课。
是信息科学中发展最快的热点研究方向。
图像处理技术已渗透到计算机、通信、交通运输、医学、军事等多个领域,与人们的生活紧密相关。
培养目标培养具有系统、扎实的图像处理理论基础;在图像信息的处理及应用等方面具有较深的专业知识、较强的应用能力和实践动手能力;良好的编程素质;培养创新精神;能够从事数字图像处理工作的应用型高级专门人才。
《数字图像处理》课程是高等学校计算机技术类在本科教学计划中一门重要的专业课程。
人类从外界获得的信息约有75%是从图像中获得的。
随着现代电子、计算机、软件等技术的高速发展,图像处理技术的应用领域越来越广泛,对推动社会发展、改善人们的生活起到了重要的作用。
《数字图像处理》课程起点高、难度大,理论性和实践性很强。
传统教学以理论介绍为主,强调理论的体系和概念,忽视理论的实现步骤,基本的编程代码。
造成学生在学习时,感到理论概念抽象,理解仅限于表面认识,很难看到理论的实际应用效果。
面临实际问题时,学生往往不知所措,不知从何下手,更谈不上创新应用。
《数字图像处理》课程教学要求所授内容离不开计算机编程实现。
不能单纯以理论介绍为主,忽视理论的实现步骤,编程代码。
要让学生看到理论的实际应用效果。
课堂上不能只介绍理论,使学生理论与实际相脱离,在实践中无从下手。
课堂上也不能花大量的时间讲解复杂的程序。
20世纪90年代,大多高校采用翻译的国外教材进行纯理论教学。
随着计算机技术的发展,翻译教材内容苦涩难懂,理论与实际相脱节,与理论技术快速发展的矛盾更加突出。
虽然这门课程在教学模式上和教材方面都处于不断完善与发展的阶段,但总体形式上还存在以下二个问题:大部分教学偏于理论,少于实践方法的介绍。
学习者往往会被苦涩难懂的理论迷惑,见不到理论的效果,不利于对理论体系的快速掌握。
数字图像处理实验报告光信13-2班2013210191韩照夏数字图像处理实验报告实验一数字图像空间域平滑一、实验目的掌握图像空间域平滑的原理和程序设计;观察对图像进行平滑增强的效果。
二、实验设备计算机,Matlab程序平台。
三、实验原理图像平滑处理的目的是改善图像质量和抽出对象特征。
任何一幅未经处理的原始图像,都存在着一定程度的噪声干扰。
噪声恶化了图像质量,使图像模糊,甚至淹没特征,给分析带来困难。
消除图像噪声的工作称为图像平滑或滤波。
针对不同噪声源(如光栅扫描、底片颗粒、机械元件、信道传输等)引起的不同种类噪声(如加性噪声、乘性噪声、量化噪声等),平滑方法也不同。
平滑可以在空间域进行,也可以在频率域进行。
1.局部平均法局部平滑法是一种直接在空间域上进行平滑处理的技术。
假设图像由许多灰度恒定的小块组成,相邻象素间存在很高的空间相关性,而噪声则是统计独立的。
因此,可用邻域内各象素的灰度平均值代替该象素原来的灰度值,实现图像的平滑。
对图像采用3×3的邻域平均法,其作用相当于用以下模板与图像进行卷积运算。
2. 超限象素平滑法 对邻域平均法稍加改进,可导出超限象素平滑法。
其原理是将f(x,y)和邻域平均g(x,y)差的绝对值与选定的阈值进行比较,根据比较结果决定点(x,y )的最后灰度g ´(x,y)。
其表达式为3. 二维中值滤波中值滤波就是用一个奇数点的移动窗口, 将窗口中心点的值用窗口内各点的中值代替。
二维中值滤波可由下式表示常用的窗口有:四、实验步骤1.实验准备:打开计算机,进入Matlab 程序界面。
2.输入图像空间域平滑处理程序,程序如下:⎩⎨⎧>-= ),(),(),( ),,(),('其他,当y x f T y x g y x f y x g y x g )},({),(y x f Med y x g A=程序1.1 图像平滑处理clear;clc;I=imread('lena.jpg');subplot(3,2,1);imshow(I);title('原图像');I1=imnoise(I,'salt & pepper',0.02);subplot(3,2,2);imshow(I1);title('对I加椒盐噪声的图像');h2=fspecial('average',[3 3]);I2=imfilter(I1,h2,'replicate');subplot(3,2,3);imshow(I2);title('3×3邻域平滑');h3=fspecial('average',[5 5]);I3=imfilter(I1,h3,'replicate');subplot(3,2,4);imshow(I3);title('5×5邻域平滑');I4=I1;I4((abs(I1-I2))>64)=I2((abs(I1-I2))>64);subplot(3,2,5);imshow(I4);title('3×3超限象素平滑(T=64)'); I5=I1;I5((abs(I1-I3))>48)=I3((abs(I1-I3))>48);subplot(3,2,6);imshow(I5);title('5×5超限象素平滑(T=48)');程序1.2 图像平均平滑与中值滤波clear;clc;I=imread('lena.jpg');subplot(3,3,1);imshow(I);title('原图像');I1=imnoise(I,'gaussian',0.02);subplot(3,3,2);imshow(I1);title('高斯噪声');I2=imnoise(I,'salt & pepper',0.02);subplot(3,3,3);imshow(I1);title('椒盐噪声');h1=fspecial('average',[3 3]);I3=imfilter(I1,h1,'replicate');subplot(3,3,4);imshow(I3);title('对I1 3×3邻域平滑');h2=fspecial('average',[3 3]);I4=imfilter(I2,h2,'replicate');subplot(3,3,5);imshow(I4);title('对I2 3×3邻域平滑');I5=medfilt2(I1,[5 5]);subplot(3,3,6);imshow(I5);title('对I1 5×5中值滤波');I6=medfilt2(I2,[5 5]);subplot(3,3,7);imshow(I6);title('对I2 5×5中值滤波');3.运行图像处理程序,并保存处理结果图像。
《数字图像处理》实验教案一、实验目的1. 使学生了解和掌握数字图像处理的基本概念和基本算法。
2. 培养学生运用数字图像处理技术解决实际问题的能力。
3. 提高学生使用相关软件工具进行数字图像处理操作的技能。
二、实验内容1. 图像读取与显示:学习如何使用相关软件工具读取和显示数字图像。
2. 图像基本操作:学习图像的旋转、缩放、翻转等基本操作。
3. 图像滤波:学习使用不同类型的滤波器进行图像去噪和增强。
4. 图像分割:学习利用阈值分割、区域增长等方法对图像进行分割。
5. 图像特征提取:学习提取图像的边缘、角点等特征信息。
三、实验环境1. 操作系统:Windows或Linux。
2. 编程语言:Python或MATLAB。
3. 图像处理软件:OpenCV、ImageJ或MATLAB。
四、实验步骤1. 打开相关软件工具,导入图像。
2. 学习并实践图像的基本操作,如旋转、缩放、翻转等。
3. 学习并实践图像滤波算法,如均值滤波、中值滤波等。
4. 学习并实践图像分割算法,如全局阈值分割、局部阈值分割等。
5. 学习并实践图像特征提取算法,如Canny边缘检测算法等。
五、实验要求1. 每位学生需独立完成实验,并在实验报告中详细描述实验过程和结果。
2. 实验报告需包括实验目的、实验内容、实验步骤、实验结果和实验总结。
3. 实验结果要求清晰显示每个步骤的操作和效果。
4. 实验总结部分需对本次实验的学习内容进行归纳和总结,并提出改进意见。
六、实验注意事项1. 实验前请确保掌握相关软件工具的基本使用方法。
3. 在进行图像操作时,请尽量使用向量或数组进行处理,避免使用低效的循环结构。
4. 实验过程中如需保存中间结果,请使用合适的文件格式,如PNG、JPG等。
5. 请合理安排实验时间,确保实验报告的质量和按时提交。
七、实验评价1. 实验报告的评价:评价学生的实验报告内容是否完整、实验结果是否清晰、实验总结是否到位。
2. 实验操作的评价:评价学生在实验过程中对图像处理算法的理解和运用能力。
实验报告课程名称数字图像处理实验项目MATLAB图像处理编程基础指导教师学院光电信息与通信工程__专业电子信息工程班级/学号学生姓名______ __________实验日期______ _成绩______________________实验1 MATLAB图像处理编程基础一、实验目的1.了解MATLAB产品体系和了解MATLAB图像处理工具箱。
2.掌握MATLAB的基本应用方法。
3.掌握MATLAB图像存储/图像数据类型/图像类型。
4.掌握图像文件的读/写/信息查询。
5.掌握图像显示--显示多幅图像、4种图像类型的显示方法、特殊图像的显示技术6.编程实现图像类型间的转换和图像算术操作。
二、实验的硬件、软件平台硬件:计算机软件:操作系统:Windows XP应用软件:MATLAB 7.0.1三、MATLAB图像处理工具箱的功能图像处理工具箱是一个函数的集合,它扩展了matlab数值计算环境的能力。
这个工具箱支持了大量图像处理操作,包括:空间图像变换 Spatial image transformations形态操作 Morphological operations邻域和块操作 Neighborhood and block operations线性滤波和滤波器设计 Linear filtering and filter design格式变换 Transforms图像分析和增强 Image analysis and enhancement图像登记 Image registration清晰化处理 Deblurring兴趣区处理 Region of interest operations四、说明使用MATLAB进行图像处理所需函数调用步骤在Command Window中,以命令行单句调用某一函数只需写xxx(函数名)xxxxxxx)这样就可以调用了.五、给出MATLAB图像处理工具箱的数据类型和4种基本图像类型工具箱里的函数都是M文件,可以通过type function_name来查看代码,也可以通过写自己的matlab函数来扩展工具箱。
(完整word版)数字图像处理课设专业综合实验报告—-—-数字图像处理专业: 电子信息工程班级:学生姓名:学号:指导教师:年月日设计题目:图像去雾处理一、设计目的由于大气的散射作用,照相机接收到景物反射过来的光线经过了衰减.雾天的大气退化图像具有对比度低、景物不清晰的特点,给交通系统及户外视觉系统的应用带来严重的影响。
鉴于图像处理和计算机视觉中有关图像理解、目标识别、目标跟踪、智能导航等领域的很多算法都是假设输入的图像或视频是在理想天气条件下拍摄的,因此有雾图像清晰化就显得格外重要,是目前人们研究的热点问题之一,但由于成像系统聚焦模糊、拍摄场景存在相对运动以及雾天等不利环境,使得最终获取的图像往往无法使用。
有雾天气条件下获取的图像对比度低、图像内容模糊不清而且颜色整体偏向灰白色,图像去雾的目的就是恢复有雾图像的对比度和真实色彩,重现在理想天气条件下拍摄的清晰图像。
二、设计内容和要求1、采用直方图均衡化方法增强雾天模糊图像,并比较增强前后的图像和直方图;2、查阅文献,分析雾天图像退化因素,设计一种图像复原方法,对比该复原图像与原始图像以及直方图均衡化后的图像;三、设计思路由于图像中存在噪声等干扰,使得图像模糊不清。
可以采用图像增强的方法对原图像处理,使图像变得清晰.而直方图均衡化是一种常用的图像增强的方法。
图像模糊,其图像的像素分布不均匀,采用直方图均衡化的方法使其图像像素分布均匀,从而达到均衡像素分布增强图像的目的。
设计方案在晴朗的天气条件下,洁净的空气一般是由氦气、氧气等气体分子、水蒸汽、微量的固体悬浮颗粒物等成分构成。
在这种大气条件下,从物体表面反射的光线在到达成像设备的过程中,基本不会受大气中各种成分的影响发生散射、吸收、发射等现象,而是直接到达成像设备。
相对在有雾天气条件下获得的图像,在这种理想天气条件获得的图像,我们称之为清晰无雾图像。
而在有雾天气条件下获得的图像模糊不清,图像对比度下降,图像的颜色发生漂移,偏向灰白色。
数字图像实验报告数字图像实验报告引言:数字图像处理是一门涉及计算机科学和电子工程的学科,它通过对图像进行数字化处理,实现对图像的分析、增强和改变。
本实验报告旨在介绍数字图像处理的基本概念和实验结果,以及对实验结果的分析和讨论。
一、实验目的本次实验的主要目的是了解数字图像处理的基本原理和方法,通过实践掌握常见的图像处理技术,并对实验结果进行分析和评估。
二、实验过程1. 图像获取在本次实验中,我们使用了一张自然风光的彩色图像作为实验对象。
这张图像包含了丰富的颜色和细节,能够很好地展示数字图像处理的效果。
2. 图像预处理在进行图像处理之前,我们需要对图像进行预处理,以便更好地进行后续处理。
预处理包括图像去噪、增强和边缘检测等步骤。
我们使用了常见的滤波算法对图像进行去噪处理,然后使用直方图均衡化技术对图像进行增强,最后使用边缘检测算法提取图像的边缘信息。
3. 图像分割图像分割是将图像分成若干个具有独立特征的区域的过程。
我们使用了基于阈值的分割方法对图像进行分割,通过调整阈值的大小,可以得到不同的分割结果。
4. 特征提取特征提取是从图像中提取出具有代表性的特征,用于进一步分析和处理。
我们使用了常见的特征提取算法,如边缘检测、角点检测和纹理特征提取等,从图像中提取出了边缘、角点和纹理等特征。
5. 图像重建图像重建是将经过处理的图像恢复到原始状态的过程。
我们使用了图像插值算法对图像进行重建,通过插值算法,可以将图像的分辨率提高,从而得到更清晰的图像。
三、实验结果经过以上的处理步骤,我们得到了一系列经过处理的图像。
通过对比原始图像和处理后的图像,我们可以看到图像处理对图像的改变和影响。
在图像去噪和增强的过程中,我们成功地去除了图像中的噪声,并增强了图像的对比度和细节。
在图像分割和特征提取的过程中,我们成功地将图像分割成若干个具有独立特征的区域,并提取出了图像的边缘、角点和纹理等特征。
在图像重建的过程中,我们成功地提高了图像的分辨率,得到了更清晰的图像。
数字图像处理 课程设计报告 姓 名: 学 号: 班 级: 设计题目: 图像处理 教 师: 赵哲 老师 提交日期: 12月29日 一、设计内容: 主题:《图像处理》 详细说明:对图像进行处理(简单滤镜,模糊,锐化,高斯模糊等),对图像进行处理(上下对称,左右对称,单双色显示,亮暗程度调整等),对图像进行特效处理(反色,实色混合,色彩平衡,浮雕效果,素描效果,雾化效果等),
二、涉及知识内容: 1、二值化 2、各种滤波 3、算法等 三、设计流程图 插入图片 对图片进行处理 二值化处理 重复 输出两幅图 结束 四、实例分析及截图效果: 运行效果截图: 第一步:读取原图,并显示 close all;clear;clc; % 清楚工作窗口clc 清空变量clear 关闭打开的窗口close all I=imread(''); % 插入图片 赋给I imshow(I);% 输出图I I1=rgb2gray(I);%图片变灰度图 figure%新建窗口 subplot(321);% 3行2列第一幅图 imhist(I1);%输出图片 title('原图直方图');%图片名称
一,图像处理 模糊 H=fspecial('motion',40); %% 滤波算子 模糊程度40 motion运动 q=imfilter(I,H,'replicate');%imfilter实现线性空间滤波函数,I图经过H滤波处理,replicate反复复制 q1=rgb2gray(q); imhist(q1); title('模糊图直方图');
二,图像处理 锐化
H=fspecial('unsharp');%锐化滤波算子,unsharp不清晰的 qq=imfilter(I,H,'replicate'); qq1=rgb2gray(qq); imhist(qq1); title('锐化图直方图');
三,图像处理 浮雕(来源网络)
%浮雕图 l=imread(''); f0=rgb2gray(l);%变灰度图 f1=imnoise(f0,'speckle',; %高斯噪声 加入密度为的高斯乘性噪声 imnoise噪声污染图像函数 speckle斑点 f1=im2double(f1);%把图像数据类型转换为双精度浮点类型 h3=1/9.*[1 1 1;1 1 1;1 1 1]; %采用h3对图像f2进行卷积滤波 f4=conv2(f1,h3,'same'); %进行sobel滤波 h2=fspecial('sobel'); g3=filter2(h2,f1,'same');%卷积和多项式相乘 same相同的 k=mat2gray(g3);% 实现图像矩阵的归一化操作
四,图像处理 素描(来源网络) f=imread(''); [VG,A,PPG] = colorgrad(f); ppg = im2uint8(PPG); ppgf = 255 - ppg; [M,N] = size(ppgf);T=200; ppgf1 = zeros(M,N); for ii = 1:M for jj = 1:N if ppgf(ii,jj) ppgf1(ii,jj)=0; else ppgf1(ii,jj)=235/(255-T)*(ppgf(ii,jj)-T); end end end ppgf1 = uint8(ppgf1); H=fspecial('unsharp'); Motionblur=imfilter(ppgf1,H,'replicate'); figure;imshow(ppgf1);
调用 function [VG, A, PPG] = colorgrad(f, T) if (ndims(f)~=3) || (size(f,3)~=3) error('Input image must be RGB'); end sh = fspecial('sobel'); sv = sh'; Rx = imfilter(double(f(:,:,1)), sh, 'replicate'); Ry = imfilter(double(f(:,:,1)), sv, 'replicate'); Gx = imfilter(double(f(:,:,2)), sh, 'replicate'); Gy = imfilter(double(f(:,:,2)), sv, 'replicate'); Bx = imfilter(double(f(:,:,3)), sh, 'replicate'); By = imfilter(double(f(:,:,3)), sv, 'replicate'); gxx = Rx.^2 + Gx.^2 + Bx.^2; gyy = Ry.^2 + Gy.^2 + By.^2; gxy = Rx.*Ry + Gx.*Gy + Bx.*By; A = *(atan(2*gxy./(gxx-gyy+eps))); G1 = *((gxx+gyy) + (gxx-gyy).*cos(2*A) + 2*gxy.*sin(2*A)); A = A + pi/2; G2 = *((gxx+gyy) + (gxx-gyy).*cos(2*A) + 2*gxy.*sin(2*A)); G1 = G1.^; G2 = G2.^; VG = mat2gray(max(G1, G2)); RG = sqrt(Rx.^2 + Ry.^2); GG = sqrt(Gx.^2 + Gy.^2); BG = sqrt(Bx.^2 + By.^2); PPG = mat2gray(RG + GG + BG); if nargin ==2 VG = (VG>T).*VG; PPG = (PPG>T).*PPG; end f1=rgb2gray(f); imhist(f1); title('素描图直方图'); 五,图像处理 实色混合(来源网络) %实色混合 I(I<=127)=0; %对像素进行处理,若值小于等于127,置0 I(I>127)=255; %对像素进行处理,若值大于127,置255 imshow(I); title('像素图'); I1=rgb2gray(f); imhist(I1); title('像素图直方图');
六,图像处理 反色图 f=imread(''); q=255-q; imshow(q); title('反色图'); imhist(q1); title('反色图直方图');
七,图像处理 上下对称 A=imread(''); B=A; [a,b,c]=size(A); a1=floor(a/2); b1=floor(b/2); c1=floor(c/2); B(1:a1,1:b,1:c)=A(a:-1:a-a1+1,1:b,1:c); figure imshow(B) title('上下对称'); A=rgb2gray(A); figure imhist(A) title('上下对称直方图');
八,图像处理类 左右对称 C=imread(''); A=C; C(1:a,1:b1,1:c)=A(1:a,b:-1:b+1-b1,1:c); figure imshow(C) title('左右对称'); A=rgb2gray(A); figure imhist(A); title('左右对称直方图'); 九,图像处理 单双色显示 a=imread(''); a1=a(:,:,1);a2=a(:,:,2); a3=a(:,:,3); aa=rgb2gray(a); a4=cat(3,a1,aa,aa); a5=cat(3,a1,a2,aa); figure subplot(121); imshow(a4); title('单色显示'); subplot(122); imshow(a5); title('双色显示'); a4=rgb2gray(a4); a5=rgb2gray(a5); figure subplot(121); imhist(a4); title('单色显示直方图'); subplot(122); imhist(a5); title('双色显示直方图');
十,图像处理 亮暗度调整 a=imread(''); a1=*a; a2=2*a; figure subplot(121);imshow(a1); title('暗图'); subplot(122); imshow(a2); title('亮图') q3=rgb2gray(a1);q4=rgb2gray(a2); figure subplot(121);mhist(q3);title('暗图直方图') subplot(122); imhist(q4); title('亮图直方图')
十一,图像处理 雾化处理 q=imread(''); m=size(q,1);n=size(q,2); r=q(:,:,1);g=q(:,:,2);b=q(:,:,3); for i=2:m-10 for j=2:n-10 k=rand(1)*10;%产生一个随机数作为半径 di=i+round(mod(k,33));%得到随机横坐标 dj=j+round(mod(k,33));%得到随机纵坐标 r(i,j)=r(di,dj);%将原像素点用随机像素点代替 g(i,j)=g(di,dj); b(i,j)=b(di,dj); end end a(:,:,1)=r;a(:,:,2)=g;a(:,:,3)=b; imshow(a) title('雾化处理图'); q=rgb2gray(a); figure imhist(q); title('雾化处理图直方图');
十二,图像处理 高斯滤波 I = imread(''); G =fspecial('gaussian', [5 5], 2); % fspecial生成一个高斯滤波器 Ig =imfilter(I,G,'same'); %imfilter使用该滤波器处理图片 imshow(Ig); title('高斯滤波'); I1=rgb2gray(Ig); figure imhist(I1); title('高斯滤波直方图');