机械原理___运动副
- 格式:ppt
- 大小:587.50 KB
- 文档页数:20
《机械原理》基础知识点1构件:具有确定运动的单元体组成的,这些运动单元体称为构件零件:组成构件的制造单元体运动副:两构件直接接触的可动联接构件的自由度:构件的独立运动数目运动链:若干个构件通过运动副所构成的系统机架:固定的构件原动件:机构中做独立运动的构件从动件:机构中除原动件外其余的活动构件运动链→机构:将运动链中的一个构件固定,并且它的一个或几个构件作给定的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构2机构运动简图:表示机构中各构件间相对运动关系的简单图形。
机构运动简图必须与原机械具有完全相同的运动特性。
示意图:只为了表明机械的结构,不按比例来绘制简图3约束和自由度的关系:增加一个约束,构件就失去一个自由度4机构具有确定运动的条件:机构自由度等于机构的原动件数5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该重合点称为他们的瞬心速度中心绝对瞬心:运动构件上瞬时绝对速度为零的点相对瞬心:两运动构件上瞬时绝对速度相等的重合点6摩擦力增大并不是运动副元素材料间摩擦因数发生了变化,而是运动副元素的几何结构形状发生变化所致。
7摩擦圆:对于一具体的轴颈,r和fv为定值,因此ρ为定值,以轴心O为圆心,ρ为半径做一圆,该圆成为摩擦圆。
8机械自锁:由于摩擦的存在,会出现无论施加多大的驱动力,都不能使机械沿驱动方向产生运动的现象。
自锁条件:η≤0 机械发生自锁9连杆机构(低副机构):若干个构件通过低副联接所组成的机构10平面四杆机构基本形式:铰链四杆机构11曲柄:在两连杆中能做整周回转机构摇杆:只能在一定角度范围内摆动的构件周转副:将两构件能做360°相对转动的转动副摆动副:不能将两构件能做360°相对转动的转动副12铰链四杆机构的曲柄存在条件:1最短杆与最长杆长度之和小于或等于其他两杆长度之和 2连架杆和机架中有一杆是最短杆13最短杆为连杆时,该机构为双摇杆机构;最短杆为连架杆时,该机构为曲柄摇杆机构;最短杆为机架时,该机构为双曲柄机构;14有急回运动:θ≠0时,偏置曲柄滑块机构和导杆机构无急回运动:对心曲柄滑块机构和双摇杆机构15死点位置:压力角为90°,传动角为0°。
考试题型填空、选择、简答、计算、作图绪论和第一章1、机器和(机构)统称为机械;(构件)是机械的最小运动单元体。
2、(由两个构件直接接触而组成的可动的连接)称运动副。
3、两构件之间以点、线接触所组成的平面运动副,称为(高)副。
以面接触所组成的平面运动副称(低)副。
4、两个以上的构件同在一处以转动副相连接,构成了(复合铰链)。
机构中常出现一种与输出构件无关的自由度称(局部自由度)。
5、机构中按给定的已知运动规律独立运动的构件称为(原动件)。
6、(机构相对机架具有的独立运动的数目)称为机构的自由度。
7、机构具有确定性运动的条件是(机构自由度大于0,且等于原动件数)。
8、平面机构自由度计算的公式(F=3n-2P L-P H)。
9、(两构件的瞬时等速重合点)称为两构件的瞬心。
10、以转动副相连接的两构件的瞬心在(转动副的中心);以移动副相连接的两构件间的瞬心位于(垂直于导路的无穷远处)。
以两构件以纯滚动的高副连接,瞬心在(在接触点);当高副元素有相对滑动时,瞬心在(过接触点的公法线上)。
11、对不通过运动副直接相连的两构件间的瞬心位置,可用(三心定理)求出。
12、对含有N个构件的平面机构,其瞬心总数K=(N(N-1)/2)。
则含有7个活动构件的平面机构,其瞬心总数为(28)。
习题1:如图,已知DE=FG=HI,且相互平行;DF=EG,且相互平行;DH=EI,且相互平行。
计算机构自由度(若有复合铰链、局部自由度和虚约束,请指出)。
解:F=3n-2PL-PHn=8,Pl=11,PH=1F=1在D、E处存在复合铰链;滚子绕自身几何中心B的转动自由度为局部自由度;FG杆及其两端的转动副所引入的约束为虚约束。
计算如图所示的机构的自由度并判断该机构是否具有确定的相对运动。
F=3n-2P L-P H=3×2-2×2-1 =1由于该机构原动件数目与自由度数目相等,所以该机构具有确定的相对运动。
习题2:如图,已知AD∥BE∥CF,并且AD=BE=CF;LN=MN=NO,构件1、2为齿轮,且齿轮2与凸轮固连。
机械原理运动副的画法机械原理是研究机械运动和受力的学科,其中运动副作为机械装置的基本组成部分,是机械运动实现的基础。
在机械原理中,通过描述和分析运动副的特点和运动规律,可以揭示机械运动过程中的各种力和力矩变化情况,从而为机械设计和分析提供有效的方法和手段。
运动副是实现机械件相对运动的部件,可以分为平面运动副、空间运动副和虚拟运动副等多种类型。
不同类型的运动副具有不同的结构和工作原理,但它们都起到了实现运动的作用。
平面运动副是最常见的一种运动副,也是最简单的一种。
平面运动副的结构简单,通过连接节点或轴承等方式将两个连杆、齿轮等机构连接起来,实现相对平面运动。
平面运动副可以实现直线运动、回转运动和各种复杂的曲线运动。
对于平面运动副的画法,需要根据其结构和运动方式进行绘制。
首先要确定副的类型,例如直线副、回转副等。
然后,根据实际情况选择适当的比例和大小来绘制副的各个部分和连接方式。
在绘制过程中,要注意各个部件之间的几何关系,确保实际情况与绘制结果相符。
例如,对于直线副的画法,可以先确定副的位置和方向,然后绘制两个相互平行的轴线,表示两个相互连接的连杆或齿轮。
再根据实际情况选择适当的比例和大小,在两个轴线上标出两个节点或轴承的位置,表示连接部件。
最后,通过连接节点或轴承的方式将两个连杆或齿轮连接起来,表示副的运动方式。
空间运动副是指在三维空间中实现相对运动的副。
相比平面运动副,空间运动副的结构相对复杂,需要考虑三维几何关系和运动规律。
在绘制空间运动副时,需要确定副的类型和方向,并绘制相应的轴线和节点。
根据实际情况选择适当的比例和大小,绘制副的各个部件和连接方式。
在绘制过程中,要注意三维几何关系的表示,确保绘制结果与实际情况相符。
虚拟运动副是指在机械装置中表现出来的一种不直接参与计算和分析的运动副。
虚拟运动副通常在计算和分析过程中作为辅助副使用,用于简化和优化计算过程。
在绘制虚拟运动副时,一般可以简化表示,只需表示其位置和方向即可。
机械原理2-1 何谓构件?何谓运动副及运动副元素?如何分类の?(1)构件:机械中每个独⽴运动の单元体。
(2)运动副:由两构件直接接触⽽组成の可动连接。
运动副元素:两构件上能够参加接触⽽构成运动副の表⾯。
(3)分类⽅法:1、根据约束の数⽬分类为Ⅰ级副、Ⅱ级副、Ⅲ级副、Ⅳ级副、Ⅴ级副。
2、根据两构件の接触形式:分为低副、⾼副。
3、根据两构件の相对运动形式可分为:转动副、移动副、螺旋副、球⾯副等。
4、也可分为:平⾯运动副和空间运动副。
2-2 机构の运动简图有何⽤处?他能表⽰出原机构哪些⽅⾯の特征?答:1、机构运动简图可以表⽰机构の组成和运动传递情况,可进⾏运动分析,⽽且也可⽤来进⾏动⼒分析。
2、运动简图:可以正确の表达出机构の组成构件和构件间の连接运动副,即机构の组成形式。
2-3 机构具有确定运动の条件是什么?当机构の原动件数少于或多于机构の⾃由度时,机构の运动将发⽣什么情况?答:1、⾃由度与原动杆の数⽬相等。
2、当少时:机构の运动将不确定。
当多时:将导致机构中最薄弱の环节损坏。
3、少の我们称之为⽋驱机构:它遵循最⼩阻⼒定律,所以⼈们制造了很多⽋驱机构或装置,并增加机构の灵活性和⾃适性。
多の称之为冗驱机构:若各部分原动件の运动彼此协调,则各原动件将同⼼协⼒来驱动从动件,从⽽增⼤了传动の可靠性,减⼩尺⼨和重量,并利⽤克服机构处于某可异位形时受到の障碍。
2-6 在图2-20所⽰の机构中,在铰链C、B、D处,被连接の两构件上连接点の轨迹都是重合の,那么能说该机构有三个虚约束吗?为什么?答:不能,因为在铰链C、B、D中任何⼀处,被连接の两构件上连接点の轨迹重合是由于其他两处の作⽤,所以只能算⼀处。
2-8 为何要对平⾯⾼副机构进⾏“⾼副低代"?“⾼副低代”应满⾜の条件是什么?答:1、为使平⾯低副机构结构分析和运动分析の⽅法适⽤于所有平⾯机构,便于对含有⾼副の平⾯机构进⾏研究,要进⾏“⾼副低代”。
2、“⾼副低代”の条件:(1)代替前后机构の⾃由度不变。
图4-1内 容4-2 运动副中总反力的确定为什么要研究运动副中的摩擦力?组成运动副的两构件间一定有相对运动,各构件在运动副中就有相互作用力,所以运动副中存在摩擦力。
一般说来,运动副中的摩擦力是一种有害阻力,它可以降低机器的效率,使运动副元素受到磨损,削弱零件的强度,降低机器的运转精度等,因此对传动往往不利。
这是摩擦有害的一面。
因此,要设法减小摩擦。
在日常生活和工程中,摩擦有时却发挥着不可或缺的有益作用。
例如,带传动、机械的制动以及钢材的轧制等都是利用摩擦的典型例证。
因此为了限制和利用摩擦,都必须对运动副中的摩擦加以研究。
由于滚动摩擦一般远小于滑动摩擦,所以我们只研究滑动干摩擦,不研究流体摩擦。
一、 移动副中的摩擦重点讨论平面移动副和槽面移动副中的摩擦。
这也是研究螺旋副摩擦的基础。
1、 平面接触移动副中的摩擦如图4-2a 所示移动副。
已知滑块1所受铅垂载荷为G (包括重力),水平驱动力F 。
试分析构件2给1的总反力。
2给1的总反力21R F ,是平面2给滑块1的法向反力21N F 与摩擦力2121f N F fF fG ==的合力。
设总反力21R F 与21N F 之间的夹角为ϕ。
根据几何关系,有f arctan =ϕ式中,f ——摩擦系数;ϕ——摩擦角。
图4-2结论:移动副中的总反力21R F 与法向反力21N F 偏斜一摩擦角ϕ,偏斜方向与12v 的方向相反,即与摩擦力21f F 的方向相同。
也可以说,21R F 的方向与12v 的方向成(90ϕ︒+)角。
内 容【例4-1】 如图4-3所示,滑块1置于一倾斜角为α的斜面2上,G 为作用在滑块1上的铅垂载荷(包括滑块自重),求:(1)使滑块沿斜面等速上升(正行程)时水平向右的驱动力F (2)滑块沿斜面匀速下滑(反行程)时水平向右的工作阻力F '。
解:(1).正行程受力图4-3解:确定总反力21R F ,它与12V 成90ϕ︒+; 因等速上升,滑块1满足力平衡矢量方程21R F + G + F = 0大小 ? 已知 ?方向 如图 铅垂 水平画力多边形如图4-3a 右图所示,故得所需的水平驱动力()ϕα+=tan G F2. 反行程受力在G 的作用下,滑块1要加速下滑,此时G 为驱动力,水平向右的力F '为维持滑块匀速下滑所需的工作阻力。
机械基础知识常用题库100道及答案一、机械原理1. 机器中运动的单元是()。
A. 零件B. 构件C. 机构D. 部件答案:B。
解析:构件是机器中运动的单元。
2. 平面机构中,两构件通过面接触而构成的运动副称为()。
A. 低副B. 高副C. 移动副D. 转动副答案:A。
解析:两构件通过面接触而构成的运动副为低副。
3. 平面机构中,两构件通过点或线接触而构成的运动副称为()。
A. 低副B. 高副C. 移动副D. 转动副答案:B。
解析:两构件通过点或线接触而构成的运动副为高副。
4. 铰链四杆机构中,最短杆与最长杆长度之和小于或等于其余两杆长度之和时,若取最短杆为机架,则机构为()。
A. 双曲柄机构B. 曲柄摇杆机构C. 双摇杆机构D. 不确定答案:A。
解析:满足上述条件且取最短杆为机架时为双曲柄机构。
5. 凸轮机构中,凸轮与从动件的接触形式为()。
A. 高副B. 低副C. 移动副D. 转动副答案:A。
解析:凸轮机构中凸轮与从动件通过点或线接触,为高副。
二、机械设计6. 机械零件设计中,强度准则是指零件中的应力不得超过()。
A. 许用应力B. 极限应力C. 屈服应力D. 强度极限答案:A。
解析:强度准则要求零件中的应力不得超过许用应力。
7. 在带传动中,带所受的最大应力发生在()。
A. 紧边进入小带轮处B. 紧边离开小带轮处C. 松边进入大带轮处D. 松边离开大带轮处答案:A。
解析:带传动中最大应力发生在紧边进入小带轮处。
8. 链传动中,链节数最好取为()。
A. 偶数B. 奇数C. 质数D. 任意数答案:A。
解析:链节数取偶数可避免使用过渡链节,使链条受力均匀。
9. 齿轮传动中,标准直齿圆柱齿轮的压力角为()。
A. 15°B. 20°C. 25°D. 30°答案:B。
解析:标准直齿圆柱齿轮的压力角为20°。
10. 蜗杆传动中,蜗杆的头数一般为()。
A. 1、2、4B. 1、2、3C. 1、3、4D. 2、3、4答案:B。
[‘]名词解释1.运动副:使两构件直接接触并能产生一定的相对运动的连接称为运动副。
2.机械效率输出功与输入功的比值反映了输入功在机械中的有效利用程度,称为机械效率。
3.机构 :用构件间能够相对运动的连接方式组成的构件系统称为机构。
4.静平衡:当仅使刚性转子惯性力得到平衡时,称为静平衡。
5.驱动力:凡是驱动机构产生运动的力称为驱动力。
6.凸轮机构:凸轮机构是由具有曲线轮廓的构件,通过高副接触带动从动件实现预期运动规律的一种高副机构。
7.转子:机械中绕某一固定轴线回转的构件称为转子。
8.轮系:由一系列齿轮所组成的齿轮系统称为齿轮系,简称轮系。
9.虚约束:在机构中,如果某个约束与其他约束重复,而不起独立限制运动的作用,则该约束称为虚约束。
10.双曲柄机构:在铰链四杆机构中,两连架杆均为曲柄,称为双曲柄机构。
11.机械原理:它是一门以机器和机构为研究对象的学科。
12.双曲柄机构:在铰链四杆机构中,两连架杆均为曲柄,称为双曲柄机构。
13.动平衡:若不仅使刚性转子惯性力得到平衡,还使其惯性力引起的力矩也得到平衡,称为动平衡。
14.极位夹角:机构在两个极限位置时,原动件所夹的锐角θ称为极位夹角。
15.凸轮:是一个具有曲线轮廓的构件,当它运动时,通过其上的曲线轮廓与从动件的高副接触,使从动件获得预期的运动。
16.行程:推程中从动件的最大位移称为行程。
17.分度圆:为了便于齿轮各部分尺寸的计算,在齿轮上选择一个圆作为计算的基准,称该圆为齿轮的分度圆。
18.自由度:这种相对于参考系构件所具有的独立运动称为构件的自由度。
19.定轴轮系:这种所有齿轮几何轴线位置在运转过程中均固定不变的轮系,称为定轴轮系。
20.速度瞬心:是两构件上瞬时速度相同的重合点。
21.高副:两构件通过点或线接触组成的运动副称为高副。
22齿顶圆:过齿轮各齿顶所作的圆称为齿顶圆。
23.曲柄摇杆机构:在铰链四杆机构中,若两连架杆中有一个为曲柄,另一个为摇杆,则称为曲柄摇杆机构。
1.什么叫机械?什么叫机器?什么叫机构?它们三者之间的关系机械是机器和机构的总称机器是一种用来变换和传递能量、物料与信息的机构的组合。
机构是机器用来传递运动和力或改变运动形式的机械装置。
①它们是人为的实体的组合。
②各个运动实体之间具有确定的相对运动。
零件→构件→机构→机器(后两个简称机械)2. 什么叫零件? 什么叫构件?什么叫运动副?什么叫运动链?什么叫机构?零件:最小制造单元。
构件:机械中最小独立运动的单元体。
运动副:这种由两个构建直接接触而组成的可动联接称为运动副。
运动链:两个以上的构件通过运动副连接而构成的系统。
何谓开式运动链? 何谓闭式运动链? 运动链与机构有何区别?(p8)3.高副:凡两构件通过单一点或线接触而构成的运动副称为高副。
低副:通过面接触而构成的运动副统称为低副。
运动副约束最少为1,最多为5,根据约束数目也可分类为:Ⅰ级副,1个约束;Ⅱ级副,2个约束,依此类推。
常用运动副的模型及符号:p7表2-14. 空间自由运动有6个自由度,f=6-s;平面运动的构件有3个自由度。
5. 机构运动简图的绘制常用机构运动简图符号:p10表2-2一般构件的表示方法:p10表2-36. 机构具有确定运动的条件:为了使机构具有确定的运动,则机构的原动件数目必须等于机构的自由度数目。
当机构不满足这一条件时,如果机构的原动件数目小于机构的自由度,则将导致机构中最薄弱的环节损坏。
7. 由度计算:F=3n -(2pl+ph)n:活动构件数目pl:低副ph:高副8 在计算平面机构的自由度时,应注意那些事项?①要正确计算运动副的数目(1)复合铰链:两个以上的构件在同一处构成的转动副。
由m个构件组成的复合铰链,其运动副数目为m-1个。
(2) 一运动副:如果两构件在多处接触构成运动副,符合下列条件者,则为同一运动副,此时只能算作一个运动副。
1) 构成移动副,且移动方向彼此平行或重合者;2)若构成转动副,且转动轴线重合者;3)若构成平面高副,各接触点处的公法线重合者。
1.机械是机器和机构的总称2.机构是用来传递与变换运动和力的可动的装置3.机器是根据某种使用要求而设计的用来变换或传递能量、物料和信息的执行机械运动的装置4.构建与零件的区别:构件是运动单元体,零件是制造单元体5.由两个构建直接接触而组成的可动的链接称为运动副6.转动副(Ⅴ级副)移动副。
两构件之间的相对运动为转动的运动副7.两个以上的构件在同一处连接构成了负荷铰链8.在有些机构中,有些运动副带入的约束对机构的运动只起重复约束作用,特把这类约束称为虚约束9.在机构中,有些运动副带入的约束对机构的运动只起重复约束作用,特把这类约束称为虚约束10.机构的组成原理:任何机构都可以看作是由若干个基本杆组依次连接于原动件和机架上面组成的。
11.2-12 n=8 P l=10 Pℎ=2 F’=1 (在6处小滚子)F=3n-(2P l+Pℎ)- F’=3*8-(2*10+2)-1=112.移动副总反力的方向可如下确定①总反力与法向反力偏斜——摩擦角φ②总反力F R21与法向反力偏斜的方向与构件1相对于构件2的相对速度V12的方向相反13.转动副总反力的方向的确定在不考虑摩擦的情况下,根据力的平衡条件,确定不计摩擦时的总反力的方向计算摩擦时的总反力应与摩擦圆相切轴承2对轴颈1的总反力F R21对轴颈中心之距的方向与轴颈1相对于轴承2的相对角速度W12的方向相反14.平面高副其总反力F R21的方向的确定方法与移动副相同15.机械效率是指机械的输入功与输出功之比η= W rW d16.在移动副中,如果作用于滑块上的驱动力作用在其摩擦角内(β≤φ)则发生自锁17.转动副发生自锁的条件:作用在轴颈上的驱动力为单力,且作用于摩擦圆内,即а≤φ18.按理论力学中的力系平衡计算,只要求其惯性力平衡称为转子的静平衡,如果同时要求其惯性力和惯性力矩平衡,称为转子的动平衡。
∑F=0∑M=019.周期性速度波动调节是在机械中安装一个具有很大转动惯量的回转构件——飞轮20.非周期波动是指机械在运转过程中,等效力矩M e=M ed−M er变化是非周期的,机械运转的速度将出现非周期速度波动。
机械原理知识点整理机器:一种能变换或传递能量、物料和信息的机构的组合。
机构:用来传递和变换运动和力的可动装置。
机械:机器和机构的总称。
机械原理的研究对象:机械。
构件:机器中每一个独立的运动单元体。
运动副:由两构件直接接触而组成的可动的连接。
运动副元素:两构件能参加接触而构成运动副的表面。
高副:两构件通过单一点或者线接触而构成的运动副。
低副:两构件通过面接触而构成的运动副。
复合运动副:由三个或三个以上的构件在同一处构成运动副。
运动链:构件通过运动副的连接而构成可相对运动的系统。
闭式运动链(闭链):组成运动链的各构件构成了首末封闭的系统。
开式运动链(开链):组成运动链的各构件未构成首末封闭的系统。
* 平面运动链:组成运动链的各构件间相对运动为平面运动;* 空间运动链:组成运动链的各构件间相对运动为空间运动。
机构组成:在运动链中,将某一构件固定成为机架,则该运动链便成为了机构。
原动件(主动件):机构中按给定的已经运动规律独立运动的构件;从动件:除了原动件以外的其余活动构件。
机构运动简图:根据机构的运动尺寸,按照一定的比例尺定出个运动副的位置,就可以用运动副及常用机构运动简图的代表符号和一般构件的表示方法将机构的运动传递情况表示出来。
绘制步骤:①首先定出原动件和执行构件;循着运动传递的路线搞清楚原动件的运动是怎样经过传动部分传递到执行构件的②选择多数构件的运动平面视为视图平面。
③根据机构的运动尺寸,定出各运动副之间的相对位置,然后用运动副的代表符号、常用机构运动简图符号和构件的表示方法将各部分画出。
)机构示意图:只是为了表面机械的机构状况,不按严格的比例来绘制简图。
机构的自由度:机构具有确定运动时所必须给定的独立运动参数的数目。
(要是机构具有确定的运动,则机构的原动件数目应等于机构的自由度的数目)机构自由度》1*欠驱机构(欠驱机械系统):原动件数目少于机构自由度的机构或机械系统。
(遵循最小阻力定律,例如:机器人避障,欠驱机械手指,欠驱制动器,等。
机械原理复习题一.填空题:1两构件通过点、线接触而构成的运动副称为 高副 ;两构件通过面接触构成的运动副称为 低副 ..2在其它条件相同时;槽面摩擦大于平面摩擦;其原因是 正压力分布不均 ..3设螺纹的升角为λ;接触面的当量摩擦系数为 fv ;则螺旋副自锁的条件为 v arctgf ≤λ ..4 对心曲柄滑块机构以曲柄为原动件时;其最大传动角γ为 90度 ..5 曲柄滑块机构是改变曲柄摇杆机构中的 摇杆长度和形状 而形成的..在曲柄滑块机构中改变 曲柄 而形成偏心轮机构..在曲柄滑块机构中以 曲柄 作机架而得到回转导杆机构..6 用飞轮进行调速时;若其他条件不变;则要求的速度不均匀系数越小;飞轮的转动惯量越 大 ;在满足同样的速度不均匀系数条件下;为了减小飞轮的转动惯量;最好将飞轮安装在机械的 高速 轴上..7 内啮合斜齿圆柱齿轮传动的正确啮合条件是 模数和压力角应分别相等且螺旋角相同 ; 8一对斜齿圆柱齿轮传动的重合度由 端面重合度;轴向重合度 两部分组成;斜齿轮的当量齿轮是指 以法向压力角为压力角;以法向模数为模数作的 的直齿轮;9、3个彼此作平面平行运动的构件间共有 3 个速度瞬心;这几个瞬心必定位于 同一条直线上 上;10、含有6个构件的平面机构;其速度瞬心共有 15 个;其中有 5 个是绝对瞬心;有 10 个是相对瞬心;11周期性速度波动和非周期性速度波动的调节方法分别为 安装飞轮 和 使用电动机;使等效的驱动力矩和等效阻力矩彼此相互适应 ;12 在凸轮机构推杆的四种常用运动规律中 一次多项式 运动规律有刚性冲击; 二次多项式 运动规律有柔性冲击; 正弦 运动规律无冲击;13 凸轮的基圆半径是指 凸轮回转轴心 至 凸轮 最小半径..14在设计凸轮机构时;凸轮的基圆半径取得越 小 ;所设计的机构就越紧凑;但是压力角越 大 ;使机构的工作情况变坏..15在平面机构中;具有两个约束的运动副是 转动 副或 移动 副;具有一个约束的运动副是 平面高 副..16 一个采取负变位修正的直齿圆柱齿轮与同样基本参数的标准齿轮相比较;其 齿顶 圆及 齿根 圆变小了;而 基 圆及 分度 圆有大小则没有变..17 周转轮系中;若自由度为2;则称其为 差动轮系 ;若自由度为1;则称其为 行星轮系 .. 18 一对心曲柄滑块机构中;若改为以曲柄为机架;则将演化为 回转导杆 机构..19 在平面四杆机构中;能实现急回运动的机构有 曲柄摇杆机构 、 双曲柄机构 等.. 20 蜗轮蜗杆的正确啮合条件是 蜗杆的轴面模数和压力角分别等于涡轮的端面模数和压力角mx1=mt2;ax1=at2=a ..21 机构要能动;自由度必须 大于或等于1 ;机构具有确定运动的条件是 机构的原动件数目应等于机构的自由度的数目 ..22 相对瞬心与绝对瞬心的相同点是互作平面相对运动的两构件上瞬时速度相等的重合点 ;不同点是绝对瞬心的绝对速度为零 ;在有六个构件组成的机构中;有15个瞬心..23刚性回转构件的不平衡可以分为两种类型;一种是静平衡 ;其质量分布特点是在同一平面内;另一种是动平衡 ;其质量分布特点是在不同平面内 ..24在曲柄摇杆机构中;当连杆与从动曲柄两次共线位置时出现最小传动角.. 25 移动副的自锁条件是驱动力作用在其摩擦范围之内 ;转动副的自锁条件是作用在轴颈上的驱动力单为F;且作用于摩擦园之内 ;从效率的观点来看;机构的自锁条件是驱动力做的功小于或等于由其引起摩擦力所做的功 ..26 根据机构的组成原理;任何机构都可以看作是由机架、原动件和从动件组成的..27 刚性转子的静平衡就是要使离心惯性力之和为零..而刚性转子的动平衡则要使惯性力之和为零以及惯性力所构成的力矩之和为零..28 渐开线齿轮的齿廓形状取决于基圆半径的大小;其值越大齿廓形状越接近直线 ..29采用范成法切制渐开线齿廓时发生根切的原因是刀具的顶部会过多的切入轮齿根部;因而将齿根的渐开线切去一部分 ..30渐开线齿轮在不同圆周上的压力角也不相同;在齿顶圆上压力角最大;在齿根圆上压力角为00;在分度圆上压力角取标准值..31.图1三种四杆机构分别是:1 曲柄摇杆机构、2 双曲柄机构、3双摇杆机构32斜齿轮的当量齿数Z V = Zv=z/cos3B;圆锥齿轮的当量齿数Z V = Zv=z/cosa..33有一标准渐开线直齿内齿轮;Z=60;m=5mm;h a*=1;c*=0.25;α=20°;该齿轮的齿顶圆半径r a= 155mm ; 齿根圆半径r f= 142.5mm .二、简答题:1 何为机构运动简图机构运动简图与实际机构有哪些相同之处有哪些不同之处答:根据机构的运动尺寸;按一定的比例尺其相对位置的尺寸;并且定出各运动副的类型;采用运动副及常用机构运动简图符号和构件的表示方法;将机构运动传递情况表示出来的简化图形称为机构运动简图..相同之处:各构件的数目;连接方式;运动规律不同之处:构件的尺寸;形状2 铰链四杆机构在死点位置时;驱动力任意增加也不能使机构产生运动;这与机构的自锁现象是否相同试加以说明..答:不同..死点位置驱动力在驱动方向的分力为0;自锁是驱动力克服不了摩擦阻力所做的功..3 何谓摩擦圆为何要引进摩擦圆的概念摩擦圆的大小与哪些因素有关答:在转动副中;以轴颈中心为圆心;以 =f v*r为半径所作的圆称为摩擦圆..因轴承对轴始终切于摩擦圆;引入摩擦圆有利于判定总反力的方位..与轴承半径以及当径的总反力FR量摩擦系数有关..4 对齿轮进行变位修正的目的是什么答:由于标准齿轮可能会产生根切;可能无法安装;可能产生过大的尺侧间隙;影响传动的平稳性;重合度降低;一对相互啮合的标准齿轮中;由于小齿轮齿廓渐开线的曲率半径较小;齿根厚度也较薄;参与啮合的次数又较多;强度较低;影响到整个齿轮传动的承载能力..为了改善上述不足;故采用变位修正的方法进行修正..5 简述渐开线的主要特性;并写出参数方程..答:1发生线上BK线段长度等于基圆上被滚过的弧长AB;即BK=AB 2发生线BK即为渐开线在K点的法线;又因发生线恒切于基圆;故知渐开线上任意点的法线恒与其基圆相切3发生线与基圆的切点B也是渐开线在K点处的曲率中心;线段BK就是渐开线在K 点处的曲率半径..4渐开线的形状取决于基圆的大小5基圆以内无渐开线渐开线极坐标方程:6 一对标准齿轮传动的实际中心距ɑ′大于标准中心距ɑ时;其传动比有无变化它们还能正确啮合吗其重合度εα有无改变答:无变化;能;减小7平面铰链四杆机构存在曲柄的条件是什么答:杆长条件:最长杆与最短杆的长度之和应小于其它两杆长度之和最短杆不为连杆.. 8在对机构进行速度分析时;速度瞬心法一般适用于什么场合能否利用速度瞬心法对机构进行加速度分析答:构件比较简单的场合;且各构件间的速度瞬心容易确定;且直观;不能对机构进行加速度分析..9 四杆机构中压力角与传动角有什么关系它们对传动性能有何影响答:压力角与传动角互余压力角越大;传动越不利;传动角越大;传动越有利11在曲柄滑块机构中;当以曲柄为原动件时;是否有死点位置为什么答:没有因为在曲柄滑杆机构的最小传动角始终大于012 简述渐开线标准斜齿圆柱齿轮当量齿数Zv 的用途..答:可求得渐开线标斜齿圆柱齿轮不发生根切的最少齿数;并根据换算的结果选择加工的标准齿轮刀具13何谓机构的自锁举出两种工程中利用机械自锁完成工作要求的实例..答:在某些机械中;由于摩擦的存在;出现无论驱动力如何增大都无法使机械沿着有效驱动力作用的方向运动的现象;称为机械的自锁千斤顶;斜面压榨机;偏心夹具;炮膛14铰链四杆机构在死点位置时;驱动力任意增大也不能使机构产生运动;这与机构的自锁现象是否相同试加以说明..答:同2;两题目一样15 设计直动推杆盘形凸轮机构时;在推杆运动规律不变的条件下;需减小推程压力角;可采用哪些措施答:减小导轨长度;增大悬臂尺寸16推杆常用的运动规律有那几种其中存在柔性冲击的有哪几种答:等速度运动规律;等加速等减速运动规律、余弦加速度运动规律;正弦加速度运动规律..等加速等减速运动规律、余弦加速度运动规律17 机构具有确定运动的条件是什么 当机构的原动件数少于或多于机构的自由度时;机构的运动将发生什么情况答:原动件的数目和机构自由度的数目相等少于:运动不完全确定多于:导致机构中最薄弱的环节的损坏18渐开线齿轮的基本参数有哪几个 其中哪些是有标准的 为什么说这些参数是齿轮的基本参数答:齿数z;模数m;压力角α;齿顶高系数ha *;顶隙系数c *压力角、齿顶高系数和顶隙系数是标准的因为这些参数能够决定了齿轮的大小及齿轮齿廓的形状19何谓机构的急回运动和行程速比系数 其在机械设计中有何实际意义 举出三个实例.. 答:在机构的运行过程中;机构处于两个极位时;原动件之间的夹角的存在;导致摇杆出现正反行程平均速度不一致的现象称为机构的急回运动反行程与正行程平均速度的比值为行程速比系数节省空回时间;提高机械效率20 简述机械中不平衡惯性力的危害..答:机械在运转时;构件所产生的不平衡惯性力将在运动副中引起附加的动压力..这不仅会增大运动副中的摩擦和构件中的内应力;降低机械效率和使用寿命;而且由于这些惯性力一般都是周期性变化的;所以必将引起机械及其基础产生强迫震动..21何谓机器的“运转速度不均匀系数“ 机械的周期性速度波动调节的实质和方法是什么 σ是否选得越小越好答:角速度的幅度max min ωω-与平均角速度m ω之比称为机械的运转速度不均匀系数 实质:能量的储存与释放方法:安装飞轮不是 可能导致F J 太大..另还必须考虑安装飞轮轴的刚性和结构上的可能性等因素 22 简述渐开线齿廓的啮合特点..答:1能保证定传动比传动且具有可分性2渐开线齿廓之间的正压力方向不变23 斜齿轮的螺旋角β对传动有什么影响 常用范围是多少 为什么要作此限制答:会产生轴向推力;8`-20`;为了控制轴向推力..24何谓当量摩擦系数及当量摩擦角 引入它们的目的是什么 如何确定移动副中总反力的方向答:为了简化计算;统一计算公式;不论运动副元素的几何形状如何;均将其摩擦力的计算式表示为21f v F f G =;其中v f 称为当量摩擦系数 在此情况下总反力与法向反力之间的夹角即称为当量摩擦角目的:不必考虑运动副元素的几何形状;简化计算 总反力略25 什么叫做周转轮系答:传动时;轮系中至少有一个齿轮的几何轴线位置不固定;而是绕另一个齿轮的固定轴线回转;这种轮系被称为周转轮系..26 什么叫齿轮传动的重合度 其意义何在答:在一对轮齿的啮合传动过程中;实际啮合线段12B B 与法向齿距b p 的比值αε称为齿轮传动的重合度重合度的大小表示同时参与啮合的齿轮对数的平均值..重合度大;以为着同时参与啮合的齿轮对数多;对提高齿轮传动的平稳性和承载能力都有重要意义27在曲柄滑块机构中;当以曲柄为原动件时;是否有死点位置 为什么答:没有死点..因为其传动角不等于0度;压力角不等于90度..28何谓总反力 在移动副和转动副中总反力的方向及其作用线的位置是如何确定的 答:把运动副中法向反力和摩擦力的合力称为运动副中的总反力移动副:总反力12R F 与构件1相对构件2的速度方向偏离2πψ+转动副:总反力与其它外力的大小相等;方向相反;且切于摩擦圆;对轴心之矩与轴颈相对轴承的相对转动方向相反29在考虑摩擦的情况下;如何确定转动副中总反力的方向三、 计算题1 计算如图所示机构的自由度;若存在复合铰链、局部自由度和虚约束;请指出其位置..画箭头的构件为原动件..图中DE 平行且等于FG..解:I 滚子处有局部自由度;E 处为复合铰链;N 或O 为虚约束;构件FG 为虚约束构件..去掉局部自由度和虚约束后;得2如图所示为齿轮——连杆机构;试分析:1) 该机构自由度为多少 要计算过程2) 试用瞬心法求齿轮1与3的传动比ω1/ω3解:1 n=5;P l =6;P h =2. 3分F=3n-2P l + P h =1 4分2 如图所示;先求的构件1和构件3的相对瞬心P13; V P13=ω1P 13A=ω2 P 13Dω1/ω3= P 13D/ P 13A3 计算如图所示机构的自由度;并指出复合铰链、局部自由度和虚约束..解:B 滚子处有局部自由度;E 处为复合铰链;K 为虚约束..F=9*3-2*12+1-1=14 计算如图所示机构的自由度;若有复合铰链、局部自由度和虚约束应指出..解:F=3n-2Pl+Ph=3×8-2×11+1=1或F=3n-2Pl+Ph-P ′-F ′=3×12-2×17+1-1-1=1其中:B 、D 处为复合铰链;AB 、BE 、BD 杆为虚约束;滚子处为局部自由度..5 计算如图所示机构的自由度;并指出复合铰链、局部自由度和虚约束;如果以凸轮为原动件;该机构是否具有确定的运动 为什么12分解:F 滚子处有局部自由度;C 处为复合铰链;无虚约束..F=8*3-2*10+1-1=2自由运动构件数目小于机构自由度;运动不完全确定6 某机械在稳定运转的一个周期中;作用在等效构件上的等效阻力矩M r 的变化规律如图所示;等效驱动力矩为常数;平均角速度ωm =20rad/s;要求运转速度不均匀系数δ=0.05;试求:20分(1) 等效驱动力矩M d ;(2) 最大盈亏功Δw max ;(3) 应在等效构件上安装的飞轮转动惯量J F ..解:1因为Wd =Wr; π2•=d d M wπππϕπ404021402120=•+•==⎰d M W r d 所以M d = 20N.m 2π5max =∆W32.785.0m kg J F ≥7 如图所示为某一机械在一个运动循环中的等效驱动力矩M ed 和等效阻抗力矩M er 的变化曲线..设两曲线包围的各小块面积所代表的盈亏功分别为S 1=1400J;S 2=-2000J;S 3=1200J;S 1=-1500J;S 5=1000J;S 6=-100J..试做出能量指示图并确定其最大盈亏功.. 解:先画出能量指示图;最大盈亏功就是最高点到最低点之间盈亏功代数和的绝对值.. 8如图所示轮系中;已知各轮齿数为Z 1=Z 2′=25;Z 2=Z 3=20;Z H =100;Z 4=20..试求传动比i 14解:231113312H H H H H z z n n n n i n n n z z '--==-=-- 9如图2所示已知齿轮1的转速n 1=200r/min;而Z 1=40;Z 2=20;Z 3=80..求1 H i 13;2 n H 的大小及方向..解:120066.673H n =≈2331113312120H H H H H z z z n n n n i n n n z z z --===-=-=--- 2由 120H H n n n -=-- 得:20066.673H n =≈ r/min 方向与n 1的转向相同.. 10如图所示轮系中;已知各轮齿数为Z 1=Z 2=Z 3′=Z 4=20;Z 3=Z 5=60..1) 分析该轮系为何种轮系 4分2试求传动比i 15并指明其转向..8分解:1该轮系为定轴轮系.. 292020606031534321543215=⨯⨯===''z z z z z z z z z z z z i 两轮转向相同11如图所示轮系中;已知各轮齿数为Z 1=Z 1′=40;Z 2=Z 4=30;Z 3=Z 5=100;试求传动比i 1H 12分解:*1行星架H;太阳轮1’-1;行星轮4;2行星架5;太阳轮3;1’-1;行星轮2iH15=w1-wH/w5-wH=zz5/z1’=-5/2;I513=w1-w5/0-w5=-z3/z1=-5/2;得到 12/7w1=7/2wHI1H=w1/wH=49/24四、分析题作图题1 如图3所示铰链四杆机构中;各杆的长度为杆1为28mm;杆2为52mm;杆3为50mm;杆4为73mm;当取杆4为机架时;求机构的极为夹角θ;杆3的最大摆角Φmax;机构的最小传动角γmin 结果可以作图量取..14分 解:1) 以A 点为圆心;AB 长为半径作圆;2) 以D 点为圆心;DC 长为半径画弧CC ;3) 以A 点为圆心AB+BC 长为半径画弧交CC 弧于C1点;再以A 为圆心BC-AB 长为半径画弧交CC 弧于C2点;则AC1与AC2的夹角θ即为极位夹角;4) DC1与DC2的夹角Φmax 即为最大摆角;5) 最小传动角为AB 与AD 两次共线时BC 与CD 的夹角取其较小值见教材P1192 图示铰链四杆机构中;已知l BC =50mm ; l DC =35mm ; l AD =30mm ;试问:⑴ 若此机构为曲柄摇杆机构;且AB 杆为曲柄;l AB 的最大值为多少 5分 ⑵ 若此机构为双曲柄机构;l AB 的最大值为多少 5分⑶ 若此机构为双摇杆机构;l AB 应为多少 5分解1若为曲柄摇杆机构;且AB 杆为曲柄;则AB 为最短杆;则符合杆长条件LAB+LBC<=LCD+LAD LAB<=15;故最小值是15mm..2若此机构为双曲柄机构;AD 为最短杆;AB>AD=30mm;若AB 为最长杆;LAB+LCD ≤LBC+LCD LAB ≤55mm;若BC 为最长杆;LBC+LAD ≤LAB+LCD 50mm ≥LAB ≥55mm;故最大值是55mm.. 3若此机构为双摇杆机构;若BC 为最短杆;不成立;若不满足杆长条件;AB 为最短杆;LAB+LBC >LCD+LAD 30mm >LAB >15mm; 若为最短杆;LAB+LAD >LBC+LCD; 50mm <lAB若不为最短杆也不为最长杆;Lbc+lAD >Lcd+LAB 30mm <LAB<45mm 3 用图解法设计摆动导杆机构;已知行程速比系数K=1.5;曲柄长mm L AB 100 ..求机架长AC L ..解:作图步骤:由θ=180°K-1/K+1 求得θ=36°选择合适比例尺μl在任意位置选择一点;以此点为圆心;以100/μl 为半径作圆;并从该圆圆心作一铅垂线;以该铅垂线为角平分线;以圆心为角顶点作一夹角为144°;该夹角与圆相交于两点;分别以两点作夹角边垂线交角平分线于一点;该点与圆心的距离即为机架长.. 4如图所示;已知四杆机构各构件的长度a=250mm;b=600mm;c=400mm;d=500mm;试分析:1) 当取杆4为机架时;是否有曲柄存在 若有曲柄;问哪个杆为曲柄 此时该机构为什么机构5分2) 要想获得双曲柄机构;应取哪个杆为机架 5分3) 若将杆4 的长度改为d=400mm;而其它各杆的长度不变;则当分别以1、2、3杆为机架时;所获得的机构为什么机构 5分解:1因a+b=250+600≤c+d=400+500且最短杆1为连架杆;故当取杆4为机架时;有曲柄存在..此时该机构为曲柄摇杆机构..2要使此机构成为双曲柄机构;则应取最短杆1为机架3如果将杆4的长度改为400;其他杆长不变;则当分别以1;2;3杆为机架时;因不满足杆长条件;故所获机构均为双摇杆机构..5在图示铰链四杆机构中;已知各杆长分别为:L AB =30mm ; L BC =110mm ; L CD =80mm;L AD =120mm .构件1为原动件..试分析:(1) 判断构件1能否成为曲柄;为什么 4分(2) 用作图法求出构件3 的最大摆角φmax ;5分(3) 用作图法求出最小传动角γmin ;5分(4) 当分别固定构件1、2、3、4时;各获得何种机构 4分解:1 构件1能成为曲柄;因为AB 杆最短且为连架杆;并且;L AB + L AD < L BC + L CD ;满足杆长条件..3分2;3答案如图所示..10分4固定构件1为双曲柄机构;1分固定构件2为曲柄摇杆机构机构;1分固定构件3为双摇杆机构;1分固定构件4为曲柄摇杆机构..1分6试设计如图所示的铰链四杆机构ABCD ;已知AB l 和AD l 由图中直接量取的值;要求满足AB 1、AB 2与DE 1、DE 2两组对应位置;并要求满足摇杆CD 在第二位置为极限位置..试用作图法设计该四杆机构..12分7一对心直动尖顶推杆偏心圆凸轮机构;O 为凸轮几何中心;O 1为凸轮转动中心;O 1O=0.5OA;圆盘半径R=60mm..15分1) 根据图a 及上述条件确定基圆半径r 0、行程h;C 点压力角αc 和D 点接触时的位移S D及压力角αD .2) 若偏心圆凸轮几何尺寸不变;仅将推杆由尖顶改为滚子;见图b;滚子半径r T =15mm..试问上述参数r 0、h 、αc 和S D 、αD 有否改变 如认为没有改变需说明理由;可不必计算数值;如有改变也需说明理由;并计算其数值..解:1. 1mm A O r 3010==2mm A O C O h 6011=-=3︒=0c α 4mm A O OD O O h D 08.371221=-+= 5︒==57.26)(1ODO O arctg D α 2. 1mm r A O r r 4010=+=2mm A O C O h 6011=-=不变3︒=0c α不变 4mm r r R O O h r D 16.36)(0221=-++= 5︒==20.23)(1ODO O arctg D α 7在如图示的对心直动尖顶推杆偏心圆凸轮机构中;O 为凸轮几何中心;O 1为凸轮转动中心;O 1O=0.50A;圆盘半径R=60mm;求:1确定基圆和基圆半径r 0;5分2确定推程和C 点的压力角αc ;5分3确定当推杆与凸轮D 点接触时的位移S D 和压力角αD 5分8 如图所示;一偏置直动尖顶推杆盘形凸轮机构..已知凸轮为一偏心圆盘;圆盘半径R=30mm;几何中心为A;回转中心为O;从动件偏距OD=e=10mm;OA=10mm..凸轮以等角速度ω逆时针方向转动..当凸轮在图示位置;即AD ⊥CD 时;试求:1凸轮的基圆半径r 0;6分2图示位置的凸轮机构压力角α;6分3图示位置的从动件的位移S..6分解;1r 0=20mm 2︒==-==81.41,89.020302022ααBD AD tg 3分)6(04.5202022mm OD OB AD R s =---=。
第二章4.在平面机构中,具有两个约束的运动副是移动副或转动副;具有一个约束的运动副是高副。
5.组成机构的要素是构件和转动副;构件是机构中的_运动_单元体。
6.在平面机构中,一个运动副引入的约束数的变化范围是1-2。
7.机构具有确定运动的条件是_(机构的原动件数目等于机构的自由度)。
8.零件与构件的区别在于构件是运动的单元体,而零件是制造的单元体。
9.由M个构件组成的复合铰链应包括 m-1个转动副。
10.机构中的运动副是指两构件直接接触所组成的可动联接。
1.三个彼此作平面平行运动的构件共有3个速度瞬心,这几个瞬心必定位于同一直线上。
2.含有六个构件的平面机构,其速度瞬心共有15个,其中有5个是绝对瞬心,有10个是相对瞬心。
3.相对瞬心和绝对瞬心的相同点是两构件相对速度为零的点,即绝对速度相等的点,不同点是绝对瞬心点两构件的绝对速度为零,相对瞬心点两构件的绝对速度不为零。
4.在由N个构件所组成的机构中,有(N-1)(N/2-1)个相对瞬心,有N-1个绝对瞬心。
5.速度影像的相似原理只能应用于同一构件上_的各点,而不能应用于机构的不同构件上的各点。
6.当两构件组成转动副时,其瞬心在转动副中心处;组成移动副时,其瞬心在移动方向的垂直无穷远处处;组成纯滚动的高副时,其瞬心在高副接触点处。
7.一个运动矢量方程只能求解____2____个未知量。
8.平面四杆机构的瞬心总数为_6__。
9.当两构件不直接组成运动副时,瞬心位置用三心定理确定。
10.当两构件的相对运动为移动,牵连运动为转动动时,两构件的重合点之间将有哥氏加速度。
哥氏加速度的大小为 a*kc2c3,方向与将vc2c3沿ω2转90度的方向一致。
1.从受力观点分析,移动副的自锁条件是驱动力位于摩擦锥之内,转动副的自锁条件是驱动力位于摩擦圆之内。
2.从效率的观点来看,机械的自锁条件是η<0。
3.三角形螺纹的摩擦力矩在同样条件下大于矩形螺纹的摩擦力矩,因此它多用于联接。