第九章→机组的机电特性
- 格式:ppt
- 大小:1006.50 KB
- 文档页数:37
第九章 电力系统静态稳定性分析主要内容提示:电力系统的稳定性,是指当电力系统在正常运行状态下突然受到某种干扰后,能否经过一定的时间后又恢复到原来的运行状态或者过渡到一个新的稳定运行状态的能力。
如果能够,则认为系统在该运行状态下是稳定的。
反之,若系统不能回到原来的运行状态,也不能建立一个新的稳定运行状态,则说明系统的状态变量没有一个稳定值,而是随着时间不断增大或振荡,系统是不稳定的。
电力系统的稳定性,按系统遭受到大小干扰的不同,可分为静态稳定性和暂态稳定性。
电力系统的静态稳定性即是在小干扰下的稳定性,电力系统的暂态稳定性是在大干扰下的稳定性。
本章主要讨论:各类旋转元件的机电特性,简单电力系统的静态稳定性及提高电力系统静态稳定的措施。
重点是系统静态稳定的实用判据和小干扰法的应用。
§9—1 各类旋转元件的机电特性本节讨论两个基本问题:同步发电机组转子运动方程及功—角特性()δP ;异步电动机组转子运动方程及电磁转矩与转差的关系()s M 。
一、发电机的转子运动方程在发电机转轴上有两个转矩作用(略摩擦转矩),一个是原动机作用的机械转矩T M ,与之对应的功率T P 为机械功率;另一个是发电机作用的电磁转矩E M ,与之对应的功率E P 为电磁功率。
发电机转轴上的净加速转矩:αJ M M M E T =-=∆ 其中 J 为转子的转动惯量,α为机械角加速度。
当N ωω=时,1=*ω,则**∆=∆P M发电机的转子运动方程:****-=∆=⋅=∆E T N JP P P dt d T M 22δω(*符号可省略) 写成状态方程:()⎪⎪⎩⎪⎪⎨⎧-==-=E T J N N P P T dt d dt d dt d ωωδωωδ22惯性时间常数:2222222100074.246024N BB N B N B N J n S GD S GD n S GD S J T =⎪⎭⎫ ⎝⎛=⋅==πΩΩ(s) J T 的物理意义:当机组输出电磁转矩0=*E M 、输入的机械转矩1=*T M 时,机组从静止升速到额定转速所需的时间。