当前位置:文档之家› 电动汽车用电机控制策略分析

电动汽车用电机控制策略分析

电动汽车用电机控制策略分析
电动汽车用电机控制策略分析

电动汽车用电机控制策略分析摘要

第一章绪论

1.1引言

1.2电动汽车的定义及优势

1.2.1电动汽车的定义

1.2.2电动汽车的优势

1.3电动汽车的基本结构

1.4本论文选题的意义及主要内容

1.4.1选题的意义

1.4.2本文的主要内容

第二章电动汽车电机驱动系统介绍

2.1电动汽车驱动电机分类

2.2电机驱动系统系统构成与布置方式

2.3电动汽车中电动机类型及其驱动系统

2.4电动汽车电机驱动控制的发展现状和趋势

第三章交流感应电动机及其控制策略

第四章无刷直流电动机及其控制策略

第五章永磁同步电动机及其控制策略

5.1永磁同步电机的结构和特点

5.2永磁同步电机矢量控制理论

5.2.1电动机的转矩控制

5.2.2 PMSM坐标变换

5.2.3 PMSM数学模型

5.2.4电流极限圆和电压极限圆

5.3永磁同步电动机恒转矩控制

5.3.1id =0控制

5.3.2最大转矩/电流比控制

5.3.3恒磁链控制

5.3.4 cosφ=1控制

5.4永磁同步电动机弱磁控制

第六章全文总结与展望

摘要

第一章绪论

1.1引言

在未来的一段时间内,我国将成为世界最大的汽车消费国,2010年我国汽车增加到五千六百万辆以上,不过空气污染源也会大幅度提高,空气污染将有64%来自于汽车尾气的排放,在2020年左右,我国石油消费量将超过4.5亿吨,而我国能源系统效率平均低于国际先进水平10%,但是我国60%石油消费量依赖于进口,要是仍然采用传统的内燃机技术发展汽车工业将会使我国为此付出巨大代价和对环境保护也会造成巨大的压力。在这种严峻的形势下,我国汽车工业的未来发展需要我们好好思考。

根据现在世界人口和汽车的增长趋势来看,今后50年中,世界人口和汽车数量分别从60亿增加到100亿和7千万增加到2亿5千万辆以上。若这些车辆都采用内燃机,能源需求和空气污染将会给人类造成巨大的压力和损坏。因此我们必须开发节能环保型以及高效智能型的交通车辆,只有这样才能在本世纪实现交通的可持续发展。能源危机曾经对世界经济带来严重影响,因此石油毕源的争夺更加强烈,石油纠纷在国际上也不断发生,甚至为了争夺石油资源而爆发的战争在近几年也不断发生。因此石油资源的解决是当今世界每个国家所面临的首要考虑的问题,石油资源解决的好坏是当今世界是否稳定的重要因素。

电动汽车是将机算机、电子与化学各学科领域中的高新技术于一体,是汽车、计算机、电力拖动、新材料、新能源、功率电子、自动控制、化学电源等工程技术中最新成果的集成产物。混合动力电动汽车、燃料电池汽车和纯电动汽车对世界汽车的发展以及环境的保护都起到一个前所未有的阶段,具有里程碑的意义。

1.2电动汽车的定义及优势

我国政府已将电动汽车的快速发展列入我国“十五”国家863计划,加大了对电动汽车开发和产业化的投入,与世界发达国家电动汽车发展接轨,目前已经取得了一定得成就。我国不少高等院校、相关的研究以及国内部分企业都加强了对电动汽车研究开发的力度,加快了汽车事业的发展速度。目前我国纯电动汽车研发比较顺利,可以小批量生产与应用;与此同时混合动力汽车的发展目前它的产业化也可以说具备条件;值得炫耀的是我国的燃料电池汽车研发目前达到国际先进水平。因此我国建立电动汽车产业,逐步实施车用能源动为系统转型,实现节能环保目标奠定了技术基础。

1.2.1电动汽车的定义

电动汽车是指以车载电源为动力,用全部或部分由电机驱动,并配置大容量电能储存装置,符合道路交通、安全法规各项要求的车辆

1.2.2电动汽车的优势

现如今各国都在发展电动汽车事业,是由于它具有以下几个方面的优点:

(l)污染小。电动汽车在本质上是一种零排放汽车,一般无直接排放污染物,大多是间接污染,如电池废弃物和发电的时候所消耗的能源而造成的污染都属于间接污染。然而国家目前也在大力改进间接污染,再加上电池废弃物的回收技术逐渐成熟。其次水力、原子能发电等均十分清洁,只是火力发电污染比较严重,但相对于燃油汽车而言,它的控制难度就比较容易了,这样电动车就可以实现人们想要的“清洁车辆”。根据国内外相关资料调查显示,电动汽车的噪音比燃油车辆要低5dB以上。而目前世界各大城市的噪音污染比较严重,因此要想大幅度降低噪音污染,在世界范围内电动汽车的广泛使用是必不可少的。

(2)节约能源,改善能源消耗结构。据测算,将原油提炼成柴油和汽油,要是用它们作为燃油汽车驱动能源时,它们平均只有大约14%的能量利用效率。我国石油储量仅占世界石油储量的2%一3%左右,因此我国以石油为主的能源消耗,只能通过进口才能满足国内的能源需求因此电动汽车的广泛使用,对减少石油资源消耗具有举足轻重的影响。

(3)优越的车辆性能。电动汽车的转矩响应迅速、加速快,比燃油汽车高出2个数量级;电机可分散配置,可直接控制车轮转速,易实现四轮独立驱动和四轮转向。

(4) 提高道路利用率和交通安全性。由于信息技术和控制技术的广泛应用,电动汽车的安全性和可靠性大幅提高。电动车比传统的燃料汽车更易实现精确的控制,智能交通系统则有可能率先通过电动车来实现,从而提高道路利用率和交通安全性。

(5)改善电网负荷。世界各国供电系统都存在负荷平衡问题。也就是说白天是用电高峰,夜间人们相对于白天而言用电量要少得多,因此我们利用夜间对电动汽车充电,这样不但有利于电动汽车的能量补充也能使电网负荷得到平衡,这样对降低维护电网的成本也起着至关重要的作用。

(6)树立节能环保的国家形象。随着我国对外开放,我国经济发展迅速,在世界上的地位逐年不断提高,与世界各国的交往更加密切,而电动汽车的发展和广泛使用对树立中国在国际上的良好形象有着重要意义。

1.3 电动汽车的基本结构

如图2.1所示,主要由电力驱动子系统、主能源子系统和辅助控制子系统等组成。

各个子系统的组成如图2.1所示,加速和制动踏板作为信号的输入端,主控制器在接受到信号后,发出相应的控制指令来控制PWM功率转换器,通过功率转换器的状态来控制电动机的制动或者加速。能源子系统为电机正常运行提供能源。辅助子系统主要给电机提供动力转向以及车内温度的控制等作用。

电力驱动子系统是整个系统运行的智能核心,它由电控单元、功率转换器、电动机组成。电控单元

的作用是接收加速踏板输入的信号,以及电机反馈的速度信号和电流信号,发出相应的控制指令来控制功率转换器的功率装置的通断,以获得电动汽车良好的动、静态运行特性和能量利用率。因此,驱动系统在很大程度上决定了整车的运行性能和效率。

主能源子系统由主电源和能量管理系统构成,能源管理系统是实现能源利用监控、能量再生、协调控制等功能的关键部件。

辅助控制子系统主要是为电动汽车提供控制电源,具有辅助电源的控制、动力转向、充电控制、空气调节等功能。

1.4本论文选题的意义及主要内容

1.4.1选题的意义

目前研制和开发的关键技术主要有电池、电动机、电动机控制、整车设计,以及能量管理技术等。然而,制约电动汽车发展的瓶颈是电池和电机驱动控制系统。电机驱动控制系统是提高汽车动力性、续驶里程和可靠性的保证。其输出特性决定了电动汽车的动力特性,同时,它的效率对电动汽车效率的影响也非常大。目前,在电池技术未取得突破的背景下,电机驱动控制策略的选择成为电动汽车技术研究的主要热点,也是提高续驶里程并使之实用化的关键,目的是提高电动汽车的驱动性能、续驶里程以及行驶方便性、可靠性等。电机驱动子系统的研究以驱动电机的研究为中心,辅以各种新型控制技术而展开。

1.4.2本文的主要内容

本文对电动汽车概念,结构,驱动电机的分类及电动汽车电机控制的发展现状和趋势做了简要介绍,并针对目前最为流行的异步电机,永磁无刷直流电机,永磁同步电机的驱动控制策略的分析

第二章电动汽车驱动系统介绍

电机驱动子系统由电控系统、电机、机械传动系统和驱动车轮等部分组成。它将蓄电池输出的电能转化为车轮上的动能,驱动电动汽车行驶,是电动汽车的关键组成部分,可以说它是电动汽车的心脏。

2.1电动汽车电机驱动系统的要求

电动汽车与其它的电力驱动系统相比较,有其自身的特点。它对驱动系统相应有其特殊的要求:

1)能够频繁地启动、停车,加、减速,对转矩控制的动态性能要求高

2)电动汽车驱动的速度、转矩变化范围大,既要工作在恒转矩区,又要运行在恒功率区,同时还要求保持较高的运行效率;

3)能在恶劣工作环境下可靠地工作。

正因为电动汽车对其驱动系统有这些特殊要求,所以在电动汽车电机驱动系统设计中,驱动电机的选择及其变流器、控制器的设计,都必须考虑到这些特殊的要求。

在确定了电动车的目标性能后, 对与之相匹配的电机驱动系统的性能可提出如下要求:

①电机的转矩、速度特性能满足电动车对驱动性能的要求。

②能实现对输出功率和转矩的迅速、平滑的控制。

③系统整体效率高, 功率密度大。

④能够在恶劣的工作环境下可靠地工作。

⑤成本低, 易维修。

2.2电机驱动系统系统构成与布置方式

电动汽车电机驱动子系统又可分为电气和机械两大系统。其中电气系统包括电动机、功率变换器和电子控制器三个子系统;机械系统的组成主要包括变速装置和车轮。

电机驱动系统的电气与机械系统有着多种组合方式,其基本布置方式有机械驱动布置方式、机电集成驱动布置方式、机电一体化驱动布置方式和轮毅电机驱动布置方式四种布置方式。各种布置方式之间最大的区别就在于对传统的机械传动部件保留的多少。越高级的布置方式,对传统燃油汽车的机械传动部件保留得就越少,而且更能发挥电动汽车的优势。

不论电动汽车的驱动系统采用哪种布置方式,其电气系统的结构基本上都相同,主要由三个部分组

成,如图2.1所示。

2.2电动汽车中电动机类型及其控制系统

电动汽车驱动电机的特性曲线如图1.1所示:

这条特性曲线分为两个区域:I区恒转矩区和II区恒功率区。电机在恒转矩区运行时转矩保持恒定而功率随着转速的上升而线性增加;电机在恒功率区运行时功率保持恒定而转矩随着转速的上升而呈双曲线减小。当汽车起停和加减速时,需要克服惯性阻力,对转矩要求比较高,因此电动汽车主要运行于I 区中。而当汽车车速较高,汽车行驶比较平稳时,主要用来克服行驶阻力,转矩消耗比较小,因此电动

电动汽车驱动电机类型种类和结构原理图

电动汽车驱动电机类型种类和结构原理图 随着电动汽车行业的发展,各大汽车厂商纷纷开发了自家的电动车型。在雨后春笋般的的电动汽车市场,大家在看车的时候,厂商均推出了各自车型应用的电机。到底不同的电机有什么差别,下面本文就来讲讲新能源汽车电机的基础知识,介绍各种电机在电动汽车应用特点。 一、什么是电机? 所谓电机,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当机械能被转换成电能时,电机表现出发电机的工作特性。大部分电动汽车在刹车制动的状态下,机械能将被转化成电能,通过发电机来给电池回馈充电。

二、电动汽车应用驱动电机特点 基于电动汽车的特点,对所采用的电机也有较高的要求。为了提升最高时速,电机应有较高的瞬时功率和功率密度(W/kg);为了增加1次充电行驶距离,电机应有较高的效率;而且电动汽车是变速工作的,所以电机应有较高的高低速综合效率;此外有很强的过载能力、大的启动转矩、转矩响应要快。电动车起动和爬坡时速度较低,但要求力矩较大;正常运行时需要的力矩较小,而速度很高。低速时为恒转矩特性,高速时为恒功率特性,且电动机的运行速度范围应该较宽。另外,电机还应具备坚固、可靠,有一定的防尘防水能力,且成本不能过高。 目前,从现已成熟的电机技术来看,开关磁阻电机在各个技术特性方面似乎很符合电动车的使用需要,但尚未得到广泛应用;而现今永磁同步电机在电动汽车行业应用较广泛;现在较为知名的特斯拉Model系列均采用异步电机。此外,如果按电流类型划分还可分为直流电机和交流电机两种。下面根据转速、功率密度、体积等多方面特性参数对比来了解4种较为典型的驱动电机特点。

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势 中国汽车技术研究中心窦汝振李磊宋建锋 摘要:介绍了我国电动汽车用驱动电机系统的研发现状,以及车用系统与普通工业用系统间的差异,指出了发展趋势。 1 引言 我国汽车工业的发展面临着来自能源安全、环境保护和气候变化等可持续发展要求的多重挑战。随着近几年汽车保有量的快速增加,汽车能源消耗增长呈现加速趋势,进一步加剧了我国石油供需矛盾。在当前石油资源日益紧张,价格不断攀升的国际形势下,发展电动汽车特别是混合动力汽车是缓解我国石油资源短缺现状的有效途径,也是增强我国汽车工业核心竞争力的重大战略举措。 经过“八五”、“九五”规划的实施,特别是“十五”国家863电动汽车重大专项,我国已实现了官、产、学、研的资源整合,具有了电动汽车用驱动电机系统自主研发能力。在国家“三纵三横”总体布局中(如附图所示),驱动电机及其控制系统被列为“三横”中的共性技术之一。 附图国家“十五”电动汽车重大专项布局示意 2 电动汽车用驱动电机系统的特点及分类 电动汽车对驱动电机系统的要求至少包括: (1)基速以下输出大转矩,以适应车辆的启动、加速、负荷爬坡、频繁起停等复杂工况; (2)基速以上为恒功率运行,以适应最高车速、超车等要求; (3)全转速运行范围内的效率最优化,以提高车辆的续驶里程; (4)结构坚固、体积小、重量轻、良好的环境适应性和高可靠性; (5)低成本及大批量生产能力。 电动汽车最早采用了直流电机系统,特点是成本低、控制简单,但重量大,需要定期维护。随电力电子技术、自动控制技术、计算机控制技术的发展,包括异步电机及永磁电机在内的交流电机系统体现出比直流电机系统更加优越的性能,目前已逐步取代了直流电机控制系统。特别是借助于设计方法、开发工具及永磁材料的不断进步,用于驱动的永磁同步电动机得到了飞速发展。 电动汽车中常用的交流电机主要有异步、永磁、开关磁阻三大类型,其特点如表1所示。

纯电动汽车驱动电机应用概述

纯电动汽车驱动电机应用概述 郑金凤 胡冰乐 张翔 (福建农林大学机电工程学院,福建 福州 350002) 摘 要:介绍了目前纯电动汽车的发展状况,叙述了纯电动汽车驱动电机不同类型的特点及相关的控制方法。还介绍了一些目前应用比较广泛的驱动电机控制方法的主要内容及其所解决的相关问题。 关键词:纯电动汽车 驱动电机 矢量控制 直接转矩控制 中图分类号:TP202 文献标识码:A Driving Motor for Electric Vehicles Application Overview Zheng Jinfeng Hu Bingle Zhang Xiang (College of Mechanical and Electronic Engineering,Fujian Agriculture and Forestry University,Fuzhou 350002,China) Abstract: the current state of development of electric vehicles and features of the electric vehicles are described.Otherwise,driving motors and its control methods are narrated. Also major contents of some driving motor control methods applied extensively at present and its related issues are discussed. Key words:Electric vehicle,Drive motor,Vector control,Direct Torque Control 引言 由于环境保护越来越受消费者和政府的重视,以及能源价格的不断上涨,使得世界的汽车制造商都纷纷加大开新能源汽车开发力度。在去年金融危机的影响下,今年以来,由于全球大多主流的汽车市场纷纷出现衰退,尤其以美国和日本为代表的两大汽车市场出现了急剧下滑,使得美国和日本汽车厂家不得不加速原本保守的计划,从而重新刺激美国和日本等原有核心市场。而电动汽车以电能为能源,具有零排放无污染的突出优点,因此备受汽车界的推崇。在中国,政府今年也不断的推出各种政策来促进纯电动汽车的发展。回顾一下国际上电动汽车的发展史,连这次至少有四次,世界汽车工业界要启动纯电动汽车,但是前三次都失败了。前三次失败主要是因为电池。前三次基本上都是以铅酸电池为基础,由于他的比能量和比价格都比较差,所以没有得到推广。现在随着电池技术的不断发展,使得纯电动汽车的推广得以实现。现在纯电动汽车主要采用的是锂电池,锂电池的比能量是铅酸电池的八到十倍,且质量轻。今年比亚迪、丰田、奇瑞等汽车公司都将推出各自的纯电动汽车。并且电动汽车将可能慢慢成为汽车发展的一种趋势和必然[1,2,3]。 1各种电动汽车驱动电机的性能[4-11] 纯电动汽车关键的难点重点在于电池技术和驱动电机。电池技术已经在一定程度上得到了突破。下面主要讨论一下驱动电机的相关状况。 1.1电动汽车驱动电机控制的关键问题 电动汽车是以车载电源为动力,并采用电动机驱动的一种交通工具。电机及其驱动系统是电动汽车的核心部件之一,由于电动汽车在运行过程中频繁起动和加减速操作,对驱动系统的有着很高的要求。下面主要阐述控制过程中的一些关键问题: (1)用在电动汽车的电动机应具有瞬时功率大、过载能力强(过载3~4倍)、加速性能好,使用寿命长的特点。 (2)电动汽车用电动机调速范围应该宽广,包括恒转矩区和恒功率区。要求在低速运行时可以输出大恒定转矩,来适应快速起动、加速、负荷爬坡等要求;高速时能够输出恒定功率,能有较大的调速范围,以适应平坦的路面、超车等高速行驶要求。

新能源电动汽车电驱动系统

新能源电动汽车电驱动 系统 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

现代电动汽车电驱动系统主要由四大部分组成:驱动电机、变速器、功率变换器和控制器。驱动电机是电气驱动系统的核心,其性能和效率直接影响电动汽车的性能。驱动电机和变速器的尺寸、重量也会影响到汽车的整体效率。功率变换器和控制器则对电动汽车的安全可靠运行有很大关系。 电驱动系统的由以下几个部分组成: 1.电动汽车驱动电机 选用小型轻量的高效电机,对目前电池容量较小、续驶里程较短的电动汽车现状显得尤为重要。早期电动汽车驱动电机大部分采用他励直流电机(DCM)。直流电机驱动系统改变输入电压或电流就可以实现对其转矩的独立控制,进行平滑调速,具有良好的动态特性,并且有成本低、技术成熟等优点。但是,直流电机的绝对效率低,体积、质量大,碳刷和换向器维护量大,散热困难等缺陷,使其在现代电动汽车中应用越来越少。随着电力电子技术、大规模集成电路和计算机技术的发展以及新材料的出现和现代控制理论的应用,机电一体化的交流驱动系统显示了它的优越性,如效率高、能量密度大、驱动力大、有效的再生制动、工作可靠和几乎无需维护等,使得交流驱动系统开始越来越多地应用于电动汽车中。目前在电动汽车中,主要采用永磁同步电机(PMSM)驱动系统、开关磁阻电机(SRM)驱动系统和异步感应电机(肼)驱动系统。 永磁同步电机(PMSM)是一种高性能的电机,具有体积小、重量轻、结构简单、效率高、控制灵活的优点,在电动汽车上得到了广泛的应用,是当前电动汽车用电动机的研发热点,是异步感应电机的最有力的竞争对手。目前,由日本研制的电动汽车主要采用这种电机,如Honda公司的EV Plus、Nissan公司的Altra和Toyota公司的RAV4及Prius车型等。但是,永磁电机的磁钢价格较高,磁性能受温度振动等因素的影响,有高温退磁等问题。 开关磁阻电机(SRM)是由磁阻电机和开关电路控制器组成的机电一体化新型调速电机。开关磁阻电机工作时,依次使定子线圈中的电流导通或截止,电流变化形成的磁场吸引转子的凸出磁极从而产生转矩。开关磁阻电机结构简单,成本较低,可靠性高,起动性能和调速性能好,控制装置也比较简单。然而在实际应用中,开关磁阻电动机存在着转矩波动大、噪声大、需要位置检测器等缺点,所以目前应用开关磁阻电机的驱动系统仍然很少,主要以Chloride公司的“Lucas”电动汽车为代表。 异步感应电机(M)具有结构简单、坚固、成本低、可靠性高、转矩脉动小、噪声小、转速极限高、无需位置传感器及免维护等特点,因而在电动汽车驱动电机领域里,是应用很广泛的一种无换向器电机。近年来,由IM驱动的电动汽车几乎都采用矢量控制和直接转矩控制。美国以及欧洲研制的电动汽车多采用这种电动机。 异步电机的矢量控制调速技术也比较成熟,其电驱动系统具有良好的性能,因此被较早地应用于电动汽车,目前仍然是电动汽车驱动系统的主流产品。迄今为止,美国“Impact’’系列、“ETX.2”型,日本“Cedric"、“OTwn"、“FEV"型,德国 “T4”、“190’’型等电动汽车均采用异步感应电机。异步电机的最大缺点是驱动电路复杂,效率比永磁电机和开关磁阻电机低,特别是在轻载运行时效率更低。因此,如何进一步提高异步电机的运行效率,己经成为人们关注的重要课题。 2.变速器

纯电动汽车的驱动电机系统详解

纯电动汽车的驱动电机系统详解 驱动电机系统是电动汽车三大核心系统之一,是车辆行驶的主要驱动系统,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。一、驱动电机系统介绍驱动电机系统由驱动电机、驱动电机控制器(MCU)构成,通过高低压线束、冷却管路与整车其他系统连接,如图1所示。整车控制器(VCU)根据加速踏板、制动踏板、挡位等信号通过CAN网络向电机控制器MCU发送指令,实时调节驱动电机的扭矩输出,以实现整车的怠速、加速、能量回收等功能。电机控制器能对自身温度、电机的运行温度、转子位置进行实时监测,并把相关信息传递给整车控制器VCU,进而调节水泵和冷却风扇工作,使电机保持在理想温度下工作。驱动电机技术指标参数,如表1所示,驱动电机控制器技术参数如表2所示。1、驱动电机永磁同步电机是一种典型的驱动电机(图2),具有效率高、体积小、可靠性高等优点,是动力系统的执行机构,是电能转化为机械能载体。它依靠内置旋转变压器、温度传感器(图3)来提供电机的工作状态信息,并将电机运行状态信息实时发送给MCU。旋转变压器检测电机转子位置,经过电机控制器内旋变解码器解码后,电机控制器可获知电机当前转子位置,从而控制相应的IGBT功率管导通,按顺序给定子三个线圈通电,驱

动电机旋转。温度传感器的作用是检测电机绕组温度,并提信息供给MCU,再由MCU通过CAN线传给VCU,进而控制水泵工作、水路循环、冷却电子扇工作,调节电机工作温度。驱动电机上有一个低压接口和三根高压线(V、U、W)接口,如图4所示。其中低压接口各端子定义如表3所示,电机控制器也正是通过低压端口获取的电机温度信息和电机 转子当前位置信息。2、驱动电机控制器驱动电机控制器MCU结构如图5所示,它内部采用三相两电平电压源型逆变器,是驱动电机系统的控制核心,称为智能功率模块,它以IGBT(绝缘栅双极型晶体管)为核心,辅以驱动集成电路、主控集成电路。MCU对所有的输入信号进行处理,并将驱动电机控制系统运行状态信息通过CAN2.0网络发送给整车控制器VCU。驱动电机控制器内含故障诊断电路,当电机出现异常时,达到一定条件后,它将会激活一个错误代码并发送给VCU整车控制器,同时也会储存该故障码和相关数据。驱动电机控制器主要依靠电流传感器(图6)、电压传感器、温度传感器来进行电机运行状态的监测,根据相应参数进行电压、电流的调整控制以及其它控制功能的完成。电流传感器用于检测电机工作实际电流,包括母线电流、三相交流电流。电压传感器用于检测供给电机控制器工作的实际电压,包括动力电池电压、12V蓄电池电压。温度传感器用于检测电机控制系统的工作温度,包括IGBT模块的温度。驱动电

电动汽车用永磁同步电机控制系统设计

硕士学位论文 二0一五 年 六 月 作者姓名 指导教师 学科专业 控制工程

摘要 本文在开始先介绍了研究电动汽车的背景及其意义,并介绍了电动汽车在国内外的发展现状,然后从电动汽车的燃油经济性,驱动性,安全性及舒适度,三个方面分析了电动汽车比其他燃料汽车存在的优越性。电动机是电动汽车的核心部件,本文中从其驱动方式把电动机分为四大类,直流有刷电动机,永磁同步电动机,永磁无刷直流电动机和开关磁阻电动机。本章从工作原理与性能方面分析了,这四种电动机各存在的优点和不足。从中得出永磁同步电动机是电动汽车比较理想的选择。本文刚开始介绍了永磁同步电动机PMSM的三种不同的控制方式,恒压频比控制,矢量控制,直接转矩控制,并从三者之间比较得出,PMSM采用直接转矩控制DTC的方式有着比其他两者更好的稳定性。 随后从永磁同步电动机PMSM的结构及其特点,分析了其优越性,并建立数学模型,根据空间矢量坐标关系推导出PMSM的在各坐标系下DTC的原理。本章分析了定子磁链与电磁转矩的估算和滞环控制,通过其原理研究了开关表控制的方式,并对PMSM的直接转矩控制DTC的Matlab/Simulink仿真,最终得出了DTC 较其它控制方式的稳定性。 其次分析了永磁同步电机PMSM的直接转矩控制DTC存在的诸多缺点,并提出基于SVM技术的SVPWM的控制方式,即空间矢量调制DTC控制策略,通过Matlab/Simulink仿真,得出SVPWM比PMSM DTC有着更好的稳定性。 TI公司推出的TMS320F2812 DSP芯片的控制系统设计,从硬件电路的设计和软件的设计,两个方面研究了该芯片。DSP硬件方面包含了智能模块的自保护特性,并设计了检测电路,保护电路,驱动电路和CAN通信等模块,软件系统方面分析了,其初始化流程图,接收流程图等。 关键词:永磁同步电机;直接转矩控制;DSP;SVPWM

电动汽车用驱动电机发展现状与趋势分析

龙源期刊网 https://www.doczj.com/doc/9a3788463.html, 电动汽车用驱动电机发展现状与趋势分析 作者:张勇 来源:《时代汽车》2016年第12期 摘要:目前,我国电动汽车行业正在不断发展,相关的生产技术也逐步完善。本文中,笔者即将对电动汽车用驱动电机进行介绍,并就驱动电机目前的发展状况以及在将来一段时间的发展趋势作出相关分析。 关键词:电动汽车;驱动电机;现状;趋势 1电动汽车用驱动电机概述 目前,电动汽车的不同特性对于驱动电机提出了不同类型的要求。其中,对速度要求较高的电动汽车,要求其电机的瞬时功率及功率密度值较高;而要求电池使用周期较长,充电后可以行使更远距离的电动汽车,要求电机的效率应相对较高;此外,电动汽车还要求驱动电机具有比较理想的高低速综合效率,用材坚固,耐用性强,且具有理想的防水性能,性价比高等特性。依据上述要求,目前国内设计生产的比较常见的驱动电机主要包括下述4种类型。 1.1直流有刷电机 直流有刷电机是一种采用直流供电的驱动电机,是最早研发并使用的电动汽车用驱动电机类型,且目前在很多类型的电动汽车中仍旧在广泛使用。直流有刷电机最大的优势在于控制特性较好,简单易于操作,且目前国内的生产技术较为成熟,质量比较稳定。 然而,直流有刷电机之所以后来逐步为其他类型的驱动电机所取代,正是由于其也存在着一些比较突显的缺陷。首先,由于直流有刷电机具有电刷及机械换向器两个结构,导致其电机过载能力及速度得不到有效的提高,且使用过程中对零部件的维护成本较高。此外,直流有刷电机的损耗主要发生在转子部分,这便导致产生的热量散失难度较大,对转矩质量比参数需要进一步优化。第三,直流有刷电机在运行过程中,电刷容易因摩擦产生火花,从而形成电磁干扰对电动汽车的正常运行造成不利影响。第四,由于采用的是机械换向器,因此会对电机的容量、转速等性能造成限制,越来越无法满足用户对于驱动电机的需求。 1.2感应电机 目前电动汽车中最为常用的就是交流三相感应电机。此类电机的定子和转子是通过对硅钢片进行叠压后制成的,没有其他零部件接触。具有结构简单,性能稳定,耐用性能优良等特点。此外,该电机的功率范围较广;可以通过空气进行冷却,也可以通过液体冷却;同时,对于周边环境具有很好的适应性能。相比于其他类型的驱动电机,感应电机的质量小,价位低,性价比高,并且保养及维修成本也相对较低。

电动汽车用车电机及控制器技术条件

ID号:9034790 受控文件归档日期:2009-04-21 09:13:27 编码:ID号:xxxxxxx 受控文件归档日期:2009-04-xx 编 码: JLYY-XX -09 电动汽车用电机及控制器 技术条件 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司 二○○九年五月

前言 为了规范电动汽车用电机及控制器的技术特性,控制驱动电机及控制器系统质量和出厂检验规则编制了本标准。 本标准由浙江吉利汽车研究院有限公司提出。 本标准由浙江吉利汽车研究院有限公司新能源技术开发部负责起草。 本标准主要起草人:刘波。 本标准于2009年5月13日发布并实施。

1 范围 本标准规定了吉利电动汽车使用的电机及控制器型号、要求、检验规则、标志、随车技术文件、包装、运输、贮存及质量承诺。 本标准适用于吉利电动汽车用的驱动电机及其控制器。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 755-200 旋转电机定额和性能 GB/T 2423.17-1993 电工电子产品基本环境试验规程试验Ka:盐雾试验方法 GB/T 4772.1-1999 旋转电机尺寸和输出功率等级第1部分:机座号56~400和凸缘号55~1080 GB/T 4942.1-1985 电机外壳防护分级 GB/T 4942.2-1993 低压电器外壳防护等级 GB 10068.2-2000 轴中心高为56 mm及以上电机的机械振动—振动的测量、评定及限值 GB 10069.3-1988 旋转电机噪声测定方法及限值噪声限值 GB/T 12665-1990 电机在一般环境条件下使用的湿热试验要求 GB/T 12668-1990 交流电动机半导体变频调速装置总技术条件 GB 1471l-1993 中小型旋转电机安全通用要求 GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值测量方法 GB/T 18488.2-2001 电动汽车用电机及其控制器试验方法 GB/T 2900.25-1994 电工术语旋转电机 GB/T 2900.26-1995 电工术语控制电机 GB/T 2900.33-1993 电工术语电力电子技术 GB/T 10069.1-2006 旋转电机噪声测定方法及限值第1部分:旋转电机噪声测定方法 GB 10069.3 旋转电机噪声测定方法及限值第3部分:噪声限值 GB/T 18488.1-2001 电动汽车用电机及其控制器技术条件 GB/T 18488.2-2001 电动汽车用电机及其控制器试验方法 3 定义

电动汽车电机控制器

电动汽车电机控制器 一、电机控制器的概述 根据GB/T18488.1-2001《电动汽车用电机及其控制器技术条件》对电机控制器的定义,电机控制器就是控制主牵引电源与电机之间能量传输的装置、是由外界控制信号接口电路、电机控制电路和驱动电路组成。 电机、驱动器和电机控制器作为电动汽车的主要部件,在电动汽车整车系统中起着非常重要的作用,其相关领域的研究具有重要的理论意义和现实意义。 二、电机控制器的原理 图1汽车电机控制器原理图 电机控制器作为整个制动系统的控制中心,它由逆变器和控制器两部分组成。逆变器接收电池输送过来的直流电电能,逆变成三相交流电给汽车电机提供电源。控制器接受电机转速等信号反馈到仪表,当发生制动或者加速行为时,控制器控制变频器频率的升降,从而达到加速或者减速的目的。 三、电机控制器的分类 1、直流电机驱动系统 电机控制器一般采用脉宽调制(PWM)斩波控制方式,控制技术简单、成熟、成本低,但效率低、体积大等缺点。 2、交流感应电机驱动系统 电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速,采用矢量控制或直接转矩控制策略实现电机转矩控制的快速响应。 3、交流永磁电机驱动系统 包括正弦波永磁同步电机驱动系统和梯形波无刷直流电机驱动系统,其中正弦波永磁同步电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速;梯形波无刷直流电机控制通常采用“弱磁调速”方式实现电机的控制。由于正弦波永磁同步电机驱动系统低速转矩脉动小且高速恒功率区调速更稳定,因此比梯形波无刷直流电机驰动系统具有更好的应用前景。

4、开关磁阻电机驱动系统 开关磁阻电机驱动系统的电机控制一般采用模糊滑模控制方法。目前纯电动汽车所用电机均为永磁同步电机,交流永磁电机采用稀土永磁体励磁,与感应电机相比不需要励磁电路,具有效率高、功率密度大、控制精度高、转矩脉动小等特点。 四、电动控制器的相关术语 1、额定功率:在额定条件下的输出功率。 2、峰值功率:在规定的持续时间内,电机允许的最大输出功率。 3、额定转速:额定功率下电机的转速。 4、最高工作转速:相应于电动汽车最高设计车速的电机转速。 5、额定转矩:电机在额定功率和额定转速下的输出转矩。 6、峰值转矩:电机在规定的持续时间内允许输出的最大转矩。 7、电机及控制器整体效率:电机转轴输出功率除以控制器输入功率再乘以100%。

电动汽车用电机可行性报告

1.我国电动汽车发展概况 1.1 产业背景 1.2 产业政策 1.3 发展状况 1.3.1 技术状况 1.3.2 产业化状况 1.3.3 产品状况 1.3.4 国内主要生产企业及其产品明细表 1.4 发展方向 1.4.1 未来趋势 1.4.2 专家评述 2.我国发展电动汽车的相关政策 2.1 国家发展电动汽车的相关政策(按出台时间、名称、主要内容列表) 2.2 各省市发展电动汽车的相关政策(对北京、山东、湖南、湖北、河南、安徽、天津等分述之) 2.3 电动汽车技术支持的相关单位与组织 3.电动汽车驱动系统与驱动电机 3.1 电动汽车对其驱动系统的主要技术要求 3.2 电动汽车驱动系统的分类及其说明 3.3 电动汽车驱动电机的分类及其技术指标汇总 3.4 国内电动汽车研发单位及其研发情况 3.5 电动汽车驱动电机发展方向 4.技术方案 4.1 永磁一磁阻同步电机先进性与可行性 4.2 永磁一磁阻同步电机的优越性 4.3 永磁一磁阻同步电机现有工作基础 5.技术路线 6.合作组织 7.投资估算 8.其他

国外电动汽车及其驱动系统(本网页可阅览) 1.电动汽车的技术特征 1.1 电动汽车的基本概念和基本分类 电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。它使用存储在电池中的电来发动。电动汽车主要有纯电动汽车、混合动力电动汽车和燃料电池电动汽车3种类型. 纯电动汽车 纯电动汽车是完全由二次电池(如铅酸电池、镍镉电池、镍氢电池或锂离子电池等)提供动力的汽车。 混合动力电动汽车 一般是指采用内燃机和电动机两种动力,将内燃机与储能器件(如高性能电池或超级电容器) 通过先进控制系统相结合, 提供车辆行驶所需要的动力, 混合动力电动汽车并未从根本上摆脱交通运输对石油资源的依赖。因此,混合动力电动汽车是电动汽车发展过程中的一种过渡车型。 燃料电池车 燃料电池车是利用氢气和氧气(或空气)在催化剂的作用下直接经电化学反应产生电能的装臵, 具有完全无污染(排放物为水)的优点, 1.2电动车的基本特点 概括来讲, 电动汽车与内燃机汽车相比有以下优点 (1)效率高:对能源的利用,电动汽车的总效率至少在19%以上(采用燃料电池时效率远高于这一数值),而内燃机汽车效率低于12%,由此可见, 电动汽车更加节能。 (2)环境污染小: 电动汽车排出的废气非常少甚至不排出废气, 产生的废热也明显少于内燃机汽车. (3)可使用多种能源: 可直接利用电厂输出的电能,也可以通过太阳能、化学能、机械能转化而获得电能。 (4)噪音低: 即使靠近正在高速运转的电动机也不会感觉到让人不舒服的噪音, 而内燃机的噪音则非常大。 (5)结构简单,使用维修方便,操作控制易实现自动化。 三种类型电动汽车的比较如附表所示

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势

电动汽车用驱动电机系统的现状及发展趋势 中国汽车技术研究中心窦汝振李磊宋建锋 摘要:介绍了我国电动汽车用驱动电机系统的研发现状,以及车用系统与普通工业用系统间的差异,指出了发展趋势。 1 引言 我国汽车工业的发展面临着来自能源安全、环境保护和气候变化等可持续发展要求的多重挑战。随着近几年汽车保有量的快速增加,汽车能源消耗增长呈现加速趋势,进一步加剧了我国石油供需矛盾。在当前石油资源日益紧张,价格不断攀升的国际形势下,发展电动汽车特别是混合动力汽车是缓解我国石油资源短缺现状的有效途径,也是增强我国汽车工业核心竞争力的重大战略举措。 经过“八五”、“九五”规划的实施,特别是“十五”国家863电动汽车重大专项,我国已实现了官、产、学、研的资源整合,具有了电动汽车用驱动电机系统自主研发能力。在国家“三纵三横”总体布局中(如附图所示),驱动电机及其控制系统被列为“三横”中的共性技术之一。 附图国家“十五”电动汽车重大专项布局示意 2 电动汽车用驱动电机系统的特点及分类 电动汽车对驱动电机系统的要求至少包括: (1)基速以下输出大转矩,以适应车辆的启动、加速、负荷爬坡、频繁起停等复杂工况; (2)基速以上为恒功率运行,以适应最高车速、超车等要求; (3)全转速运行范围内的效率最优化,以提高车辆的续驶里程; (4)结构坚固、体积小、重量轻、良好的环境适应性和高可靠性; (5)低成本及大批量生产能力。 电动汽车最早采用了直流电机系统,特点是成本低、控制简单,但重量大,需要定期维护。随电力电子技术、自动控制技术、计算机控制技术的发展,包括异步电机及永磁电机在内的交流电机系统体现出比直流电机系统更加优越的性能,目前已逐步取代了直流电机控制系统。特别是借助于设计方法、开发工具及永磁材料的不断进步,用于驱动的永磁同步电动机得到了飞速发展。 电动汽车中常用的交流电机主要有异步、永磁、开关磁阻三大类型,其特点如表1所示。

电动汽车的四种驱动电机比较

电动汽车的四种驱动电机比较 电动汽车主要是由电机驱动系统、电池系统和整车控制系统三部分构成,其中的电机驱动系统是直接将电能转换为机械能的部分,决定了电动汽车的性能指标。因此,对于驱动电机的选择就尤为重要。 新能源汽车具有环保、节约、简单三大优势。在纯电动汽车上体现尤为明显:以电动机代替燃油机,由电机驱动而无需自动变速箱。相对于自动变速箱,电机结构简单、技术成熟、运行可靠,甚至被视为中国在新能源汽车行业实现汽车工业“弯道超车”的希望领域之一。新能源电动汽车主要是由电机驱动系统、电池系统和整车控制系统三部分构成,其中的电机驱动系统是直接将电能转换为机械能的部分,决定了电动汽车的性能指标。因此,对于驱动电机的选择就尤为重要。 电动汽车的驱动电机要求有以下几个特点: ?宽广的恒功率范围,满足汽车的变速性能 ?启动扭矩大,调速能力强 ?效率高,高效区广 ?瞬时功率大,过载能力强 ?功率密度大,体积小,重量轻 ?环境适应性高,适应恶劣环境 ?能量回馈效率高 根据驱动原理,电动汽车的驱动电机可分为以下4种: 1、直流电动机 在电动汽车发展的早期,很多电动汽车都是采用直流电动机方案。主要是看中了直流电机的产品成熟,控制方式容易,调速优良的特点。但由于直流电动机本身 的短板非常突出,其自身复杂的机械结构(电刷和机械换向器等),制约了它的瞬 时过载能力和电机转速的进一步提高;而且在长时间工作的情况下,电机的机械结 构会产生损耗,提高了维护成本。此外,电动机运转时的电刷火花会使转子发热, 浪费能量,散热困难,还会造成高频电磁干扰,这些因素都会影响具体整车性能。 由于直流电动机的缺点非常突出,目前的电动汽车已经将直流电机淘汰。 2、交流异步电动机 交流异步电机是目前工业中应用十分广泛的一类电机,其特点是定、转子由硅钢片叠压而成,两端用铝盖封装,定、转子之间没有相互接触的机械部件,结构简 单,运行可靠耐用,维修方便。交流异步电机与同功率的直流电动机相比效率更高,质量约轻了二分之一左右。如果采用矢量控制的控制方式,可以获得与直流电机相 媲美的可控性和更宽的调速范围。由于有着效率高、比功率较大、适合于高速运转

电动汽车驱动电机实训报告材料

驱动电机 实 训 报 告 汽工1302 黄祥吉

图给出三相BLDCM 控制系统的六开关逆变器拓扑图。根据无刷直流电机的特点,为了减小转矩脉动,提高电机控制性能,要求加在电机定子上的电流为方波,并与电机的梯形反电动势严格同步,每相电流导通120。表给出图所示的六开关逆变器的开关器件导通顺序。 由表可见,六开关逆变器中,根据开关器件的状态,可组成6个状态组合或电压矢量,即:(0,一1,1)、(1,一1,0)、(1,0,一1)、(0,1,一1)、(一1,1,0)、(一1,0,

1),其中,1表示上桥臂导通,一1表示下桥臂导通,0表示没有管子导通。如(0,一1,1)表示B相的下桥臂和C相的上桥臂导通,即VS5,Vs6导通,A相处于不导通状态。这样在任何时刻总是只有两相处于导通状态,即任何时刻总有一相的两个开关器件不参与工作。开关磁阻电机的控制系统。 开关磁阻电机作为一种新型调速电机,兼有直流和交流调速的优点,适用的领域很广。它是由磁阻电机与电子开关驱动控制电路组成一体的能量换转机构。 如图所示为四相的开关磁阻电机。图表示导通顺序A、B、C、D时定转子工作情况。图4a 表示V1导通,A相绕组通电,而其余的三相绕组断电,因此转子磁1.1′受到气隙中弯曲磁力线的切向磁拉力而产生转矩,使转子沿逆时针旋转,转子磁极1.1′向定子磁极AA′趋近,直到两者重合。此时,控制器据位置传感器的关断信号,去控制驱动器,关断V1,切断A 相绕组电流,紧接着控制器根据位置传感器的开、断信号,依次使V2、V3、V4通、断,使B、C、D相绕组顺序的通与断,使转子受同一方向转矩作用,沿逆时针的运行。若改变相电流大小,则可改变电机转矩和转速。 总之,国已经开发出了以上四种电机驱动系统,取得了很大的技术进步,已经在车辆上获得了应用。但是,还存在着需要改进之处。就交流感应电机电控系统而言,国的绝大多数电动效率在70%以上区域围占整个工作的区域还在80%以下;电机在低速运行过程中,输出转矩脉动性过大;在高速运转时可输出的转矩偏小,加载能力差,且转矩降落略大;甚至在一定转速围存在较大电磁振动(噪音),有待于进一步解决。四种电机电控系统的可靠性都有待进一步提高以适应产业化要求。

北汽新能源纯电动汽车驱动电机控制系统故障维修

近年来,在我国作为技术的纯的研发与应用取得了突破性发展。这就客观要求行业提升维修 水平,升级故障维修手段,利用有效的电子诊断技术提升效率。本文以北汽纯的具体故障作 为切入点,通过故障分析及其排除过程,对关键技术进行相应的探究。 一、故障现象 一辆北汽生产的EV 160新能源纯,整车型号为:BJ7000B3D5-BEV,电机型号为: TZ20S02,电池型号为:29/135/220-80Ah,电池工作电压为320V。该车行驶里程为0.56万km,出现无法行驶且仪表报警灯常亮、报警音鸣叫的故障;故障发生时电机有沉闷的“咔、咔”声。 二、系统重要作用及其结构原理 驱动电机系统由驱动电动机(DM)、驱动电机控制器(MCU)构成,通过高低压线束与 整车其它系统作电气连接。驱动电机系统是纯三大核心部件之一,是车辆行驶的主要执行机构,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。 1.驱动电机系统工作原理 在驱动电机系统中,驱动电机的输出动作主要是执行控制单元给出的命令,即控制器输出 命令。如图1所示,控制器主要是将输入的直流电逆变成电压、频率可调的三相交流电,供 给配套的三相交流永磁同步电机使用。 整车控制器(VCU)根据驾驶员意图发出各种指令,电机控制器响应并反馈,实时调整驱 动电机输出,以实现整车的怠速、前行、倒车、停车、能量回收以及驻坡等功能。电机控制 器另一个重要功能是通信和保护,实时进行状态和故障检测,保护驱动电机系统和整车安全 可靠运行。 电机控制器(MCU)由逆变器和控制器两部分组成。驱动电机控制器采用三相两电平电 压源型逆变器。逆变器负责将动力电池输送的直流电电能逆变成三相交流电给汽车驱动电机 提供电源;控制器接受驱动电机和其它部件的信号反馈到仪表,当发生制动或者加速行为时,它能控制频率的升降,从而达到加速或减速的目的。 电机控制器是依靠内置旋转变压器、温度传感器、电流传感器、电压传感器等来提供电 机的工作状态信息,并将驱动电机运行状态信息实时发送给VCU。驱动电机系统的控制中心,又称智能功率模块,以绝缘栅双极型晶体管模块(IGBT)为核心,辅以驱动集成电路、主控集成电路,对所有的输入信号进行处理,并将驱动电机控制系统运行状态的信息通过 CAN2.0网络发送给整车控制器,同时也会储存故障码和数据。

电动汽车用电机控制策略分析

电动汽车用电机控制策略分析摘要 第一章绪论 1.1引言 1.2电动汽车的定义及优势 1.2.1电动汽车的定义 1.2.2电动汽车的优势 1.3电动汽车的基本结构 1.4本论文选题的意义及主要内容 1.4.1选题的意义 1.4.2本文的主要内容 第二章电动汽车电机驱动系统介绍 2.1电动汽车驱动电机分类 2.2电机驱动系统系统构成与布置方式 2.3电动汽车中电动机类型及其驱动系统 2.4电动汽车电机驱动控制的发展现状和趋势 第三章交流感应电动机及其控制策略 第四章无刷直流电动机及其控制策略 第五章永磁同步电动机及其控制策略 5.1永磁同步电机的结构和特点 5.2永磁同步电机矢量控制理论 5.2.1电动机的转矩控制 5.2.2 PMSM坐标变换 5.2.3 PMSM数学模型 5.2.4电流极限圆和电压极限圆 5.3永磁同步电动机恒转矩控制

5.3.1id =0控制 5.3.2最大转矩/电流比控制 5.3.3恒磁链控制 5.3.4 cosφ=1控制 5.4永磁同步电动机弱磁控制 第六章全文总结与展望 摘要 第一章绪论 1.1引言 在未来的一段时间内,我国将成为世界最大的汽车消费国,2010年我国汽车增加到五千六百万辆以上,不过空气污染源也会大幅度提高,空气污染将有64%来自于汽车尾气的排放,在2020年左右,我国石油消费量将超过4.5亿吨,而我国能源系统效率平均低于国际先进水平10%,但是我国60%石油消费量依赖于进口,要是仍然采用传统的内燃机技术发展汽车工业将会使我国为此付出巨大代价和对环境保护也会造成巨大的压力。在这种严峻的形势下,我国汽车工业的未来发展需要我们好好思考。 根据现在世界人口和汽车的增长趋势来看,今后50年中,世界人口和汽车数量分别从60亿增加到100亿和7千万增加到2亿5千万辆以上。若这些车辆都采用内燃机,能源需求和空气污染将会给人类造成巨大的压力和损坏。因此我们必须开发节能环保型以及高效智能型的交通车辆,只有这样才能在本世纪实现交通的可持续发展。能源危机曾经对世界经济带来严重影响,因此石油毕源的争夺更加强烈,石油纠纷在国际上也不断发生,甚至为了争夺石油资源而爆发的战争在近几年也不断发生。因此石油资源的解决是当今世界每个国家所面临的首要考虑的问题,石油资源解决的好坏是当今世界是否稳定的重要因素。 电动汽车是将机算机、电子与化学各学科领域中的高新技术于一体,是汽车、计算机、电力拖动、新材料、新能源、功率电子、自动控制、化学电源等工程技术中最新成果的集成产物。混合动力电动汽车、燃料电池汽车和纯电动汽车对世界汽车的发展以及环境的保护都起到一个前所未有的阶段,具有里程碑的意义。 1.2电动汽车的定义及优势 我国政府已将电动汽车的快速发展列入我国“十五”国家863计划,加大了对电动汽车开发和产业化的投入,与世界发达国家电动汽车发展接轨,目前已经取得了一定得成就。我国不少高等院校、相关的研究以及国内部分企业都加强了对电动汽车研究开发的力度,加快了汽车事业的发展速度。目前我国纯电动汽车研发比较顺利,可以小批量生产与应用;与此同时混合动力汽车的发展目前它的产业化也可以说具备条件;值得炫耀的是我国的燃料电池汽车研发目前达到国际先进水平。因此我国建立电动汽车产业,逐步实施车用能源动为系统转型,实现节能环保目标奠定了技术基础。 1.2.1电动汽车的定义 电动汽车是指以车载电源为动力,用全部或部分由电机驱动,并配置大容量电能储存装置,符合道路交通、安全法规各项要求的车辆 1.2.2电动汽车的优势 现如今各国都在发展电动汽车事业,是由于它具有以下几个方面的优点:

电动汽车对电动机和电机控制系统的要求

电动汽车对电动机和电机控制系统的要求 摘要:电动汽车作为人类解决能源和环境问题的汽车工业新技术,已成为国内外汽车研发的热点。驱动电机是电动汽车中的主要部件,起着至关重要的作用。汽车行驶的特点是频繁地启动、加速、减速、停车等,在低速或爬坡时需要高转矩,在高速行驶时需要低转矩。电动机的转速范围应能满足汽车从零到最大行驶速度的要求,即要求电动机具有高的比功率和功率密度。因此,总结电动汽车对驱动电机的要求具有较高的理论和实际意义。 关键词:电动车驱动电动机电动机控制要求电动机要求 1.1 电动汽车中电动机的应用现状 电动汽车驱动电机的特性曲线如图1.1所示: 图1.1电动汽车驱动电机的特性曲线 这条特性曲线分为两个区域:I区恒转矩区和Ⅱ区恒功率区。电机在恒转矩区运行时转矩保持恒定而功率随着转速的上升而线性增加;电机在恒功率区运行时功率保持恒定而转矩随着转速的上升而呈双曲线减小。为了适应车辆的启动、加速、负荷爬坡、频繁起停等复杂工况,对转矩要求比较高,因此电动汽车主要运行于I区中,即恒转矩运行。而当汽车车速较高,汽车行驶比较平稳时,主要克服行驶阻力,转矩消耗比较小,因此电动汽车主要运行于Ⅱ区[1],即恒功率运行。为了满足电动汽车的这种特性,电动汽车驱动用电机及其控制系统的要求为:在整个运行范围内具有较高的效率,以提高车辆的续驶里程;有较强的过载能力、快速的动态响应及良好的起动加速性能;调速范围宽,且低速运行时能够提供大转矩;高可靠性、高功率密度、低成本[2]。

1.2 电动汽车对电动机的要求 电动汽车电动机应满足的主要要求可归纳为如下两大方面,电动机控制系统的要求和电动机本身的要求: 1.2.1电动车对电动机控制系统的要求 1)高电压。在允许的范围内,尽可能采用高电压,可以减小电动机的尺寸和导线等装备的尺寸,特别是可以降低逆变器的成本。工作电压由THS的274 V提高到THS B的500 V;在尺寸不变的条件下,最高功率由33 kW提高到50 kW,最大转矩由350 N.m提高到400ON.m。可见,应用高电压系统对汽车动力性能的提高极为有利。但是如果所需的电压过高,则需要串联许多电池,这会引起车内及行李舱空间的减少,车辆的质量以及成本的增加,以及车辆性能的下降。大体上,系统电压收蓄电池质量的限制,电池质量约占整车质量的30%[3]。 2)转速高。电动汽车所采用的感应电动机的转速可以达到8000—12000 r/min,电动汽车驱动电机的最高转速要求达到在公路上巡航时基速的4~5倍。高转速电动机的体积较小,质量较轻,有利于降低装车的装备质量。 3)电动汽车驱动电动机要求有高的比功率(电动机单位质量的输出功率)和在较宽的转速和转矩范围内都有较高的效率,以实现降低车重,延长续驶里程; 电动机应具有高效率、低损耗,并在车辆减速时,可进行制动能量回收。 4)电动机基速以下输出大转矩,通常电动汽车驱动电动机需要有4~5倍的过载,以适应车辆的启动、加速、负荷爬坡、频繁起停等复杂工况,即恒转矩运行。基速以上为恒功率运行,以适应最高车速、超车等要求。 5)电动机应具有自动调速功能,以减轻驾驶员的操纵强度,提高驾驶的舒适性,并且能够达到与内燃机汽车加速踏板同样的控制响应。 6)为使多电动机协调运行,要求电动汽车驱动电动机具有高的可控性、稳态精度、动态性能[3]。 1.2.2电动汽车对电动机本身的要求 1)质量轻,体积小。电动机可通过采用铝合金外壳等途径降低电动机的质量,各种控制装置和冷却系统的材料等也应尽可能选用轻质材料。 2)在恶劣条件下可靠工作。电动汽车驱动电动机往往被装在机动车上,空间小,工作在高温、坏天气及频繁振动的恶劣的工作条件下,因此,电动汽车电动机应具有高的可靠性、耐温和耐潮性,并在运行时噪声低,能够在较恶劣的环境下长期工作。 3)结构简单.适合大批量生产,使用维修方便.价格便宜等。 4)电气系统安全性和控制系统的安全性应达到有关的标准和规定。电动汽车的各种动力电池组和电动机的工作电压可以达到300 V以上,因此必须装备高压保护设备以保证安全。

电动汽车电机控制器方案设计说明书

电动汽车电机控制器方案设计说明书 1 引言 随着常规能源的日益减少和环境污染的日益严重,世界各国的环保意识逐渐增强,电动汽车以其零排放的优点受到世界各国的重视,并成为未来车辆的一个发展趋势。 传统的电动汽车多采用直流电机,其中最多的是有刷他励直流电机,因为存在电刷,导致电机的寿命和效率降低,目前比较新的无刷直流电机,这种电机寿长,效率比较高,但是因为位置传感器的安装精度不够导致控制效果不是很好和寿命短的问题。无速度传感低压交流驱动器,比传统的直流系统相比。 目前研究比较多的是交流异步电机及其控制器,与直流电机相比,交流异步电机具有效率高,相同功率等级下成本低等优点,交流系统低速恒转矩模式有效攻克了直流无刷启动力矩不足的问题。高速恒功率模式使整机效率更加优越。 随着交流电机控制算法的日益完善,其控制性能可以和直流电机相媲美,交流异步电机在电动汽车上的广泛应用成为发展趋势。 本系统采用无速度传感器矢量控制策略,提高电机工作效率,采用SVPWM技术,提高电压利用率,并减少谐波干扰,并克服了传统直流系统电动车启动力矩不足的缺点。 2 硬件总体说明 系统总共分为三块电路板叠成立体方式实现。 2.1功率变化电路总体说明 2.1.1 功能介绍 此功率电路采用三相相移120度 2.1.2 理论依据 ACI3_1的简易系统图如图1所示: 电动汽车电机控制器方案设计说明书(原创)- ZZ - 狂风悟浪 图1 ACI3_1的简易系统图 图1所示为三相感应电机驱动的完整系统图。使用了一个三相电压源逆变器来控制三相感应电机,DSP输出六路PWM信号控制逆变器的六个MOSFET的通断,从而控制电机电压。还有一个捕获输入脚用来捕获电机速度传感器的输出以测量电机转速,但在实际调试时没有使用速度传感器,所以没有速度反馈,整个系统是一个开环系统。 感应电机的等效电路如图2所示: 电动汽车电机控制器方案设计说明书(原创)- ZZ - 狂风悟浪

相关主题
文本预览
相关文档 最新文档