人教版八年级下册数学知识点总结
- 格式:doc
- 大小:15.00 KB
- 文档页数:3
人教版八年级下册数学知识点汇总第十六章二次根式。
1. 二次根式的概念。
- 形如√(a)(a≥slant0)的式子叫做二次根式。
其中“√()”称为二次根号,a叫做被开方数。
- 注意:被开方数a必须是非负数,否则√(a)无意义。
例如√(-2)就不是二次根式。
2. 二次根式的性质。
- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。
- (√(a))^2=a(a≥slant0)。
例如(√(5))^2 = 5。
- √(a^2)=| a|=a(a≥sl ant0) -a(a<0)。
如√(3^2) = 3,√((-3)^2)=| - 3|=3。
3. 二次根式的乘除。
- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。
例如√(2)×√(3)=√(2×3)=√(6)。
- 二次根式的除法法则:√(a)÷√(b)=√(frac{a){b}}(a≥slant0,b>0)。
如√(8)÷√(2)=√(frac{8){2}}=√(4) = 2。
4. 二次根式的加减。
- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。
例如√(8)不是最简二次根式,化简为2√(2)后是最简二次根式。
- 二次根式加减时,先将二次根式化为最简二次根式,然后合并同类二次根式(同类二次根式是指被开方数相同的二次根式)。
例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。
第十七章勾股定理。
1. 勾股定理。
- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。
- 例如在直角三角形中,两直角边分别为3和4,则斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。
2. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
八年级下册第十六章:二次根式(1))0a ≥号,a 叫做被开方数.2,即:2可以省略 .(2) 二次根式有意义的条件:被开方数为非负数,即:被开方数大于或等于0.在实数范围内有意义的条件为: . 由20x -≥,可以得出:2x ≥.20x ≥,x 属于任意实数.在实数范围内有意义的条件:30x ≥,0x ⇒≥.在实数范围内有意义的条件:10121202x x x x x -≥≤⎧⎧⇒⇒-<≤⎨⎨+>>-⎩⎩. (分析:分子、分母都要有意义,分式有意义:分母不为0)(3) 负数没有平方根也没有算术平方根,0的平方根是0,0的算术平方根是0.(4) 正数的立方根是正数,负数的立方根是负数,0的立方根是0.(5) 一个正数有两个平方根,互为相反数. 一个正数有一个算术平方根方根,且为正根. (6) 二次根式的双重非负性:0a ≥0≥.21a =-,则a 的取值范围是: .根据二次根式的双重非负性,()2120a -≥,则210a -≥,所以:12a ≥. (7)()20a a=≥.例如:21.5=;(22224520=⨯=⨯=.提示:2=2倍根号5”.(8()()()0000a a a a a a >⎧⎪===⎨⎪-<⎩.4==5== .11=-=;14==;π==-;110==. (9)代数式:用基本运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接起来的式子叫做代数式.例如:3,x ,x y +)0x ≥,ab -,()0st t≠,3x 都是代数式.(10)二次根式的乘法法则:一般地,=()0,0a b ≥≥,=.=; 3=== ;2612==⨯=;33===;14===== ;⑥((32-=⨯-=-=-=-=-;====;(11=()0,0a b ≥>,=()0,0a b ≥>利用它可以进行二次根式的化简 .====;=====;==; 53=== ;⑤===;(12)最简二次根式:最简二次根式是指满足下列两个条件的二次根式①被开方数不含分母;②被开方数中不含开的尽方的因数或因式..(13)化简最简二次根式的一般方法:①将被开方数中能开得尽方的因数或因式进行开方.====.②化去根号下的分母,即:分母有理化.====;=====;====;==.(14)二次根式的加减:一般地,二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并.注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并.例:==;==;==;-==;同类二次根式:根指数相同、化简后被开方数相同的二次根式;=.注:合并被开方数相同的二次根式与合并同类项类似,将它们的“系数”相加减,最简结果,不能合并.(15)二次根式的混合运算:①二次根式的混合运算顺序与实数的运算顺序一样,先乘方,再乘除,后加减,有括号先算括号里面的,同级运算从左往右依次计算; ②在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用 .例: ① ⎛÷ ⎝解原式(=÷(2=+2==②)23-解原式22223⎡⎤--=-⎢⎥⎣⎦()5329=---229=-+9=注:运算结果是根式的,应表示为最简二次根式 .(16 解:2150126=+ ; 令:12a =,6b =;61212.25224b a a ≈+=+≈第十七章:勾股定理(1)勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222a b c =+ . 勾股定理的证明方法:全世界共有370多种证明方法.其中赵爽正弦图、毕达哥拉斯证法、美国第20任总统詹姆斯加菲尔德的证法比较出名;勾股定理的变式:① 222c a b =+;②()()222a cbc b c b =-=+- ;③ ()()222b c a c a c a =-=+-;④c =⑤a =⑥b =(2)勾股定理逆定理:如果三角形三边长a ,b ,c 满足222a b c =+,那么这个三角形是直角三角形 .(3)定理:经过证明被确认正确的命题叫做定理 .(4)我们把题设、结论正好相反的两个命题叫做互逆命题;如果把其中一个叫做原命题,那么另一个叫做它的逆命题 .(例如:勾股定理与勾股定理逆定理) (5)常见的勾股数(勾股数是正整数):①3、4、5,222345⇒+= ; ②5、12、13,22251213⇒+=; ③6、8、10,2226810⇒+=; ④7、24、25,22272425⇒+=;注:只要三角形的三边长都是勾股数的k (k 为正整数)倍时,构成的三角形仍然是直角三角形.(6)蚂蚁吃食物最短路径问题:①如下图,是一个边长为2的正方体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程. (注:表面爬行)情况一: 情况二: 情况三:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为AB = 42 + 22 =20 =25AbacCBAAAB = 42 + 22 =20 =25AAB = 42 + 22 =20 =25②如下图,是一个长为2,宽为4,高为8的长方体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程. (注:表面爬行)情况一: 情况二: 情况三:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为10.③如下图,是一个底面半径为2,高为8的圆柱体,一只蚂蚁从A 点出发到达B 点吃食物,求蚂蚁走过的最短路程.(注:表面爬行)情况一: 情况二:把蚂蚁经过的表面路径转化为平面图形,根据勾股定理可以得到蚂蚁的最短路径为(7)如图:直角三角形的两直角边长分别为a 、b ,斜边为c .以两直角边为边长的正方形的面积等于以斜边为边长的正方形的面积.即:123S S S +=,或222a b c +=.AB =82+4π()2 =64+16π2 =44+π2AB =82+4π()2 =64+16π2 =44+π2A8AB = 62 + 82 =100 =10AB AB = 122 + 22 =148AAB = 62 + 82 =100 =10bac S 3S 2S 1(8)三角形面积的计算方法:海伦秦九韶公式(知道三角形的三边长可以直接求面积).2a b cP ++=(其中,,a b c 为三角形的三边长 );S =.例:在下列ABC ∆中,边长如图所示,计算其面积. 解:由海伦秦九韶公式得:6810122P ++==ABC S ∆∴==24==(9)如图,AB BC ⊥,3,4,12,13,AB BC CD AD ====求四边形ABCD 的面积. 解:(法一)连接AC在Rt ABC ∆中,根据勾股定理得:5AC ===22222251216913AC CD AD +=+===∴根据勾股定理得逆定理得:ACD ∆是直角三角形. AC CD ∴⊥,即:90ACD ∠=︒. ∴S 四边形ABC ACD S S ∆∆=+ 111134512362222AB BC AC CD =⋅+⋅=⨯⨯+⨯⨯=.解:(法二)连接AC在Rt ABC ∆中,根据勾股定理得:5AC ===在ACD ∆中,由海伦秦九韶公式得:51213152P ++==A C D S ∆∴=30== ∴S 四边形113034306303622ABC ACD S S AB BC ∆∆=+=⋅+=⨯⨯+=+=. 6108CBA341213DCBA第十八章:平行四边形(1)平行四边形:两组对边分别平行的四边形叫做平行四边形.平行四边形用“”表示,如平行四边形ABCD 记作“ABCD ”.即:若AB ∥CD ,AD ∥BC ,则四边形ABCD 是平行四边形. (2)平行四边形的性质:①平行四边形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC .AB =CD ,AD =BC .②平行四边形的两组对角相等.即:BAD BCD ∠=∠,ABC ADC ∠=∠.平行四边形的邻角互补.即:180BAD ABC ∠+∠=︒,180BCD ABC ∠+∠=︒. ③平行四边形的对角线互相平分.即:OA OC =,OB OD =.(3)平行四边形的两条对角线将平行四边形分成四个面积相等的三角形.即:14AOBBOCCODAODABCDSSSSS ====.4444ABCDAOBBOCCODAODSSS SS====.(4)两平行线间的距离处处相等. (5)平行四边形的面积:底⨯高.(6)平行四边形的判定:①两组对边分别相等的四边形是平行四边形. ②两组对角分别相等的四边形是平行四边形. ③对角线互相平分的四边形是平行四边形. ④一组对边平行且相等的四边形是平行四边形. ⑤两组对边分别平行的四边形叫做平行四边形. (7)三角形中位线定理:三角形的中位线平行且等于第三边的一半. 在ABC ∆中,点D 是AB 的中点,点E 是AC 的中点,所以DE 是ABC ∆的中位线.即:12DE BC =,DE ∥BC .(8)梯形中位线定理:梯形的中位线平行且等于上底与下底和的一半. 在梯形ABCD 中,点E 是AB 的中点,点F 是DC 的中点,所以EF 是梯形ABCD 的中位线.即:2AD BCEF +=,EF ∥AD ∥BC .(9)矩形:有一个角是直角的平行四边形叫做矩形. (10)矩形的性质:①矩形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②矩形的四个角都是直角.即:90BAD BCD ABC ADC ∠=∠=∠=∠=︒. ③矩形的对角线相等且互相平分.即:AC BD =,12OA OC AC ==,12OB OD BD ==.ODCB AED CBAFEDCBAODCBAA OB ∆,BOC ∆,COD ∆,AOD ∆都是等腰三角形. (11)矩形的面积:长⨯宽.即:S AB BC =⋅.(12)在直角三角形中,斜边上的中线等于斜边的一半.如:在Rt ABC ∆中,90ABC ∠=︒,BD 是斜边AC 的中线,则12BD AD DC AC ===.(13)矩形的判定:①对角线相等的平行四边形是矩形. ②有三个角是直角的四边形是矩形.③对角线相等且互相平分的四边形是矩形. ④有一个角是直角的平行四边形叫做矩形. (14)菱形:有一组邻边相等的平行四边形叫做菱形. (15)菱形的性质:①菱形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②菱形的四条边都相等.即:AB BC CD AD ===. ③菱形的对角线互相垂直平分,且每一条对角线平分一组对角.即:AC BD ⊥,12OA OC AC ==,12OB OD BD ==. 1122ABD CBD ADB CDB ABC ADC ∠=∠=∠=∠=∠=∠.1122BAC DAC BCA DCA BAD BCD ∠=∠=∠=∠=∠=∠.A OB ∆,BOC ∆,COD ∆,AOD ∆都是全等的三角形. 即:AOB ∆≌BOC ∆≌COD ∆≌AOD ∆AOB BOC COD AOD S S S S ====14S 菱形ABCD .(16)菱形的面积:两条对角线乘积的12.即:12S AC BD =⋅.(17)菱形的判定:①有一组邻边相等的平行四边形叫做菱形.②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形. ④对角线互相垂直平分的四边形是菱形.(18)正方形:有一组邻边相等且有一个角是直角的平行四边形是正方形.正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形;既是矩形又是菱形的四边形是正方形. (19)正方形的性质:①正方形的两组对边平行且相等.即:AB ∥CD ,AD ∥BC . AB =CD ,AD =BC . ②正方形的四条边都相等.即:AB BC CD AD ===.正方形的四个角都是直角.即:90BAD BCD ABC ADC ∠=∠=∠=∠=︒ ③正方形的对角线相等且互相垂直平分,且每一条对角线平分一组对角.即: A C B D ⊥,AC BD =,12OA OC AC ==,12OB OD BD ==. DCBAODCB AODCB A114522ABD CBD ADB CDB ABC ADC ∠=∠=∠=∠=∠=∠=︒.114522BAC DAC BCA DCA BAD BCD ∠=∠=∠=∠=∠=∠=︒.A OB ∆,BOC ∆,COD ∆,AOD ∆都是全等的三角形. 即:AOB ∆≌BOC ∆≌COD ∆≌AOD ∆AOB BOC COD AOD S S S S ====14S 正方形ABCD .(20)正方形的面积:边长⨯边长或对角线乘积的一半.即:S AB BC =⋅或12S AC BD =⋅. (21)正方形的判定:①有一组邻边相等且有一个角是直角的平行四边形是正方形.②有一组邻边相等的矩形是正方形.③有一个角是直角的菱形是正方形.④对角线相等且互相垂直平分的四边形是菱形. ⑤对角线相等的菱形是正方形. ⑥对角线互相垂直的矩形是正方形.(22)平行四边形的中点四边形是平行四边形;菱形的中点四边形是矩形;矩形的中点四边形是菱形;正方形的中点四边形是正方形. (23)平行四边形不是轴对称图形;矩形是轴对称图形,有2条对称轴;菱形是轴对称图形,有2条对称轴;正方形是轴对称图形,有4条对称轴.第十九章:一次函数(1)常量与变量:在某一变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量.(2)函数:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说y 是x 的函数,x 是自变量. (3)函数值:函数值是指自变量在其取值范围内取某个值时,函数与之对应的唯一确定的值.如果当x a =时,y b =,那么b 叫做当自变量的值为a 时的函数值.(4)解析式:像23y x =-+这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式.(5)函数的图象:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. (6)描点法画函数图象的步骤:①列表; ②描点; ③连线;(7)判断分析函数图象的突破点:①明确两坐标轴所表示的意义;②明确图象上的点所表示的意义;③弄清图象上的转折点、最高(低)点所表示的意义;④弄清上升线和下降线所 表示的意义.(8)函数的表示方法:解析式法;列表法;图象法.例1:小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.如图反映了这个过程中,小明离家的距离y 与时间x 之间的对应关系. 第(1)段:小明从家到食堂,相距0.6km ,用时8min . 第(2)段:小明在食堂用餐,用时()25817min -=. 第(3)段:小明从食堂到图书馆,食堂与图书馆相距()0.80.60.2km -=,用时()28253min -=.食堂与家相距()0.800.8km -=.第(4)段:小明在图书馆看书,用时()582830min -=. 第(5)段:小明从图书馆到家,用时()685810min -=,速度()0.8100.08/min v km =÷=.例2:画出函数21y x =+的图象.第三步:连线(9)正比例函数:一般地,形如()0y kx k =≠(k 是常数)的函数,叫做正比例函数,其/miny /中k 叫做比例系数或斜率.例:①0.2y x =-; ②2xy =; ③22y x =; ④24y x =. 在上面式子中: ①②是正比例函数;③④不是正比例函数.(10)正比例函数()0y kx k =≠的图象性质:①正比例函数()0y kx k =≠的图象是一条经过原点的直线.②当0k >时,函数图象从左往右上升,y 随x 的增大而增大(增函数),函数图象经过第一、三象限.③当0k <时,函数图象从左往右下降,y 随x 的增大而减小(减函数),函数图象经过第二、四象限.④k 越大,直线越倾斜(越陡).⑤正比例函数()0y kx k =≠的图象经过点()0,0和()1,k .(11)一次函数:一般地,形如()0y kx b k =+≠(,k b 是常数)的函数,叫做一次函数.当0b =时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数. (12)一次函数()0y kx b k =+≠的图象性质: ①一次函数()0y kx b k =+≠的图象是一条直线.②当0k >时,函数图象从左往右上升,y 随x 的增大而增大(增函数). ③当0k <时,函数图象从左往右下降,y 随x 的增大而减小(减函数). ④当0b >时,函数图象交y 轴的正半轴. ⑤当0b =时,函数图象经过原点. ⑥当0b <时,函数图象交y 轴的负半轴.⑦k 越大,直线越倾斜(越陡).正比例函数和一次函数的图象都是直线,画函数图象时只需要找两个点,即两点作图法.(13)函数的平移:x :左+右-;y :上+下-.例:6y x =-向上平移5个单位长度得到:65y x =-+. 6y x =-向下平移3个单位长度得到:63y x =--.2y x =-向左平移3个单位长度得到:()2326y x x =-+=--.2y x =-向右平移2个单位长度得到:()2224y x x =--=-+.22y x =--向左平移2个单位,向下平移3个单位得到:()222329y x x =-+--=--. 32y x =-+向右平移2个单位,向上平移3个单位得到:()3223311y x x =--++=-+.(14)在一次函数()11110y k x b k =+≠和()22220y k x b k =+≠中:①当12k k =时,1y ∥2y . ②当121k k =-时,12y y ⊥.例:直线21y x =--与26y x =-+互相平行;直线21y x =--与162y x =+互相垂直. (15)直线与x 轴相交0y =;直线与y 轴相交0x =(16)待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法.例:已知一次函数的图象过点()3,5和()4,9--,求这个一次函数的解析式.解:设这个一次函数的解析式为()0y kx b k =+≠.函数图象经过点()3,5和()4,9--∴3549k b k b +=⎧⎨-+=-⎩解得:21k b =⎧⎨=-⎩∴这个一次函数的解析式为21y x =-.(17)一次函数与方程、不等式:①一次函数与方程的关系:函数值y 为某一特定值时,求自变量x 的值. ②一次函数与不等式的关系:函数值y 为某一范围时,求自变量x 的取值范围.(18)两个一次函数图象相交时,它们有相同的横坐标,相同的纵坐标.例:求函数5y x =+与0.525y x =+的交点坐标. 解:50.525x x +=+ 20x =把20x =代入5y x =+中得20525y =+=.∴函数5y x =+与0.525y x =+的交点坐标为()20,25. (19)一次函数的实际应用:①方案选择问题 ②租车问题. 两个问题的考察实则是考察自变量的取值范围 例题:重点掌握人教版教材109页的第15题.第二十章:数据的分析(1)算术平均数:一般地,我们把n 个数12,,,n x x x ⋅⋅⋅,的和与n 的比值,叫做这n 个数的算术平均数,简称平均数,记作“__x ”.即__12nx x x x n++⋅⋅⋅+=.(2)加权平均数:一般地,若n 个数12,,,n x x x ⋅⋅⋅的权分别是12,,,n w w w ⋅⋅⋅,则__112212n nnx w x w x w x w w w ++⋅⋅⋅+=++⋅⋅⋅+叫做这n 个数的加权平均数.(3)在求n 个数的平均数时,如果1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次,(这里12k f f f n ++⋅⋅⋅+=),那么这n 个数的平均数为__1122k kx f x f x f x n++⋅⋅⋅+=.也叫做12,,,k x x x ⋅⋅⋅这k 个数的加权平均数,其中12,,,k f f f ⋅⋅⋅分别叫做12,,,k x x x ⋅⋅⋅的权.(4)中位数:将-组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则最中间两个数的平均数就是这组数据的中位数.(5)众数:把一组数据中出现次数最多的那个数据叫做这组数据的众数.注:一组数据的众数可能不止一个,也可能没有众数.(6)平均数、中位数、众数都刻画了数据的集中趋势,但它们各有特点.平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,因此在现实生活中较为常用.但它受极值(一组数据中与其余数据差异很大的数据)的影响较大.当一组数据中某些数据多次重复出时,众数往往是人们关心的一个量,众数不易受极端值的影响.中位数只需要很少的计算,它也不易受极端值的影响.(7)方差:设__x 是n 个数据12,,,n x x x ⋅⋅⋅的平均数,各个数据与平均数只差的平方的平均数,叫做这n 个数据的方差.用“2s ”表示,即:222______2121n s x x x x x x n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. 方差越大,数据的波动越大,方差越小,数据的波动越小.(8)标准差:方差的算术平方根称为标准差.s =(9)极差:一组数据中的最大值与最小值的差称为极差.。
新人教版八年级上册数学知识点总结归纳1 第十一章三角形第十二章全等三角形第十三章轴对称第十四章整式乘法和因式分解第十五章分式第十一章三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。
5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
八年级数学下册知识点总结(全)八年级数学下册知识点总结一、代数式1. 代数式的概念和基本性质。
2. 一元一次方程的概念、解法和实际应用。
3. 一元一次不等式的概念、解法和实际应用。
4. 一元二次方程的概念、解法和实际应用。
5. 代数式的加减乘除、化简和因式分解。
6. 二元一次方程组的概念、解法和实际应用。
7. 一元二次不等式的概念、解法和实际应用。
8. 质因数分解和最大公因数、最小公倍数的求法。
9. 分式的基本概念和运算方法。
二、几何1. 平面图形的基本性质和分类。
2. 勾股定理及其应用。
3. 三角形的相似性质和判定方法。
4. 三角形的内角和及其计算。
5. 空间图形的基本性质和分类。
6. 直线与平面的位置关系及其应用。
7. 圆的基本性质和相关定理。
8. 空间中直线与平面的交角问题和判定方法。
9. 圆锥曲线(椭圆、双曲线、抛物线)的基本性质。
三、概率统计1. 事件和概率的基本概念。
2. 古典概型和几何概型的概率计算。
3. 条件概率和独立性的概念和计算方法。
4. 排列和组合的概念和应用。
5. 随机变量和概率分布的定义和联系。
6. 统计分布(频数分布、累积频率分布)和直方图、折线图的绘制。
7. 样本统计量(平均数、中位数、众数、标准差)的概念和计算方法。
8. 正态分布的概念和应用。
9. 假设检验的基本概念和方法。
以上就是八年级数学下册的全部知识点总结。
在学习过程中,应该注意掌握基本概念和定理,并能够熟练地运用到实际问题中去。
同时,还应该注重应用能力的培养,多做一些与日常生活和实际问题有关的题目,提高自己的解决问题的能力。
平行四边形、矩形、菱形、正方形知识点总结杭信一中何逸冬一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2ABCD记作 ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S=底高ah;②平行四边形的对角线将四边形分成4个面积相等=⨯的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补对角:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③说明四边形ABCD的四条相等.(3)识别正方形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等.③先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.(4)识别等腰梯形的常用方法①先说明四边形ABCD为梯形,再说明两腰相等.②先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.③先说明四边形ABCD为梯形,再说明对角线相等.5.几种特殊四边形的面积问题①设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.②设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱形=12 ab.③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a .④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h .平行四边形 矩形 菱形 正方形 图形性质1.对边且 ;2.对角 ; 邻角 ;3.对角线; 1.对边且 ;2.对角且四个角都是 ;3.对角线;1.对边 且四条边都 ;2.对角 ; 3.对角线 且每 条对角线 ;1.对边 且四条边都 ;2.对角 且四个角都是 ; 3.对角线 且每条对角线 ;面积【素材积累】1、只要心中有希望存摘,旧有幸福存摘。
根据人教版八年级数学下册指数的知识点
汇总
本文档旨在对人教版八年级数学下册涉及的指数知识点进行汇总和总结,帮助学生更好地理解和掌握这一部分内容。
1. 指数的定义和性质
- 指数的概念:指数是表示乘方的简化写法,由底数和指数两部分组成。
- 指数的性质:指数运算有乘法、除法、幂运算、零指数和负指数等特点。
2. 指数运算
- 指数运算法则:包括相同底数相乘、相同底数相除、幂的乘方、幂的除法、零指数、负指数等。
3. 带有指数的数学表达式
- 带有指数的数:包括实数、规范科学计数法等。
4. 对数与指数的关系
- 对数的概念:对数是指数运算的逆运算,用来求解指数方程。
- 对数的性质:对数运算有乘法、除法、幂运算等特点。
5. 对数运算
- 对数运算法则:包括换底公式、对数运算与指数运算的关系等。
6. 实际问题中的指数运算
- 实际问题的建模和转化:通过列式、折线图、指数函数图像
等方式将实际问题转化为指数运算问题。
以上是八年级数学下册涉及的指数知识点的汇总和总结。
通过
研究和掌握这些知识点,同学们将能够更好地应用指数运算解决实
际问题,并提升数学应用能力。
请注意此文档所提供的内容仅供参考,具体内容以教材为准。
最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。
其中,a被称为被开方数。
最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。
如果两个二次根式的被开方数相同,那么它们就是同类二次根式。
二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。
二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。
应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。
勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。
直角三角形还有一些其他的性质,需要我们认真研究和掌握。
1.直角三角形的两个锐角互余,即∠A+∠B=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。
4.三角形面积公式为AB•CD=AC•BC。
5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。
6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。
7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。
8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。
9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。
10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。
二次根式的知识点汇总知识点一:二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式.例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x(x>0)、0、42、-2、1x y+、x y+(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.知识点二:取值范围1、二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2、二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义.例2.当x是多少时,31x-在实数范围内有意义?例3.当x是多少时,23x++11x+在实数范围内有意义?知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0().注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
例4(1)已知y=2x-+2x-+5,求xy的值.(2)若1a++1b-=0,求a2004+b2004的值知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论.上面的公式也可以反过来应用:若,则,如:,.例1 计算1.(32)22.(35)23.(56)24.(72)2例2在实数范围内分解下列因式:(1)x2—3 (2)x4—4 (3) 2x2—3知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
人教版八年级下册数学知识点总结(一)勾股定理
1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理) 第十九章四边形
平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;
3.两组对角分别相等的四边形是平行四边形;
4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。
矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义:邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
人教版八年级下册数学知识点总结(二)
数据的分析
1.加权平均数:加权平均数的计算公式。
权的理解:反映了某个数据在整个数据中的重要程度。
学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。
4.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
5. 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
数据的收集与整理的步骤:
1.收集数据
2.整理数据
3.描述数据
4.分析数据
5.撰写调查报告
6.交流
6. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响
人教版八年级下册数学知识点总结(三)分式
1. 分式定义:如果A、B表示两个整式,并且B中含有字母,那么式子
A/B叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
3.分式的通分和约分:关键先是分解因式
4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减
混合运算:运算顺序和以前一样。
能用运算率简算的可用运算率简算。
5. 任何一个不等于零的数的零次幂等于1,即 ;当n为正整数时,
( 正整数指数幂运算性质(请同学们自己复习)也可以推广到整数指数幂.
6. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤:
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.
应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题在数字问题中要掌握十进制数的表示法. (3)工程问题基本公式:工作量=工时×工效. (4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水.
7.科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法. 用科学记数法表示绝对值大于10的n位整数时,其中10的指数是
用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)。