平行四边形面积
- 格式:doc
- 大小:160.50 KB
- 文档页数:7
平行四边形的面积推导公式
我们要推导平行四边形的面积公式。
首先,我们需要了解平行四边形的性质和矩形面积公式。
假设平行四边形的底为 b 单位,高为 h 单位。
平行四边形可以被切割为一个矩形和一个三角形。
矩形的面积是底乘以高,即b × h。
三角形的面积是 (底× 高) ÷ 2,即(b × h) ÷ 2。
因此,平行四边形的面积是矩形的面积减去三角形的面积,即 b × h - (b × h) ÷ 2。
用数学公式,我们可以表示为:
平行四边形面积= b × h - (b × h) ÷ 2
现在我们要来计算这个公式,找出平行四边形的面积。
计算结果为:平行四边形的面积 = b*h/2
所以,平行四边形的面积公式为:面积 = 底× 高 - (底× 高) ÷ 2。
平行四边形表面积
平行四边形表面积是指平行四边形所占据的平面面积。
平行四边形是一种特殊的四边形,其对边平行且相等,因此其表面积可以通过底边长度和高度来计算。
计算平行四边形表面积的公式为:表面积 = 底边长度 × 高度。
其中,底边长度指平行四边形的一条底边的长度,高度指从底边到对边平行边的垂直距离。
例如,一个底边长度为5cm,高度为3cm的平行四边形,其表面积为15平方厘米。
这个计算公式可以用于任何平行四边形的表面积计算。
平行四边形表面积的计算方法可以应用于很多实际问题中。
例如,在建筑设计中,设计师需要计算建筑物外墙的表面积,以确定需要多少材料来覆盖整个建筑物。
在制造业中,工程师需要计算机器零件的表面积,以确定需要多少涂料来覆盖整个零件。
除了计算平行四边形表面积,还有一些其他的几何形状的表面积也可以通过类似的方法来计算。
例如,三角形的表面积可以通过底边长度和高度来计算,圆的表面积可以通过半径长度来计算。
平行四边形表面积是一个重要的几何概念,可以应用于很多实际问题中。
通过掌握计算平行四边形表面积的方法,我们可以更好地理解和应用几何学知识。
平行四边形四个面积关系(一)平行四边形四个面积关系1. 平行四边形的定义平行四边形是一种四边形,其对边两两平行。
2. 平行四边形面积关系平行四边形的四个面积之间存在一定的关系,可以通过以下公式互相计算:•面积公式1: S = a * h其中,S代表平行四边形的面积,a代表平行四边形的底边长,h代表底边所对应的高度。
•面积公式2:S = b * h’其中,b代表平行四边形的顶边长,h’代表顶边所对应的高度。
•面积公式3:S = d * c * sinθ其中,d代表平行四边形的一个对角线长,c代表对角线与底边所夹的角的对边长,θ代表这个角的大小。
•面积公式4:S = a * b * sinθ’其中,a和b分别代表平行四边形的两个相邻边长,θ’代表这两个边之间的夹角。
3. 解释说明平行四边形的面积关系可以从几何角度和三角函数角度进行解释。
几何上,平行四边形的面积可以看作是底边的长度与对应高度的乘积,或者是顶边的长度与对应高度的乘积。
这是因为在平行四边形中,底边和顶边之间的距离是相等的。
另外,平行四边形的面积也可以通过对角线和夹角进行计算。
根据三角形的面积公式S = * c * d * sinθ,我们可以在平行四边形中找到两个相等的三角形,其中的底边和高度分别为c和d。
然后通过求两个三角形面积的和得到整个平行四边形的面积。
总结起来,平行四边形的面积关系可以用不同的公式进行计算,选择合适的公式取决于所给出的已知信息。
通过这些公式,我们可以方便地计算平行四边形的面积。
以上就是平行四边形四个面积关系的简要介绍和解释。
平行四边形的面积和周长公式平行四边形的周长公式为:C=2(a+b)(公式中a、b分别为平行四边形的边长,C为平行四边形的周长)。
平行四边形的周长=(底1+底2)×2,如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=2(a+b)。
平行四边形面积公式为:S=ah(公式中h为高,a为底,S为平行四边形面积)。
平行四边形的面积=底×高,如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=a*h。
平行四边形的面积=两组邻边的积乘以夹角的正弦值,如用“a”“b”表示两组邻边长,α表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*sinα。
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。
平行四边形一般用图形名称加四个顶点依次命名。
平行四边形面积相关性质:1、平行四边形对角线把平行四边形面积分成四等份。
2、平行四边形的面积是由其对角线之一创建的三角形的面积的两倍。
3、平行四边形的面积也等于两个相邻边的矢量交叉乘积的大小。
4、与任何其他凸多边形不同,平行四边形不能刻在任何小于其面积的两倍的三角形。
5、如果与平行四边形平行的两条线与对角线并行构成,则在该对角线的相对侧上形成的平行四边形面积相等。
6、平行四边形的对角线将其分成四个相等面积的三角形。
特殊的平行四边形:(矩形、菱形、正方形都是特殊的平行四边形)1.矩形的定义:有一个角是直角的平行四边形是矩形。
2.菱形的定义:有一组邻边相等的平行四边形是菱形。
3.正方形的定义:一组邻边相等且有一个角是直角的平行四边形是正方形。
平行四边形面积的面积公式
一、平行四边形面积公式推导。
1. 割补法推导。
- 我们可以通过割补的方法把平行四边形转化为长方形来推导它的面积公式。
- 沿着平行四边形的高剪下一个三角形(或梯形),然后把它平移到另一边,可以拼成一个长方形。
- 这个长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。
2. 公式得出。
- 因为长方形的面积 = 长×宽,而平行四边形通过转化后,底相当于长方形的长,高相当于长方形的宽。
- 所以平行四边形的面积 = 底×高,用字母表示为S = ah(其中S表示平行四边形的面积,a表示平行四边形的底,h表示平行四边形的高)。
二、应用举例。
1. 已知底和高求面积。
- 例:一个平行四边形的底是5厘米,高是3厘米,求它的面积。
- 解:根据平行四边形面积公式S = ah,这里a = 5厘米,h = 3厘米,所以S=5×3 = 15平方厘米。
2. 已知面积和底求高。
- 例:一个平行四边形的面积是24平方米,底是6米,求高。
- 解:由S = ah可得h=(S)/(a),把S = 24平方米,a = 6米代入,h=(24)/(6)=4米。
3. 已知面积和高求底。
- 例:一个平行四边形的面积是30平方分米,高是5分米,求底。
- 解:由S = ah可得a=(S)/(h),把S = 30平方分米,h = 5分米代入,a=(30)/(5)=6分米。
《平行四边形的面积》教案(优秀6篇)数学《平行四边形的面积》教案篇一教学目标:1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.3.对学生进行辩诈唯物主义观点的启蒙教育.教学重点:理解公式并正确计算平行四边形的面积.教学难点:理解平行四边形面积公式的推导过程.学具准备:每个学生准备一个平行四边形。
教学过程:1、什么是面积?2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?二、导入新课根据长方形的面积=长某宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
三、讲授新课(一)、数方格法用展示台出示方格图1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。
然后指名说出数得的结果,并说一说是怎样数的。
2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
平行四边形面积计算公式设平行四边形的底边长度为a,高为h,那么它的面积S可以表示为S=a*h。
要理解这个公式,我们首先来看看平行四边形的特点。
1.平行四边形的两对边平行:2.平行四边形的高:3.通过底边和高计算面积:现在我们来具体分析一下如何通过底边和高计算平行四边形的面积。
首先,我们可以将平行四边形划分为两个三角形,这两个三角形的高分别是平行四边形的高h。
接下来,我们可以计算出这两个三角形的面积。
对于一个三角形,其面积可以通过底边长度和高的乘积再除以2来计算得出。
因此,一个三角形的面积可以表示为S_tri = (1/2) * a * h。
根据平行四边形的特点,我们可以得出,两个三角形的底边长度相等,即a。
所以,两个三角形的面积之和可以表示为2 * S_tri = 2 * (1/2) * a * h = a * h。
而平行四边形的面积就是两个三角形的面积之和,即S=a*h。
这么说来,我们就成功地推导出了平行四边形面积的计算公式。
举个例子来验证一下这个公式的正确性。
假设我们有一个平行四边形,底边长度为10,高为5、根据公式S=a*h,我们可以计算出面积为S=10*5=50。
接下来,我们可以通过另一种方法来验证这个计算结果。
我们将平行四边形划分为两个三角形,并计算出每个三角形的面积。
三角形1的面积为S_tri1 = (1/2) * 10 * 5 = 25三角形2的面积为S_tri2 = (1/2) * 10 * 5 = 25两个三角形的面积之和为25+25=50,与我们之前的计算结果相同。
通过这个例子,我们可以看到,无论是直接应用公式,还是将平行四边形划分为两个三角形进行计算,得出的结果都是相同的。
这就说明我们的平行四边形面积计算公式是正确的。
总结一下,平行四边形的面积计算公式为S=a*h,其中a为底边长度,h为高。
这个公式基于平行四边形的特点得出,并且通过将平行四边形划分为两个三角形进行计算可以得到相同的结果。
平形四边形面积公式平行四边形是一种特殊的四边形,它的特点是有两对边是平行的。
在平行四边形中,我们可以通过高和底长来计算面积。
平行四边形的面积公式为:面积=底边长×高其中,底边长是指平行四边形的一条底边的长度,高是指底边到其对应平行边的距离。
在推导这个公式之前,我们先介绍下平行四边形的一些性质。
性质1:两对对边平行,并且每一对对边的长度相等。
性质2:两对对边长度分别为a和b,对角线长度为d,则有d²=a²+b²。
现在我们来推导平行四边形面积公式。
推导步骤:1.假设平行四边形ABCD的底边为AB,高为h。
2.我们先通过连接顶点C和D得到一条对角线CD。
3.根据性质1,我们知道AD与BC平行,并且AD的长度等于BC的长度。
4.根据性质2,我们知道CD的长度d与AB的底边长和高h之间存在特殊关系:d²=AB²+h²(1)由三角形面积公式可得:S=1/2×CD×h(2)6.又根据性质1,我们知道CD和AB平行,并且CD的长度等于AB的长度,所以AB=CD。
我们将AB替换为CD,将公式(2)转化为:S=1/2×AB×h7.将(1)式中得到的关系式AB²+h²替换到(3)式中,可得:S=1/2×d²×h8.再次根据性质2,我们得到d²=AB²+h²,将其代入到(4)式中,可得:S=1/2×(AB²+h²)×hS=1/2×AB²×h+1/2×h³S=AB×h+1/2×h³9.根据性质1,我们知道AD与BC平行,并且AD的长度等于BC的长度,所以AB×h等于AD×h,可以用AD×h代替AB×h:S=AD×h+1/2×h³S=底边×高+1/2×高³10.化简得到最终的面积公式:S=底边×高至此,我们推导出了平行四边形面积公式:面积=底边长×高。
计算平行四边形的面积公式
几何学是数学的一个重要的分支,主要研究关于几何图形的性质、大小和位置的知识。
在几何学中,我们学习了很多不同类型的图形,其中一种是平行四边形。
平行四边形的特点是它的四个边都是平行的,比如矩形、正方形、菱形、平行四边形等等。
那么,我们如何计算一个平行四边形的面积呢?
平行四边形的面积计算公式是:S = (a + b)h/2。
其中,S表示平行四边形的面积,a和b分别表示平行四边形的两个相等的边,h
表示它们之间的斜边。
以计算正方形为例,它有四条相等的边,假设长度为c,则面积可以通过下面的计算式计算出来:S= c/2。
另外,如果平行四边形的边都不相等,我们还可以使用另一个面积计算公式:S= (a+b+c+d)s/2。
中,a、b、c、d分别代表平行四边形的四条边的长度,s表示它们的面积。
此外,我们还可以使用另一种更加精确的方法来计算平行四边形的面积,那就是海伦公式。
海伦公式是由古希腊数学家海伦伯格拉斯提出的一种公式,用于计算多边形的面积。
它可以用来计算平行四边形的面积,只要我们按照海伦公式的规定,把多边形的两个角的度数等分,计算出四个边的长度,然后计算出多边形的面积。
总之,要想计算平行四边形的面积,可以使用以上三种公式,根据实际情况选择最合适的方法即可。
以上就是关于计算平行四边形面积的公式,希望能对大家有所帮助。
《平行四边形的面积》教学设计 一、教学目标
(一)知识与技能 让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。 (二)过程与方法 通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。 (三)情感态度和价值观 通过活动,培养学生的探索精神,感受数学与生活的密切联系。 二、教学重难点 教学重点:探索并掌握平行四边形面积计算公式。 教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。 三、教学准备 平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。 四、教学过程 (一)创设情境,激趣导入 1.创设情境。 (1)呈现教材第86页单元主题图。(PPT课件演示)
教师:瞧!校园门口,你在哪些物体上看到了我们学过的平面图形? (2)学生汇报交流。 (3)回顾:我们生活在一个图形的世界里,这些图形有大有小,平面图形的大小就是它们的面积。我们已经研究过哪些平面图形的面积?怎样计算? 预设学生回答:长方形的面积=长×宽,正方形的面积=边长×边长。 (4)引入新课:这幅图中除了有长方形和正方形,还有平行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入“多边形的面积”的学习。(板书单元课题:多边形的面积) 2.揭示本节课题。 复习引入。(PPT课件演示)
请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那平行四边形的面积怎样计算呢?今天这节课,我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积) 【设计意图】通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入平行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。 (二)主动探索,推导公式 1.用面积单位测量平行四边形的面积。 (1)提问:要知道这个平行四边形的面积,怎么办?(PPT课件演示)
引导学生回顾用面积单位测量图形面积的方法。 (2)操作:现在把它们放在方格纸上,一个方格代表1 m2,不满一格的都按半格计算。平行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示) (3)学生先独立数平行四边形的面积,再互相交流。 预设平行四边形的面积: 方法一:从左往右数,每行6个,有4行,平行四边形的面积是24平方米; 方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24平方米。 长方形的面积:长6米,宽4米,面积是6×4=24(平方米)。 (4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。 (5)填写表格。 ①师生共同完成表格:平行四边形的面积是多少?它的底和高分别是多少?长方形呢?(PPT课件演示)
②引导学生观察:观察这个表格,你发现了什么? ③交流回报,小结:有的同学发现了,这个平行四边形的底与长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积与长方形的面积相等。还有的同学发现,这个平行四边形底乘以高正好等于它的面积,由此猜测平行四边形的面积=底×高。 【设计意图】面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为平行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的数据,沟通这两个图形之间的联系,为后面进一步探寻平行四边形面积的计算方法做准备。 2.操作思考,推导公式。 (1)教师:看来,数方格的确能让我们知道平行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算平行四边形的面积呢? 这个平行四边形的面积恰好等于底×高,那是不是所有的平行四边形的面积都等于底×高呢?看来,还需进一步研究哦!(PPT课件演示) (2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将平行四边形转化成它们来计算面积呢?请大家借助手中的平行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。 (3)操作转化,推导公式。 ①操作转化。 a.学生独立思考,动手剪拼平行四边形,将它转化成长方形后组内交流。 b.学生展示汇报。(PPT课件演示)
c.大家发现它们有什么相同之处?为什么要沿着平行四边形的高来剪开?有多少种不同的剪法?为什么? ②观察思考。 a.观察:原来的平行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示) b.思考:平行四边形的底和长方形的( )相等,平行四边形的( )和长方形的( )相等,这两个图形的面积( )。(PPT课件演示) c.学生汇报。(教师板书)
③概括公式。 你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式) (4)回顾与小结。 ①我们已经知道平行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的? ②教师小结:首先把一个平行四边形沿高剪开后平移拼成一个长方形,再观察原来的平行四边形和拼接后得到的长方形,发现等量关系:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。像这样把未知的平行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。 【设计意图】在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将平行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识——沿高剪开后通过平移将平行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。 (三)巩固运用,解决问题 1.教学教材第88页例1。 (1)出示例题,呈现问题情境。(PPT课件演示)
(2)理解题意,叙述题目内容。 ①用自己的话说一说题目的意思是什么? ②学生根据图文叙述:知道平行四边形花坛的底是6米,高是4米,求花坛的面积是多少平方米。 (3)收集信息,明确问题。 ①提问:从题目中你获得了哪些数学信息?要求什么? ②思考:要求花坛的面积,其实就是求什么? ③归纳:要求花坛的面积,其实就是求底是6米、高是4米的平行四边形的面积。 (4)学生独立解答。 (5)学生汇报,教师板书,规范书写。 2.课堂练习。 完成教材第89页练习十九第1题。
(1)学生独立完成。 (2)同桌互相说说自己是怎样做的。 (3)全班集体交流:这个问题你是怎样算的? 【设计意图】例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。 (四)变式练习,内化提高 1.基本练习。 完成教材第89页练习十九第2题。(PPT课件演示)
(1)学生独立完成。 (2)同桌互相说一说自己是怎样算的。 (3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择平行四边形中对应的底和高来计算面积。) 参考答案:12 cm2;18.72 cm2;4.8 cm2。 2.提高练习。 完成教材第89页练习十九第4题。(PPT课件演示) (1)理解题意:怎样计算出这两个平行四边形的面积?需要知道什么?(先测量出平行四边形中对应的底和高,再利用公式计算。) (2)学生独立完成。 (3)全班集体交流:两个平行四边形的底和高分别是多少?怎样计算面积? 3.拓展延伸。 等底等高的平行四边形的面积一定相等吗?面积相等的平行四边形一定等底等高吗?(PPT课件演示) 【设计意图】通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。 (五)全课总结,畅谈收获 1.今天这节课学习了什么?怎样学的? 2.今天我们主要推导出了平行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了平行四边形的面积;再观察表格中的数据,猜测平行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的平行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的平行四边形与长方形之间的等量关系,从而推导出了平行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量——观察——猜测——转化——验证的过程,最后我们还利用公式解决了生活中的实际问题。 (六)作业练习 1.课堂作业:练习十九第5题。 2.课外作业:练习十九第3题