基于有限元方法的结构分析
- 格式:pdf
- 大小:2.11 MB
- 文档页数:3
有限元法的分析过程有限元法是一种数值分析方法,用于求解实际问题的物理场或结构的数学模型。
它将连续的实体分割成离散的小单元,通过建立节点和单元之间的关系,对物理问题进行逼近和求解。
以下是一般的有限元法分析过程。
1.问题建模和离散化在有限元分析中,首先需要对实际问题进行建模,确定物理场或结构的几何形状和边界条件。
然后,将几何形状分割成一系列小单元,例如三角形、四边形或四面体等。
2.网格生成根据问题的几何形状和离散化方式,生成网格。
网格是由一系列节点和单元组成的结构,节点用于描述问题的几何形状,单元用于划分问题域。
通常,节点和单元的位置和数量会直接影响有限元法的精度和计算效率。
3.插值函数和基函数的选择有限元法中的节点通常表示问题域中的几何点,而节点之间的关系由插值函数或基函数来描述。
插值函数用于建立节点和单元之间的关系,基函数用于对物理场进行逼近。
选择适当的插值函数和基函数是有限元法分析的关键。
4.定义系统参数和边界条件确定相关物理参数和材料性质,并将其转化为数值形式。
在有限元分析中,还需要定义边界条件,包括约束条件和加载条件。
5.定义数学模型和方程根据问题的物理场或结构和所选择的基函数,建立数学模型和方程。
有限元方法可以用来建立线性方程、非线性方程、静态问题、动态问题等。
具体建立数学模型和方程的过程需要根据问题的特点进行。
6.组装刚度矩阵和力载荷向量根据离散化的节点和单元,组装刚度矩阵和力载荷向量。
刚度矩阵描述节点之间的刚度关系,力载荷向量描述外部加载的作用力。
7.求解代数方程通过求解代数方程,确定节点的位移或物理场的数值解。
通常,使用迭代方法或直接求解线性方程组的方法来求解。
8.后处理和分析得到数值解后,可以进行后处理和分析。
包括计算节点和单元的应变、应力等物理量,进行矫正和验证计算结果的正确性。
还可以通过有限元法的网格适应性来优化问题的计算效率和精度。
以上是一般的有限元法分析过程,具体的步骤和方法可能会因不同的问题而有所不同。
有限元分析方法有限元分析方法是一种在数字计算机上定量分析变形、弹性以及现代结构的受力情况的方法。
有限元分析方法的发展日趋完善,是加强建筑物结构抗震能力的有力工具。
一、有限元分析方法的概念有限元分析方法是一种基于有限元分析原理的数学方法,它是一种用于计算低维受力系统的通用数值方法,尤其是用于非线性力学系统的数值分析方法。
在有限元数值分析中,计算对象由许多有限个结构物构成,这些结构物称为有限元。
每个有限元都有一定的体积和形状,如线元、面元和体元。
有限元分析的基本思想就是将复杂的物理结构模型分解为若干较小的有限元模型,再将这些小的有限元模型组合成一个完整的物理模型,并对其进行连续性研究,从而精确地确定受力构件的变形、位移、应力、变形能量等物理参数。
二、有限元分析方法在工程中的应用有限元分析方法可以用于结构分析、计算机辅助设计和工程校核。
有限元分析方法可以用于预测结构的受力情况、拓扑设计和优化,这对于重要的结构失效的防护和抗震性能的提高有重要意义。
在计算机辅助设计领域,有限元分析方法可以用于几何形状优化,减轻材料重量并提高刚度,这是一种非常有效的技术。
在建筑工程中,有限元分析方法可以用于计算建筑物的受力情况,确定其最大荷载量,为建筑物的改造和重建提供参考。
三、有限元分析方法的发展趋势随着计算机技术的发展,有限元分析方法的发展也在不断推进。
近年来,以网格化数值计算为基础的有限元分析方法已经取得了巨大的进展,如实施大型网格化分析、更加准确和可靠的模型细分、更准确的网格分解技术、更有效的数值求解技术等。
这些技术将使有限元分析技术更容易、更有效地应用于计算机辅助设计、工程校核和抗震分析等领域。
总之,有限元分析方法是一种重要的力学分析方法,它在结构分析、计算机辅助设计以及建筑物抗震性能的研究中都起着重要作用。
随着计算机技术的发展,有限元分析方法的发展也在不断发展,为实现地震安全建筑的建设做出贡献。
有限元分析在工程设计中的应用案例分析有限元分析,简称FEA(Finite Element Analysis),是一种利用数值计算方法对复杂结构进行力学分析的技术。
它基于物理学原理,利用离散化方法将连续的结构在有限元上分解成多个互相联系但是局部地独立的单元,再通过数学算法进行求解,最终得到整个结构的力学行为。
因为它可以减少试错周期、降低开发成本和提高产品性能,所以有限元分析已经成为当今工程设计和生产领域一项非常重要的技术。
本文将介绍一些有限元分析在工程设计中的具体应用案例。
1.汽车发动机壳体优化汽车发动机壳体是承载引擎所有关键部件的重要结构,其制造复杂度很高。
为了减少开发过程中的试验成本和时间,一家风机厂专门利用有限元分析技术对汽车发动机壳体进行优化设计。
更改前发动机壳体在经过一定的较高频振动时会存在密封性能下降的现象,需要进行加强设计。
利用有限元分析技术,他们对发动机壳体进行了动力学分析,并计算了各部位的振动位移和应力分布,通过不断地修改控制点的位置和形状来提高振动阻尼性能和密封性能。
最终确定了优化方案,成功地减少了振动,提高了发动机壳体的防震性能和密封性能。
2.建筑物钢框架分析建筑物钢框架是建筑结构的重要组成部分,其承载能力和组装结构设计都需要严格控制。
如何选取更好的工艺和材料来设计出更安全可靠的钢框架结构,被许多建筑设计公司所思考。
有限元分析技术的应用可以帮助工程师确定结构的承载能力,最大应力极限和变形情况,进而实现结构的优化。
一家建筑设施的设计公司利用有限元分析技术来优化钢框架的结构,计算具体承载状况,最终确定钢框架结构的有效设计方案。
这一个优化设计方案进一步增强了建筑物钢框架的承载能力,提高了项目的整体优势性。
3.飞机负荷分析航空工业是重要的现代国家产业之一。
飞机设计、测试和生产都需要极高的准确性,而这需要大量的场地、人力和物资投入。
一家工程公司成功地利用有限元分析技术对飞机进行负荷分析并评估整体结构的强度和刚度。
yjk有限元导荷有限元导荷(YJK)是一种用于分析结构受力情况的方法。
它是基于有限元法的原理,通过将结构划分为有限个小单元来近似描述结构的行为。
在这种方法中,结构被划分为有限个小单元,每个小单元的导荷被计算并用于描述结构受力情况。
有限元导荷方法的核心思想是将结构分解成有限个小单元,每个小单元都有自己的导荷。
这些导荷可以是外部载荷,也可以是由结构内部产生的载荷,如应力、温度、湿度等。
通过对这些导荷的计算和分析,可以获得结构各个部分的受力情况。
有限元导荷方法的优势在于它可以通过计算得到结构各个部分的受力情况,从而可以更好地分析和设计结构。
通过对导荷的计算和分析,可以确定结构各个部分的受力情况,从而确定结构是否满足设计要求。
如果结构某个部分的受力过大,就可以对该部分进行优化设计,以提高结构的稳定性和安全性。
有限元导荷方法在工程设计中有着广泛的应用。
它可以用于分析各种类型的结构,如建筑物、桥梁、飞机、船舶等。
通过对结构的有限元导荷进行计算和分析,可以为工程师提供重要的设计依据和决策支持。
在应用有限元导荷方法进行结构分析时,需要考虑多个因素。
首先,需要确定结构的几何形状和材料性质,以便进行有限元划分和导荷计算。
其次,需要选择合适的有限元类型和计算方法,以获得准确的导荷结果。
此外,还需要考虑结构的边界条件和加载情况,以模拟真实的工作环境。
有限元导荷是一种用于分析结构受力情况的方法。
它通过将结构划分为有限个小单元,并计算每个小单元的导荷,来描述结构的受力情况。
有限元导荷方法在工程设计中有着广泛的应用,可以为工程师提供重要的设计依据和决策支持。
在应用有限元导荷方法时,需要考虑多个因素,如结构的几何形状、材料性质、有限元类型和计算方法等。
通过合理选择和计算,可以准确地分析结构的受力情况,从而优化设计并提高结构的稳定性和安全性。
有限元分析实例引言有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,能够将连续体结构分割成有限个小单元,通过在每个小单元内建立方程模型,最终求解整个结构的力学行为。
本文将以一个实例来介绍有限元分析的基本过程和步骤。
实例背景我们将以一个简单的杆件弯曲问题为例来进行有限元分析。
假设有一根长度为L、截面积为A的杆件,材料的弹性模量为E,截面的转动惯性矩为I。
我们希望通过有限元分析来计算杆件在一定加载条件下的弯曲变形。
有限元网格的划分首先,我们需要将杆件划分成有限个小单元,即有限元网格。
常用的网格划分方法有三角形划分、四边形单元划分等。
根据具体问题的要求和复杂度,选择合适的划分方法。
单元的建立划分好网格后,我们需要在每个小单元内建立方程模型。
在弯曲问题中,常见的单元模型有梁单元、壳单元等。
在本实例中,我们选择梁单元作为杆件的单元模型。
对于梁单元,我们需要定义每个节点的位移和约束条件。
根据杆件的几何尺寸和材料属性,可以利用应变能量原理和几何相似原理,得到每个节点的位移和约束条件。
材料特性和加载条件的定义在进行有限元分析之前,我们需要定义材料的特性和加载条件。
对于本实例中的杆件,我们需要定义弹性模量E、截面积A和转动惯性矩I。
加载条件可以包括集中力、均布力、弯矩等。
在本实例中,假设杆件受到均布力,即沿杆件轴向的受力分布是均匀的。
单元方程的建立和求解在定义了材料特性和加载条件之后,我们可以根据每个梁单元的位移和约束条件,建立每个单元的方程模型。
常见的方程模型有刚度矩阵方法、位移法等。
根据所选的单元模型,选择合适的方程模型进行计算。
通过对每个单元的方程模型进行组装,我们可以得到整个结构的方程模型。
将加载条件带入,可以求解出整个结构在给定加载条件下的位移、应力等参数。
结果分析根据求解得到的位移信息,我们可以绘制出结构的变形图。
通过变形图,可以直观地观察到结构在弯曲条件下的变形情况。
有限元分析的原理及应用1. 引言有限元分析(Finite Element Analysis, FEA)是一种工程数值模拟方法,通过将大型、复杂的物理问题离散成多个小的有限元单元,并对每个单元进行数值计算,最终得到整体系统的解。
本文将介绍有限元分析的原理及其在工程领域的应用。
2. 有限元分析的原理有限元分析的原理可以概括为以下几个步骤:2.1. 建立几何模型首先,根据实际问题的几何形状,以及需要分析的部分,建立一个几何模型。
这个模型可以是二维的或三维的,可以通过计算机辅助设计(CAD)软件绘制,也可以通过测量现场物体的尺寸来获得。
2.2. 网格划分在建立好几何模型后,需要将其离散化为有限多个小的有限元单元。
常见的有限元单元有三角形、四边形和六面体等。
划分过程决定了数值计算的精度,越精细的划分可以得到更精确的结果,但同时也会增加计算量。
2.3. 建立数学模型和边界条件有限元分析需要建立一个数学模型来描述物理问题。
这个数学模型可以是线性的,也可以是非线性的,取决于具体的问题。
在建立数学模型时,还需要考虑边界条件,即模型的边界上可能存在的约束或加载。
2.4. 求解数学模型有了数学模型和边界条件后,需要对其进行求解。
求解过程可以采用迭代方法或直接求解方法,具体取决于问题的复杂程度和计算要求。
在这一步中,需要进行数值计算,得到对应的物理量,例如应力、位移、温度等。
2.5. 后处理在得到数学模型的解后,需要进行后处理,将数值结果转化为可视化或可以使用的形式。
后处理可以包括绘制位移云图、应力云图等,以及针对特定问题进行统计分析。
3. 有限元分析的应用有限元分析在工程领域有广泛的应用。
以下列举了一些常见的应用领域:3.1. 结构力学有限元分析在结构力学中的应用非常广泛。
通过有限元分析,可以对结构的强度、刚度、变形等进行分析和优化。
常见的应用包括建筑结构、桥梁、飞机、汽车、船舶等领域。
3.2. 热传导有限元分析可以用于模拟物体内部的温度分布和热传导过程。
有限元分析的原理
有限元分析是一种利用数值计算方法对复杂结构进行力学分析的工程技术。
其基本原理是将结构离散为有限数量的简单元素(如三角形、四边形等),通过对这些元素的力学性质进行计算,再整合得到整个结构的行为。
有限元分析的具体步骤如下:
1. 离散化:将结构划分为一系列连续或间断的有限元素,并确定每个元素的节点。
常用的有限元素包括线元、面元和体元。
2. 建立元素方程:通过对各个元素应用力学原理,建立每个元素的力学方程。
根据结构的不同特性,可以考虑各向同性或各向异性。
3. 组装方程:将各个元素的力学方程组装成整个结构的方程系统。
通过将节点的位移和力进行连接,形成整个结构的整体方程。
4. 约束和加载:根据实际问题,对结构施加特定的边界条件和加载情况。
这些条件可以是强制性的约束(如固定支座)或施加的外部载荷。
5. 求解方程:通过数值计算方法求解组装的方程系统,得到各个节点的位移、应力和应变等。
常用的方法有直接法(如高斯消元法)和迭代法(如共轭梯度法)。
6. 后处理:根据求解结果,对结构的应力、变形等进行分析和评估。
可以绘制各个节点或元素的位移云图、应力云图等。
有限元分析的优势在于可以较好地描述非线性、动力学和多物理场等复杂问题,并可以在设计阶段提供有用的指导。
然而,有限元分析也有一些限制,如需要对结构进行合理的离散化、对结果进行验证以及计算资源的消耗等。
因此,在进行有限元分析时,需要合理选择计算模型和方法,并结合实际情况进行综合分析和判断。
有限元分析及应用有限元分析是一种数值计算方法,用于解决各种工程和科学领域中的复杂问题。
该方法基于物体或结构的离散性近似模型,将其分割成许多小的子领域,进而进行数学求解。
有限元分析广泛应用于结构力学、流体力学、电磁学、热传导等领域,在工程设计、产品开发和科学研究中发挥着重要作用。
一、有限元分析的原理有限元分析的核心原理是将一个复杂的物体或结构离散为许多互相连接的小尺寸单元,如三角形或四边形。
每个单元被视为一个小的、局部的子问题,并假设在每个单元内部的场变量(如位移、温度、电势等)为局部常数。
根据这一假设,可以建立一个局部方程来描述每个单元内部的行为。
为了求解整个系统的行为,将这些局部方程组合为一个整体方程组,并且采用边界条件来限制解的自由度。
然后,通过求解整体方程组,就可以得到整个系统在给定加载条件下的响应。
二、有限元分析的步骤有限元分析通常需要经过以下几个步骤:1. 几何建模:将待分析的物体或结构建立几何模型,包括定义节点、边界和连接关系等。
2. 单元划分:将几何模型划分为许多小的单元,选择合适的单元类型和尺寸。
3. 材料属性和加载条件:分配材料属性和加载条件给每个单元,如材料的弹性模量、材料的线性或非线性特性以及加载的力、温度等。
4. 单元方程建立:根据每个单元的几何形状和材料特性,建立每个单元内部的方程。
5. 整体方程建立:将所有单元的方程组合成一个整体方程,引入边界条件和约束条件。
6. 方程求解:通过数值方法(如矩阵解法)求解整体方程组。
7. 结果后处理:根据求解得到的结果,进行分析和后处理,如位移、应力和应变的计算、轴力图、位移云图等的绘制。
三、有限元分析的应用有限元分析已经应用于各种领域,主要包括以下几个方面:1. 结构力学:有限元分析可以用于评估结构的强度和刚度,预测结构的变形和破坏情况。
它广泛应用于建筑、桥梁、汽车、飞机等结构的设计和优化。
2. 流体力学:有限元分析可以用于模拟流体力学问题,如流体流动、传热和传质等。
有限元的原理有限元分析是一种工程数值分析方法,它利用数学原理和计算机技术,对工程结构的力学行为进行模拟和分析。
有限元分析的原理是将复杂的结构分割成许多小的单元,通过对每个单元的力学行为进行精确描述,最终得到整个结构的力学响应。
本文将从有限元分析的基本原理、步骤和应用进行介绍。
有限元分析的基本原理是离散化方法,它将一个连续的结构分解成有限个单元,每个单元都是一个简单的几何形状,如三角形、四边形等。
然后对每个单元进行力学建模,建立单元的位移场和应力场的数学模型。
通过组合所有单元的数学模型,得到整个结构的位移场和应力场的近似解。
有限元分析的基本原理是基于弹性力学理论,它假设结构在受力作用下是弹性变形,即满足胡克定律。
有限元分析的数学模型通常是一个大型的代数方程组,通过求解这个方程组,得到结构的位移场和应力场。
有限元分析的步骤包括建立有限元模型、施加边界条件、求解代数方程组和后处理结果。
首先,需要对结构进行几何建模,将结构分解成有限个单元,并确定每个单元的材料性质和几何尺寸。
然后,需要施加边界条件,即给定结构的约束条件和外载荷。
接下来,需要将结构的力学行为建立成代数方程组,通常采用有限元法中的单元法则和变分原理。
最后,通过求解代数方程组,得到结构的位移场和应力场,并进行后处理,如应力分布、位移云图等。
有限元分析在工程领域有着广泛的应用,如结构分析、热传导分析、流体力学分析等。
在结构分析中,有限元分析可以用于预测结构的强度、刚度和稳定性,为结构设计提供理论依据。
在热传导分析中,有限元分析可以用于预测结构的温度分布和热传导性能,为热工设计提供支持。
在流体力学分析中,有限元分析可以用于模拟流体在结构内部的流动行为,为流体工程设计提供参考。
总之,有限元分析是一种强大的工程数值分析方法,它通过离散化方法和数学建模,对工程结构的力学行为进行模拟和分析。
有限元分析的原理是基于弹性力学理论,通过求解代数方程组,得到结构的位移场和应力场。
有限元分析及应用有限元分析作为一种数值计算方法,广泛应用于工程领域中的各种结构分析问题。
其基本思想为将复杂的实际结构通过离散化为一个有限个单元,每个单元内部的行为受到基本物理原理的支配,同时单元间的互相作用可以通过相邻节点间的连续性条件进行联系,最终可以得到整个结构的应力、变形等计算结果。
正是由于有限元分析在进行结构分析中的高度有效性,使其成为了工程领域优秀的工具。
自有限元分析方法提出以来,其应用领域逐渐不断拓展。
在建筑领域中,有限元分析可以被用来计算各种建筑结构的静力学和动力学性能,帮助确保建筑的安全性并优化其设计。
在机械工程中,有限元分析可以帮助设计师进行各类零部件和系统的强度、疲劳、热稳定性等的计算,包括汽车、船舶、飞机、火箭等的各种机械结构的分析。
在电子工程领域中,有限元分析可以用来进行各种电子器件中的热学、电磁场以及耦合问题的计算。
在材料科学领域中,有限元分析可以用来进行各种材料中的应力、变形、物理性能的预测,帮助设计出更加高效的材料。
应用有限元方法进行结构分析时,需要选择合适的有限元模型来进行离散化,这需要根据具体问题的需要进行选择。
在离散化后,利用有限元软件进行离散化流程的输入和结果输出。
有限元分析中常用的软件包有ANSYS、ABAQUS、COMSOL 等,它们具备良好的体系结构、流程以及常用算法和概念,能够满足各类不同结构的模拟和计算需要。
在进行有限元分析时,必须保证离散化后的模型能够精确地表达实际结构的内部和边界条件,并且要尽可能地避免数值误差的产生。
这需要考虑诸如模型的精度、单元数量的选择、计算网格及时间步长等方面的问题。
而更加复杂的结构分析问题,则需要进行优化并使用更加高级的有限元分析算法来解决。
有限元分析方法在现代工程技术领域中担任重要角色,为各种复杂结构的设计和应用提供了强有力的支持,也为制造业的提升做出了贡献。
相信,随着技术的不断进步,有限元分析方法在实际应用中发挥更多重要作用的同时,也会不断地得到完善和发展。
有限元分析及应用曹攀有限元分析是一种数值计算方法,用于求解连续介质的力学问题。
它是根据物体的几何形状和材料特性,将物体离散成有限个小单元,通过对每个小单元的力学行为进行分析,以得到整个物体的力学性质。
有限元方法在工程领域广泛应用于结构分析、热传导分析、流体力学分析等方面。
有限元分析的步骤主要包括:建立几何模型、选取合适的有限元模型、确定边界条件、对模型进行求解、分析结果并进行后处理。
其中几何模型是指根据实际情况绘制出物体的形状和尺寸,有限元模型是指对实际模型进行离散化,将其分割成若干有限元单元,并在每个有限元单元上建立适当的数学模型。
边界条件是指在求解过程中给定的边界条件,可以是外载荷、位移约束等。
求解过程是通过将原始微分方程转化为形式简单的代数方程组,然后采用数值方法求解。
最后,利用分析得到的结果进行后处理,比如计算应力、应变、变形等。
有限元分析的优点在于可以对非常复杂的物体进行分析。
对于那些无法通过解析方法求解的问题,有限元分析可以提供数值解。
此外,有限元方法还能够考虑材料的非线性力学行为、几何非线性、热力耦合等问题。
它可以为实际工程设计提供重要的参考数据,如结构的安全性、疲劳寿命等。
有限元分析在工程领域有广泛的应用。
在结构分析方面,有限元方法可以用来评估结构的强度、刚度、稳定性等。
在热传导分析方面,它可以用来预测材料的温度分布和热流传递。
在流体力学分析方面,有限元方法可以用于研究流体的流动行为、压力分布等。
此外,有限元分析还可以应用于电磁场分析、声学分析等领域。
总而言之,有限元分析是一种基于离散化的数值计算方法,用于求解力学问题。
它可以对复杂的工程问题进行分析,并提供重要的设计指导。
由于其广泛的应用领域和高效的计算能力,有限元分析已成为工程设计和科学研究中不可或缺的工具。
机械设计中的整体结构分析技术1. 有限元分析(FEA):有限元分析是一种数值模拟技术,通过将复杂结构分解成小的有限元网格单元,然后对每个单元进行力学分析,最终得出整体结构的应力、应变和变形等信息。
有限元分析可以帮助工程师发现结构中的弱点及潜在的失效点,并设计出更加优化的结构。
2. 基于解析方法的结构分析:除了有限元分析外,基于解析方法的结构分析也是常用的技术。
这种方法通常适用于简单结构的分析,在结构具有几何对称性和简单加载条件的情况下特别有效。
3. 疲劳分析:疲劳是很多机械设备失效的主要原因之一。
通过对整体结构的疲劳分析,工程师可以评估结构在循环加载条件下的寿命,并确定潜在的疲劳裂纹和失效点。
4. 结构优化:一旦整体结构分析完成,工程师可以使用结构优化技术来改善设计。
结构优化可以通过调整结构的材料、几何形状和参数等来达到最佳设计目标,如减轻重量、提高刚度等。
综上所述,整体结构分析技术在机械设计中起着至关重要的作用。
通过这些技术,工程师可以发现问题、优化设计,并最终确保机械设备的性能和可靠性。
在机械设计中,整体结构分析技术对于确保产品的性能、可靠性和安全性至关重要。
采用整体结构分析技术,工程师可以在设计阶段发现潜在问题和缺陷,从而提前进行优化和改进,避免在产品实际使用中出现故障和损坏。
下面将继续介绍一些其他常用的整体结构分析技术。
5. 热分析:在一些机械设计中,尤其是涉及高温、高压、热膨胀等环境的情况下,需要进行热分析。
热分析不仅能够评估结构在高温环境下的稳定性和热膨胀引起的变形情况,同时还可以预测热应力和热疲劳问题,确保设计能够在各种极端温度条件下正常运行。
6. 振动分析:对于高速旋转机械设备或受到振动影响的结构,振动分析是必不可少的。
振动分析用于评估结构在振动环境下的动态响应,包括共振频率、模态分析、振动幅值等,以及振动对结构寿命和性能的影响。
通过振动分析,工程师可以优化结构以降低振动幅度,避免共振现象的发生,确保产品在振动环境中的稳定性。
基于有限元法的K型井架结构分析
陈 可1,付海龙2
(1.南通大学基建处,江苏 南通 226007; 2.大庆石油学院机械科学与工程学院.黑龙江 大庆 163318)
摘要:利用有限元法分析了K型石油钻机井架结构,获得了其结构静力特性和结构屈曲因数,并得到井架固有频
率和振型.计算结果表明,JJ162/42-K型石油钻机井架在设计钩载作用下,最大位移出现在井架顶部.最大应力集中在
2个前立柱上的第2.第3大节处.
关键词:井架结构;有限元法;稳定性;模态分析
中图分类号:TE923 文献标识码:A 文章编号:1000-1891(2006)06-0049-02