高一数学线面平行的性质定理
- 格式:ppt
- 大小:915.50 KB
- 文档页数:26
精选高一数学必考知识点总结三篇数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在数学上失分很多;在平时的学习和考试中同学们要善于总结知识点,这样有助于帮助同学们学好数学。
高一数学必考知识点总结(一)集合常用大写拉丁字母来表示,如:A,B,C 而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c 拉丁字母只是相当于集合的名字,没有任何实际的意义。
将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={} 的形式。
等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。
常用的有列举法和描述法。
1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。
{1 ,2,3,}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。
{x|P}(x 为该集合的元素的一般形式,P 为这个集合的元素的共同属性)如:小于的正实数组成的集合表示为:{x|03.图示法(venn 图)﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。
集合自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0 的自然数集合,记作N_(2)非负整数集内排除0 的集,也称正整数集,记作Z+;负整数集内也排除0 的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。
Q={p/q|pZ,qN,且p,q 互质}( 正负有理数集合分别记作Q+Q-)(5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作 C 集合的运算:集合交换律AB=BAAB=BA 集合结合律(AB)C=A(BC)(AB)C=A(BC) 集合分配律A(BC)=(AB)(AC)A(BC)=(AB)(AC) 集合德.摩根律集合Cu(AB)=CuACuBCu(AB)=CuACuB 集合容斥原理在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合 A 的元素个数记为card(A)。
2.2.1 直线与平面平行的判定课型:新授 编写:尚辉 袁长涛 滕璐 聂东林 校审:高一数学组 基础知识:1.直线与平面有几种位置关系?用三种语言表述。
2.判断两条直线平行,常用的有几种方法?3.根据定义,判定直线与平面是否平行,只需判定直线与平面有没有公共点。
但是,直线是无限伸长的,平面是无限延展的,如何保证直线与平面没有公共点呢?用三种语言表述直线与平面平行的判定定理。
4.我们知道平行线有传递性,线面的平行有传递性吗?学习任务: 一、必做题:1.如图,长方体1111D C B A ABCD -中,(1)与AB 平行的平面是____________________; (2)与AA 1平行的平面是____________________; (3)与AD 平行的平面是____________________;2.如图,正方体1111D C B A ABCD -中,E 为1DD 的中点,试判断1BD 与平面AEC 的位置关系, 并说明理由。
3.如图,在空间四边形ABCD 中,已知E 、F 分别是AB 、AD 的中点。
求证:EF ∥平面BCD二、选做题:1.下列命题中正确的个数是 ( ) (1)若直线l 上有无数个点都不在平面α内,则α//l ;(2)若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行;(3)如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行; (4)若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点; (5)平行于同一平面的两条直线互相平行。
A.0个B.1个C.2个D.3个2.如图,在正方体1111D C B A ABCD -中,E 、F 分别是棱BC 、C 1D 1的中点,求证:EF//平面BDD 1B 1。
3.如图,在四棱锥ABCD P -中,已知底面ABCD 为平行四边形,E 、F 分别是AB ,PD 的中点。
求证://AF 平面PCE ;学习报告(学生): 教学反思(教师):2.2.1 直线与平面平行的判定课型:习题 编写:尚辉 袁长涛 滕璐 聂东林 校审:高一数学组BAD CEP 1.判断对错(1)直线a 与平面α不平行,即a 与平面α相交. ( ) (2)直线a ∥b ,直线b 平面α,则直线a ∥平面α. ( ) (3)直线a ∥平面α,直线b 平面α,则直线a ∥b . ( )2.直线与平面平行的条件是这条直线与平面内的 ( ) A.一条直线不相交 B.两条直线不相交 C.任意一条直线不相交 D.无数条直线不相交3.过空间一点作与两条异面直线都平行的平面,这样的平面 ( ) A 不存在 B 有且只有一个或不存在 C 有且只有一个 D 有无数个4.下列三个命题正确的个数为 ( ) (1)如果一条直线不在平面内,则这条直线与该面平行 (2)过直线外一点,可以作无数个面与该面平行(3)如果一条直线与平面平行,则它与平面内的任意直线平行 A 0 B 1 C 2 D 35.已知三条互相平行的直线c b a ,,中,,,βα⊂⊂c b a 、则两个平面βα,的位置关系是( ) A.平行 B.相交 C.平行或相交 D.重合6.与两个相交平面的交线平行的直线和这两个平面的位置关系是( ) A.都平行 B.都相交 C.在这两个平面内 D.至少和其中一个平面平行 7.如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点,求证:PD //平面MAC .8.如图,ABCD 是平行四边形,S 是平面ABCD 外一点,M 为SC 的中点. 求证://SA 平面MDB .9.如图,在四棱锥ABCD P -中,底面ABCD 是正方形,E 是PC 的中点.证明://PA 平面EDB ;10.如图,在底面为平行四边形的四棱锥ABCD P -中,点E 是PD 的中点.求证://PB 平面AEC .C D A BM PP ABCDEO11.在三棱柱111C B A ABC -中,D 为BC 中点.求证:1//A B 平面1ADC ;12.已知在四棱锥ABCD P -中,ABCD 为平行四边形,E 是PC 的中点,O 为BD 的中点. 求证://OE 平面ADP13.如图,在直三棱柱111C B A ABC -中,D 为AC 的中点,求证:;平面D BC AB 11//14.如图,在四棱锥ABCD P -中,底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点.求证://MN 平面PAD .2.2.2 平面与平面平行的判定 课型:新授 编写:尚辉 袁长涛 滕璐 聂东林 校审:高一数学组 基础知识:1.平面与平面有几种位置关系?用三种语言表述。
立体几何一、立体几何网络图:(1)线线平行的判断:⑴平行于同一直线的两直线平行。
⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
⑿垂直于同一平面的两直线平行。
(2)线线垂直的判断:⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。
⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。
补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
(3)线面平行的判断:⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。
(4)线面垂直的判断:⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。
(5)面面平行的判断:⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。
⒀垂直于同一条直线的两个平面平行。
(6)面面垂直的判断:⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。
二、其他定理:(1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。
高中数学必修二知识点总结数学和语文这一学科其实也差不多,数学也有很多知识点是要背的。
下面是作者给大家整理的一些高中数学必修二知识点总结学习资料,期望对大家有所帮助。
高一数学必修二知识点归纳总结1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判定函数奇偶性可用定义的等价情势:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判定其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;高二数学必修二知识点总结整理一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
高一数学重点知识点总结梳理(最新10篇)高一数学知识点总结复习篇一(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行——没有公共点;两个平面相交——有一条公共直线。
a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0°,180°](3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。
记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)高一数学知识点总结复习篇二1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x⊥[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
高一必修二数学知识点笔记归纳1.高一必修二数学知识点笔记归纳篇一二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角2.高一必修二数学知识点笔记归纳篇二空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么其中一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)3.高一必修二数学知识点笔记归纳篇三棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的的性质:(1)侧棱交于一点。
侧面都是三角形(2)平行于底面的截面与底面是相似的多边形。