冶金工程概论复习要点说课材料
- 格式:ppt
- 大小:1.05 MB
- 文档页数:12
冶金工程概论范文一、冶金学科的发展历程。
冶金学科的起源可以追溯到几千年前的古代,随着人类文明的进步,冶金技术得到了长足的发展。
从最早的青铜器时代到现代的高新技术时代,冶金学科经历了许多变革和突破。
通过对冶金学科的发展历程的研究,可以了解到冶金学科的演变和发展趋势。
二、冶金学科的基本概念和原理。
冶金学科是一门综合性的学科,涉及到物理、化学、材料学等多个学科的知识。
在冶金工程概论中,需要对这些基本概念和原理进行介绍和讲解,使学生对冶金学科有一个整体的认识和理解。
三、冶金工程的基本原理和流程。
冶金工程是冶金学科的一个重要分支,它主要研究金属物质的提取、加工和利用等方面的问题。
在冶金工程概论中,需要对冶金工程的基本原理和流程进行详细的介绍,包括矿石的选矿、提炼和精炼等过程,以及金属材料的加工和应用等方面的知识。
四、冶金工程的应用领域和发展前景。
冶金工程是一门应用性很强的学科,它的研究成果可以广泛应用于工业、建筑、交通等各个领域。
在冶金工程概论中,需要对冶金工程的应用领域和发展前景进行介绍,让学生了解到冶金工程的重要性和发展前景。
五、冶金工程的国内外发展情况。
冶金工程在国内外都有着重要的地位和作用,在不同国家和地区都有不同的研究重点和发展方向。
在冶金工程概论中,需要对冶金工程的国内外发展情况进行介绍,让学生了解到冶金工程的国际化发展趋势和合作交流的重要性。
冶金工程概论是冶金工程专业的基础课程,对于学生的综合素质培养和冶金工程专业知识的掌握有着重要的作用。
通过学习冶金工程概论,学生可以了解到冶金学科的基本概念和原理,了解到冶金工程的基本原理和流程,了解到冶金工程的应用领域和发展前景,以及了解到冶金工程的国内外发展情况,对于学生进一步深入学习和研究冶金工程专业有着重要的指导作用。
总之,冶金工程概论是冶金工程专业的基础课程,通过学习该课程,可以了解到冶金学科的基本概念和原理,掌握冶金工程的基本原理和流程,了解冶金工程的应用领域和发展前景,以及了解冶金工程的国内外发展情况,对于学生深入学习和研究冶金工程专业具有重要的指导作用。
主要内容1、2 钢铁工业1、3 钢铁冶炼1、4钢铁产品及副产品1、5 钢铁工业能耗及能源1、6 耐火材料1、7环境保护1、1 冶金基本概念1、1、1 冶金学1、1、2 火法冶金主要过程简介1、1冶金基本概念:冶金学就是一门研究如何经济地从矿石或其它原料中提取金属或金属化合物,并用一定加工方法制成具有一定性能得金属材料得科学。
由于矿石性能不同,提取金属得原理、工艺过程与设备不同,从而形成专门得冶金学科—冶金学。
冶金学研究所涉及得内容:金属得制取,金属得加工,金属性能得改进→对金属成分、组织结构、性能与相关理论得研究。
冶金学得分类☐提取冶金(extractivemetallurgy):从矿石中提取金属及金属化合物得过程,因其中进行很多化学反应,又称化学冶金(chemical metallurgy)。
提取冶金得分类1、1、2 火法冶金主要过程简介1干燥:去水,温度为400~600℃。
2焙烧:以改变原料组成为目得得、在低于矿石熔点温度下、在特定气氛中进行得冶金过程。
3煅烧:在空气中以去CO2与水为目得得冶金过程。
4烧结与球团:以获得特定矿物组成、结构及性能得造块。
5熔炼:还原氧化物,提取粗金属。
6精炼:氧化杂质,获得纯金属。
7铸造:液态金属凝固成固态。
1、2钢铁工业1、2、1钢铁材料1、2、2 钢与生铁得区别1、2、3 钢铁冶炼技术发展简史1、2、4我国钢铁工业得发展1、2、1 钢铁材料☐钢铁就是使用最多得金属材料原因:储量大;冶炼加工容易;综合性能好;易改质处理☐预计未来几年钢铁产品在各行业中占得比例Array 1、2、3 钢铁冶炼技术发展简史☐远古至13世纪末:半熔融状态得铁块—海绵铁;☐13世纪末至19世纪中叶:☐熔融状态得生铁→粗钢,形成两步法炼钢;☐19世纪中期至今:➢1856年英国人发明了空气底吹酸性转炉炼钢法;➢1864年法国人发明了平炉炼钢法;➢1874年发明了空气底吹碱性转炉炼钢法;➢20世纪初发明了电弧炉炼钢;➢20世纪中叶氧气顶吹转炉(LD法)。
冶金工程知识概述冶金工程是一门关于金属材料的加工与应用的学科,它涉及到金属材料的提取、制备、加工、性能评估等方面。
本文将对冶金工程的基本知识进行概述,包括冶金工程的定义、发展历史、主要分支和应用领域等内容。
一、冶金工程的定义冶金工程是一门研究金属材料的加工与应用的学科,其目的是通过改变金属材料的组织结构和性能来满足不同工程领域的需求。
冶金工程主要包括金属材料的提取、制备、加工和性能评估等方面。
二、冶金工程的发展历史冶金工程作为一门学科,其发展历史可以追溯到古代。
在古代,人们通过熔炼和锻造等方法,将天然金属提取出来,并加工成各种实用工具。
随着社会的发展,冶金工程逐渐成为一门独立的学科,并在工业革命时期得到了迅猛发展。
在工业革命时期,冶金工程得到了前所未有的发展。
人们发明了高炉、转炉等先进的冶炼设备,使得金属材料的生产效率大大提高。
同时,冶金工程的理论研究也取得了重要进展,为冶金工程的发展奠定了坚实的基础。
三、冶金工程的主要分支冶金工程是一个综合性学科,涉及到多个分支领域。
以下是冶金工程的主要分支:1. 冶金物理化学:研究金属材料的相变规律、热力学性质和反应动力学等方面的知识。
2. 冶金原理与工艺:研究金属材料的提取、制备和加工工艺,包括熔炼、铸造、锻造、挤压等工艺过程。
3. 材料加工与表征:研究金属材料的加工方法和技术,包括金属的切削、焊接、热处理等加工过程,以及对材料性能进行测试和表征的方法。
4. 金属材料与工程应用:研究金属材料的性能评估和应用,包括金属的力学性能、耐腐蚀性能、导热性能等方面的研究。
四、冶金工程的应用领域冶金工程的应用领域非常广泛,涵盖了各个工程领域。
以下是冶金工程的一些主要应用领域:1. 金属材料工业:冶金工程在金属材料的生产和加工方面发挥着重要作用,包括钢铁、有色金属等行业。
2. 汽车工业:冶金工程在汽车制造中起着关键作用,包括车身结构、发动机部件等方面的材料选择和加工。
3. 航空航天工业:冶金工程在航空航天领域的应用非常广泛,包括航空发动机、航天器结构材料等方面的研究和应用。
钢铁冶金学知识点总结一、钢铁冶金学概述钢铁是一种重要的金属材料,广泛用于建筑、机械、汽车、电子、航空航天等行业,对于国民经济的发展起着至关重要的作用。
钢铁冶金学是研究如何通过冶炼和加工原料来生产各种类型钢铁的学科。
本文将系统地介绍钢铁冶金学的相关知识,涉及原料、冶炼工艺、合金设计、热处理等内容。
二、原料1. 铁矿石铁矿石是钢铁冶金的原料,常见的有褐铁矿、赤铁矿、磁铁矿等,其中以赤铁矿和磁铁矿为主要产状。
从原料稀缺角度来看,赤铁矿资源相对较丰富,但使用赤铁矿需要高温还原,而且其资源储量日益减少。
而磁铁矿则容易熔化,且熔点低,深受炼铁企业的喜爱。
2. 焦炭和燃料焦炭是冶金煤炭经高温干馏后得到的一种多孔性炭质燃料,是高炉炼铁的原料之一。
燃料也是冶金中常用的燃烧材料,其中包括煤、焦炭、天然气等。
3. 废金属资源钢铁冶金中还需要利用废钢、废铁等废弃金属资源进行熔炼,以提高资源利用率,降低能源消耗。
三、冶炼工艺1. 高炉冶炼高炉是一种用于生产铁水、生铁或合金铁的设备。
高炉内的冶炼过程较为复杂,主要包括炉料下料→还原→熔融→炉渣→收得铁水等步骤。
2. 炼钢炉冶炼炼钢炉冶炼采用的设备主要有转炉炼钢炉、电弧炉、氧气顶吹炼钢炉和底吹熔融锅炉等,是将生铁或铸铁通过熔化、脱碳、脱磷、分别半湿废气、装料等工艺,生产出合格钢的过程。
4. 电炉冶炼电炉冶炼是利用电能将废钢、废铁、生铁等熔化成合格的熔铁或合金。
其主要特点是能耗低、操作简便、保护环境等。
四、合金设计1. 合金元素合金元素是各种金属或非金属元素的混合物。
在钢材中,合金元素可以显著改变钢的组织和性能。
主要的合金元素有碳(C)、锰(Mn)、钒(V)、铬(Cr)、钼(Mo)、镍(Ni)、铜(Cu)、钛(Ti)等。
2. 合金设计合金设计即根据钢材的使用要求和生产条件,选取合适的合金元素和比例,调整钢的成分和组织结构,以获得理想的性能和工艺性。
3. 合金设计的原则合金设计应根据具体用途确定设计要求。
冶金专业的知识点总结1. 冶金原理冶金原理是冶金学的基础,包括材料的结构和性能、金属材料的晶体学、相变规律和固溶体理论等内容。
通过研究冶金原理可以了解材料的组织结构和性能,为材料的改性、加工和应用提供理论基础。
2. 冶金矿物学冶金矿物学是研究矿石和矿石中的矿物成分、物理性质、化学性质及其对冶金过程的影响的学科。
它是冶金学的基础,对于冶金工艺的选择、优化和改进具有重要的指导意义。
3. 冶金冶炼冶金冶炼是将矿石中的有用金属提取出来的过程,包括熔炼、浸出、氧化焙烧、化学反应等多种冶金工艺。
冶炼技术的发展和改进对于提高金属回收率、降低生产成本、减少环境污染具有重要意义。
4. 冶金提纯冶金提纯是对金属进行提纯处理,去除杂质,改善金属的纯度和性能。
提纯方法包括火法、湿法、电解、蒸馏等多种技术,不同的金属和不同的杂质适用不同的提纯方法。
5. 冶金合金合金是由两种或两种以上的金属或者非金属加工而成,具有优良的性能,可以满足特定的使用要求。
冶金合金包括结构合金、功能合金、特种合金等多种类型,广泛应用于航空、航天、电子、医疗、汽车等领域。
6. 冶金材料冶金材料是指由金属和非金属组成的各种工程材料,包括金属材料、非金属材料、复合材料等。
冶金材料的性能与组织结构密切相关,通过合理的材料设计和加工工艺可以获得优良的材料性能。
7. 冶金热加工热加工是通过变形加工来改变金属材料的形态和性能的技术,包括锻造、轧制、挤压、锻打等多种工艺。
热加工是冶金材料加工的重要方法,可以提高材料的塑性、韧性和强度。
8. 冶金化学冶金化学是研究金属及非金属材料的化学性质与变化规律的学科,包括金属氧化还原反应、金属的挥发性、金属的溶解度等内容。
冶金化学对于理解金属材料的性能和应用具有重要作用。
9. 冶金工艺冶金工艺是针对特定金属材料的生产过程,包括冶金装备、工艺流程、生产管理等内容。
冶金工艺的发展和改进对于提高生产效率、降低生产成本、提高产品质量和市场竞争力具有重要意义。
第一篇冶金熔体第一章冶金熔体概述1。
什么是冶金熔体?它分为几种类型?在火法冶金过程中处于熔融状态的反应介质和反应产物(或中间产品)称为冶金熔体.它分为:金属熔体、熔渣、熔盐、熔锍。
2.何为熔渣?简述冶炼渣和精炼渣的主要作用.熔渣是指主要由各种氧化物熔合而成的熔体。
冶炼渣主要作用在于汇集炉料中的全部脉石成分,灰分以及大部分杂质,从而使其与熔融的主要冶炼产物分离。
精炼渣主要作用是捕集粗金属中杂质元素的氧化物,使之与主金属分离。
3.什么是富集渣?它与冶炼渣的根本区别在哪里?富集渣:使原料中的某些有用成分富集与炉渣中,以便在后续工序中将它们回收利用。
冶炼渣:汇集大部分杂质使其与熔融的主要冶炼产物分离。
4.试说明熔盐在冶金中的主要应用。
在冶金领域,熔盐主要用于金属及其合金的电解生产与精炼。
熔盐还在一些氧化物料的熔盐氯化工艺以及某些金属的熔剂精炼法提纯过程中广泛应用。
第二章冶金熔体的相平衡图1. 在三元系的浓度三角形中画出下列熔体的组成点,并说明其变化规律.X :A 10% ,B 70% ,C 20% ;Y :A 10% ,B 20% , C 70%;Z :A 70%,B 20% ,C 10%;若将3kg X 熔体与2kg Y 熔体和5kg Z 熔体混合,试求出混合后熔体的组成点。
2.下图是生成了一个二元不一致熔融化合物的三元系相图(1)写出各界限上的平衡反应(2)写出P、E两个无变点的平衡反应(3)分析下图中熔体1 、2 、3 、4 、5 、6 的冷却结晶路线.3.在进行三元系中某一熔体的冷却过程分析时,有哪些基本规律?答:1 背向规则 2杠杆规则 3直线规则 4连线规则5 三角形规则 6重心规则 7切线规则 8共轭规则等第三章冶金熔体的结构1。
熔体远距结构无序的实质是什么?2.试比较液态金属与固态金属以及液态金属与熔盐结构的异同点。
3.简述熔渣结构的聚合物理论。
其核心内容是什么?第四章冶金熔体的物理性质1。
名词解释1、冰铜:冰铜是在熔炼过程中产生的重金属硫化物为主的共熔体,是熔炼过程的主要产物之一,是以Cu2S-FeS系为主并溶解少量其它金属硫化物、贵金属、铂族金属、Se、Te、As、Sb、Bi等元素及微量脉石成分的多元系混合物。
2、闪速熔炼:闪速熔炼是将经过深度脱水的粉状精矿,在喷嘴中与空气或氧气混合后,以高速度从反应塔顶部喷入高温反应塔内进行熔炼的方法。
3、碱性精炼:是加碱于熔融粗金属中,使氧化后的杂质与碱结合成盐而除去的火法精炼方法。
4、碱性炉渣:5、酸性炉渣:6、直接炼铅:利用硫化铅精矿粉料在迅速氧化过程中放出大量的热,将炉料迅速熔化,产出液态铅和熔渣,同时产出少量的高So2浓度的烟气,使硫得以回收的冶金过程。
7、槽电压:阳极压降、阴极压降、母线压降、分解和极化压降、电解质压降的总和。
8、电流效率:是指在电解槽通过一定电量时,阴极实际析出的金属量与理论应析出的金属量的百分比,9、沸腾焙烧:沸腾焙烧是强化焙烧过程的新方法,是使空气以一定速度自下而上地吹过固体炉料层,固体炉料粒子被风吹动互相分离,并作不停的复杂运动,运动的粒子处于悬浮状态,其状态如同水的沸腾,因此称为沸腾焙烧。
10、冰镍:熔有金属的硫化物熔体。
11、还原硫化熔炼:冰镍和冰铜相似,也是硫化物的熔体。
由于这种熔炼方法是将矿石中的镍、钴和部分铁还原并使其硫化为金属硫化物与熔渣分开,故称还原硫化熔炼。
12、硬头:在还原熔炼时,少量的铁与锡一道被还原,生成各种成分的合金,称为硬头。
13、灰吹:将贵铅进行氧化熔炼14、贵铅:工业上称Ag-Pb合金为贵铅。
15、氰化法:用含氧的氰化物溶液,浸出矿石或精矿中的金银,再从浸出液中回收金银的方法称为氰化法。
16、汞齐化:将汞与含金矿粉混合,磨细,使汞首先对金湿润,继而溶解金形成汞膏,汞膏组成由不均匀至均匀直至接近Au2Hg成分的过程称为汞齐化,将金从含金矿石中提取出来的方法,称为混汞法。
17、炭浆法:用活性炭直接从氰化浸出矿浆中吸附金银的方法,称为炭浆法,该法不仅可省去传统氰化法中的液固分离工序,还有利于氰化浸出率的提高。
冶金技术知识点总结一、冶金材料的分类1. 金属材料金属材料是冶金工程中最常见的材料类型。
金属材料包括钢、铁、铝、铜、镍、铅等。
这些金属材料在工程上应用广泛,用于制造建筑结构、机械零件、航空航天器件等。
2. 非金属材料非金属材料包括陶瓷、聚合物、复合材料等。
这些材料在一些特定的工程领域有着独特的应用,例如陶瓷用于制造耐高温零件,聚合物可以制成轻量化机械零件,复合材料则具有高强度和低密度的特点。
3. 半导体材料半导体材料是一种特殊的材料,具有介于导体和绝缘体之间的电性能。
半导体材料主要用于电子工业,如制造集成电路、太阳能电池、光电器件等。
4. 稀土金属稀土金属是指一类在地壳中含量较少,但在工业和科学领域有着重要应用价值的金属元素。
稀土金属被广泛应用于制造永磁材料、催化剂、光学玻璃等领域。
二、冶金工艺流程1. 矿石开采矿石开采是冶金工程的第一步,它涉及到对矿石矿床进行勘探,确定资源储量和品位,并设计开采方案。
矿石包括金属矿石和非金属矿石,通过不同的采矿方法,如露天开采、深层开采、浮选等,将矿石从地下或地表开采出来。
2. 矿石预处理矿石预处理通常包括破碎、磨矿等工艺,目的是将矿石加工成适合冶炼的细粉状物料。
这些处理过程有利于提高矿石中有用矿物的浓度和提高冶金回收率。
3. 冶炼冶炼是将矿石中的金属物质提取出来的过程。
常见的冶炼工艺包括焙烧、炼炉冶炼、电炉冶炼等。
冶炼过程中,矿石、还原剂和助熔剂在高温环境下发生一系列的物理和化学反应,从而将金属从废渣中分离出来。
4. 精炼精炼是冶金工程中的重要环节,目的是提高金属的纯度和改善其物理和化学性能。
精炼工艺通常包括火法精炼、湿法精炼、电解精炼等方法,通过去除杂质和控制合金成分,从而获得高质量的金属产品。
5. 成型加工成型加工是将金属材料加工成所需形状和尺寸的工艺。
这包括锻造、轧制、挤压、铸造、焊接等加工方法,用于生产各种铸件、锻件、型材和零件。
6. 热处理热处理是针对金属材料的晶体结构和力学性能进行调控的工艺。