跟材料学有关的论文
- 格式:docx
- 大小:28.47 KB
- 文档页数:12
有关材料学的论⽂ 材料学是研究材料组成、结构、⼯艺、性质和使⽤性能之间的相互关系的学科,为材料设计、制造、⼯艺优化和合理使⽤提供科学依据。
下⽂是店铺为⼤家搜集整理的有关材料学的论⽂的内容,欢迎⼤家阅读参考! 有关材料学的论⽂篇1 浅析纳⽶⼆氧化硅改性环氧树脂复合材料的性能 随着信息产业的飞速发展,⼈类社会正稳步朝着⾼度信息化的⽅向发展,信息处理与信息通讯正构成⾼度信息化科学技术领域发展中的两⼤技术⽀柱.以⾼速计算机、⽰波器、IC测试仪器为主体的信息处理技术追求信息处理的⾼速化、容量的增⼤化和体积的⼩型化;以⼿机、卫星通讯及蓝⽛技术等为代表的信息通讯技术追求多通道数、⾼性能化和多功能化,使得使⽤频率不断提⾼,进⼊⾼频甚⾄超⾼频领域.在⾼频电路中,由于基板介电常数越低,信号传播得越快;基板的介电常数越⼩,损耗因数越⼩,信号传播的衰减越⼩,因此,要实现⾼速传输、低能量损耗与⼩的传输延时,则对基板材料提出了更⾼的要求,即要求基板材料为低ε、低tanδ. 此外,⾼的耐热性,低的吸⽔性和⾼的尺⼨稳定性也是⾼频电路对基板材料的基本要求.传统的基板材料(FR4)所⽤的基体树脂主要为环氧树脂,因其成本低、⼯艺成熟⽽在印刷电路板中⼤量使⽤;但作为⾼频电路基板材料,却暴露出介电性能低劣、耐热性不佳、热膨胀率偏⾼、耐湿性差等缺陷.因此开发适合⾼频电路基板材料⽤的树脂体系是印刷电路板⾏业⽬前研究的⼀个重要⽅向,⽽对EP进⾏改性并借助EP较为成熟的⽣产和加⼯⼯艺研究、开发和制备新型的树脂体系,是制备⾼性能电路基板的⼀条⾮常经济有效的途径[3-5] . 研究表明,⽆机纳⽶粒⼦弥散分布的树脂基体材料,由于纳⽶粒⼦具有的表⾯特性和晶体结构使基体材料显⽰出⼀系列优异的性能,其中纳⽶SiO2 改性树脂基体具有很多优异的性能[8-10],但纳⽶SiO2表⾯存在⼤量的羟基使其表现为亲⽔性、易团聚,贮存稳定性差等缺点.因此纳⽶颗粒在树脂中的均匀分散是制备⾼性能纳⽶颗粒弥散分布有机树脂的⼀个重要环节. 本⽂采⽤硅烷偶联剂KH570改性纳⽶SiO2粉体,通过共混法制备了⾼性能SiO2EP树脂复合材料,并对其微观结构、热稳定性和介电性能进⾏研究. 1、实验部分 1.1原料 纳⽶SiO2质量分数≥99.5%,粒径15 nm,杭州万景新材料有限公司;苯(A.R.)、⼆甲苯(A.R.)、⽆⽔⼄醇、H2O2 (30 %,A.R.),γ2(甲基丙烯酰氧)丙基三甲氧基硅烷(A.R. KH570)、环氧树脂(E44,6101)(湖南三雄化⼯⼚)、固化剂聚酰亚胺(低分⼦650)(湖南三雄化⼯⼚). 1.2SiO2改性环氧树脂复合材料的制备 参考⽂献[11],采⽤γ2(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)对纳⽶SiO2进⾏表⾯改性处理得到亲油性纳⽶SiO2粉体. SiO2改性环氧树脂复合材料的制备⼯艺如下(以2% SiO2EP为例):取2 g亲油性SiO2粉体,超声分散于80 mL⼆甲苯中,然后加⼊49 g环氧树脂,搅拌均匀后再加⼊49 g的聚酰胺固化剂,超声分散搅拌均匀,最后将混合体系倾⼊铝制模具中,放置于烘箱中先于120 ℃预固化2 h,再升温⾄150 ℃固化3 h,最后于180 ℃固化1 h得最终试样. 为对⽐不同试样的性能,采⽤相同⼯艺制备了未添加纳⽶SiO2的EP.不同组成的试样编号如表1所⽰. 1.3性能测试 采⽤傅⽴叶变换红外光谱(FTIR,Avatar360,Nicolet)研究改性纳⽶SiO2前后,不同试样中化学键的变化,判断可能发⽣的反应.操作条件:采⽤KBr压⽚法制样,测量的波长范围为(4 000~400) cm-1. 采⽤扫描电⼦显微镜(SEM,JSM6700F,Jeol)表征微观形貌,观察纳⽶颗粒在复合材料中的分散情况. ⽤STA449C综合热分析仪研究试样的热稳定性.操作条件:样品质量为25~35 mg,Ar流量为50 mL?min-1,升温速率为10 ℃?min-1,温度变化范围为(0~800) ℃. 介电常数是指介质在外加电场时会产⽣感应电荷⽽削弱电场,在相同的原电场中某⼀介质中的电容率与真空中的电容率的⽐值. 介电损耗是电介质在交变电场中,由于消耗部分电能⽽使电介质本⾝发热的现象.SiO2改性环氧树脂复合材料的介电常数和介电损耗采⽤美国安捷伦公司⽣产的Agilent 4991A⾼频阻抗分析仪测试,测试频率为1 M~1 G,测试夹具为美国安捷伦公司⽣产的Agilent16453A介电性能测试夹具. 2、结果与讨论 2.1FTIR分析 图1为3种试样的红外图谱.对改性纳⽶SiO2⽽⾔,位于1 103 cm-1左右的⼀个宽强峰及812 cm-1附近的⼀个尖峰属于Si-O-Si键的对称振动峰(νSi-O-Si) .波数为1 395 cm- 1 的吸收峰属于νSiO-H的伸缩振动峰;波数为1 637 cm-1 处的吸收峰属于νC = C 的伸缩振动峰,波数为1 606 cm-1 处的吸收峰归属于νC-C的收缩振动峰,这两种化学键均来⾃于硅烷偶联剂KH570,从这⼏个吸收峰来看,硅烷偶联剂已经成功地连接在SiO2表⾯[11-12].同时由于改性纳⽶SiO2中仍存在Si-OH键振动峰,表明偶联剂在纳⽶SiO2表⾯的反应进⾏得并不完全,偶联剂⽤量对SiO2改性效果的影响有待进⼀步研究. 由于聚酰亚胺固化EP材料的官能团较多,本⽂重点分析添加改性SiO2后,相应官能团的变化.对⽐添加改性纳⽶SiO2前后EP的红外吸收,可知纳⽶SiO2在1 395 cm- 1处的峰消失,同时EP材料中出现于1 628 cm-1处的δCO-H和1 405 cm-1处的δN-H的强度降低甚⾄消失,表明硅烷偶联剂和改性纳⽶SiO2与EP树脂材料发⽣了化学反应,导致δCO-H和δN-H吸收峰强度降低或者消失. 波数/cm-1 2.2纳⽶SiO2添加量对EP热稳定性能的影响 图2为不同样品在Ar⽓氛下的热重(TG)曲线和微分热重(DTG)曲线.从图2(a)所⽰TG曲线可以看出,不同组成的试样在Ar⽓氛中的热失重过程相似,在300~500 ℃,在相同的温度下,随SiO2含量的增加,失重率显著升⾼;⽽当失重率相同时,随SiO2含量的增加,复合树脂对应的温度升⾼,表明其热稳定性增加.表2给出了不同试样⼀定失重率对应的温度. 从图2(b)所⽰DTG曲线可以看出,0#试样有两个峰值,这表明EP基体的分解可⼤致分为两个步骤,这两个失重峰对应的分别是环氧树脂基体的热分解和裂解残碳的氧化[13-14].随着添加量的增加,第⼀个峰值逐渐变平缓直到最后消失,⽽失重速率最⼤时对应的峰值温度(见表2)则逐渐升⾼,这也表明随添加量的增加,偶联剂的官能团和改性纳⽶SiO2表⾯残留的Si-OH与基体树脂的官能团发⽣了化学反应,从⽽提⾼了树脂基体的“牢固度”[15].添加量越多,“牢固度”增加的程度越⼤,从⽽导致基体材料的热稳定性逐渐提⾼. 由于环氧树脂及其固化剂含有较多的氧,因此尽管在惰性⽓氛中进⾏热分解研究,但其裂解后的残炭量⼏乎完全消失,残余质量与添加在其中的SiO2量相⼀致[14]. 2.3纳⽶SiO2添加量对EP微观形貌的影响 图3为添加不同纳⽶SiO2颗粒的SiO2/EP复合材料的微观形貌图谱.从图3(a)中可以看出,未添加SiO2的试样断⾯较为粗糙;从图3(b)~(e)可以看出,随SiO2添加量的增加,其在EP中的分布由分散均匀,团聚少(图3(b) 和3(c)),逐步改为团聚明显,分散均匀性差(图3(d) 和3(e)).当添加量为4%时,纳⽶SiO2均匀地分散在EP基体中,粒径约为30 nm,对⽐原始SiO2尺⼨,纳⽶颗粒还存在微弱的团聚现象.随添加量的增加,纳⽶SiO2团聚现象明显增加,当添加量增加到16%时,纳⽶颗粒出现严重的团聚现象,这将影响其介电性能.这种团聚⼀⽅⾯是由于纳⽶颗粒有很⾼的⽐表⾯积,同时由于偶联剂与纳⽶SiO2颗粒表⾯Si-OH反应得并不完全,导致纳⽶颗粒表⾯仍存在Si-OH,这些官能团彼此之间可以发⽣缩合反应导致颗粒团聚. 2.4纳⽶SiO2添加量对EP基体介电性能的影响 2.4.1纳⽶SiO2添加量对EP介电常数的影响 图4为不同试样的介电常数与测试频率的关系曲线图.从图4可以看出,5组试样的介电常数均随着频率的升⾼呈下降趋势.同时随着纳⽶SiO2添加量的增加,试样的介电常数呈先降低后升⾼的趋势.当添加量为4%时,试样的介电常数具有最低值. log(f/Hz) 析认为,当纳⽶SiO2的添加量⼩于4%时,纳⽶SiO2添加到树脂基体后,形成了“ 核壳过渡层”结构,以“核”作为交联点使得复合材料的交联度提⾼,其极性基团取向活动变得困难,因⽽复合材料的介电常数下降.⽽当纳⽶SiO2的添加量⼤于4%时,纳⽶SiO2本⾝介电性能较⾼的影响超过了其对树脂基体极性基团的“束缚”作⽤⽽产⽣了介电性能降低效应,这就导致复合材料介电常数的增加. 2.4.2纳⽶SiO2添加量对EP介电损耗的影响 图5为5种试样的介电损耗随频率的变化曲线.从图5可以看出,试样的介电损耗均随测试频率的增加先升⾼后降低;随着纳⽶SiO2加⼊量的增多呈现先降低后升⾼的趋势.同⼀测试频率下,当纳⽶SiO2的添加量为4%时,材料的介电损耗最低;当纳⽶SiO2的添加量为6%时,材料的介电损耗开始增加;当纳⽶SiO2的添加量为16%时,材料的介电损耗接近纯EP试样的介电损耗. 分析认为,复合材料的介电损耗取决于环氧树脂极性基团的松弛损耗和极性杂质电导损耗的共同作⽤.加⼊纳⽶SiO2后,⼀⽅⾯改性纳⽶SiO2表⾯的官能团可以与聚酰亚胺固化EP中的官能团反应,束缚了树脂基体中极性基团的运动,从⽽降低了松弛损耗;另⼀⽅⾯,改性后的纳⽶颗粒表⾯不可避免地存在⼀些极性基团,这些基团同时增加了电导损耗,复合材料的介电损耗正是这⼆者共同作⽤的结果.当纳⽶SiO2的添加量⼩于6%时,试样的松弛损耗的降低效果⾼于电导损耗的增加效果,所以试样的介电损耗均⽐纯EP的⼩.⽽当纳⽶SiO2的添加量为16%时,纳⽶SiO2出现明显的团聚现象,这就导致松弛损耗的效果迅速降低,从⽽导致试样总体的介电损耗接近纯EP试样. 3、结论 利⽤硅烷偶联剂对纳⽶SiO2进⾏表⾯改性,通过共混法制备了不同纳⽶SiO2含量的SiO2/EP纳⽶复合材料,研究了SiO2的添加对复合材料微观结构、耐热性和介电性能的影响.结论如下: 1 ) 当纳⽶SiO2含量在0~16%时,随着纳⽶SiO2含量的增加,SiO2/EP纳⽶复合材料的热稳定性逐渐升⾼. 2) SiO2/EP纳⽶复合材料的介电性能随着测试频率的升⾼呈下降趋势.同⼀测试频率下,随着纳⽶SiO2添加量的增加,试样的介电常数呈先降低后升⾼趋势. 3)当纳⽶SiO2含量为4%时,复合材料的综合性能最优.其耐热性较好,介电性能最优(频率为1 GHz 时,介电常数为2.86,介电损耗为0.023 53).。
有关材料学的论文参考范文材料学是研究材料组成、结构、工艺、性质和使用性能之间相互关系的学科,为材料设计、制造、工艺优化和合理使用提供科学依据。
下文是店铺为大家搜集整理的有关材料学的论文参考范文的内容,欢迎大家阅读参考!有关材料学的论文参考范文篇1浅谈水电工程建设项目中甲供材料的管理工程项目建设单位,在工程施工开始之前,就某个工程项目进行投标和招标,并在相关合同中明确要求,工程中所用的主要建筑材料由建设单位提供,承包工程的施工单位主要负责各项施工的工作,以及工程建设中用到的某些辅助材料和设备。
简单来说,就是建设单位招标施工单位,并采购施工中的主要材料,然后交由施工单位使用,进而达到提高工程项目建设效益的目标。
一、甲供材料的优缺点水电工程项目中用到的钢材、水泥、油料以及木材等,被称为大宗材料。
这些大宗材料占整个工程成本的50%以上。
可见大宗材料对水电工程项目的重要性。
建设单位和施工单位建立合作关系之后,由建设单位采购大宗材料,并且将这些材料运送至施工现场。
施工单位接收这些大宗材料之后,要对材料的质量和规格等进行检查,确认材料是否合格。
如果施工单位对材料的检查不到位,一旦工程建设过程中使用了不合格材料,一定会对整个工程的质量造成严重影响。
而这些不良后果将由施工单位承担。
甲供材料会受到建材市场上下波动的影响,可能会出现一定风险,这些风险主要由建设单位来承担。
施工单位验收过建设单位提供的材料之后,就要将材料保管起来。
保管材料过程中出现的问题,如数量减少,因保管不善导致变质等,由施工单位承担风险。
对建设单位而言,甲供材料能够对水电工程建设项目中所用材料的质量进行有效控制,并且对其采购渠道有很好的把关效果,防止施工单位通过材料采购谋取不正当利益。
另外建设单位集中大批量采购材料,还能对建筑成本进行有效控制,通过检查运送材料的时刻表,能够实时掌握工程建设的进度。
但是甲供材料也可能存在一定的问题,大宗材料需要大量的资金投入,采购材料的数量如果没有计算好,很可能会出现再次采购或者采购过多造成浪费的情况,或者采购时将材料价格压得太低,导致出现偷工减料、材料不合格的情况。
材料毕业论文范文材料毕业论文范文随着社会的不断发展和进步,材料科学作为一门综合性学科,对于人类社会的发展起到了至关重要的作用。
材料科学的研究不仅仅关乎科技领域的发展,更关系到人们日常生活的方方面面。
本文将以材料科学为主题,探讨材料的种类、应用以及未来的发展趋势。
首先,我们来看看材料的种类。
材料科学研究的对象是各种物质的组成、结构、性能以及制备方法等。
根据材料的组成和性质,可以将材料分为金属材料、陶瓷材料、高分子材料和复合材料等几大类。
金属材料具有良好的导电性和导热性,广泛应用于工业制造和建筑领域。
陶瓷材料具有优异的耐高温、耐腐蚀性能,被广泛应用于航空航天和电子领域。
高分子材料具有良好的可塑性和绝缘性能,广泛应用于塑料制品和纺织品等行业。
复合材料是由两种或多种材料组合而成,具有综合性能优异的特点,被广泛应用于汽车、船舶和航空航天等领域。
其次,我们来探讨材料的应用。
材料科学的研究不仅仅局限于材料本身的性质,更关注于材料在实际应用中的表现。
随着科技的进步,材料的应用范围越来越广泛。
在建筑领域,新型的建筑材料不仅能够提供更好的保温和隔音效果,还能够实现节能减排的目标。
在电子领域,新型的材料可以提供更高的导电性和导热性,使得电子产品的性能得到了极大的提升。
在医疗领域,材料的研究和应用可以帮助人们更好地治疗疾病,提高生活质量。
无论是航空航天、交通运输还是环境保护等领域,材料科学都扮演着重要的角色。
最后,我们来展望一下材料科学的未来发展趋势。
随着科技的不断进步,材料科学也在不断创新和发展。
一方面,材料的研究将更加注重材料的可持续性和环境友好性。
在制备过程中,将更加注重节能减排和资源的合理利用。
另一方面,材料的研究将更加注重材料的功能性和多样性。
新型的材料将具有更高的强度、更好的导电性和导热性,以满足不同领域的需求。
此外,材料的研究也将更加注重材料的智能化和可控性。
通过材料的设计和制备,可以实现材料的自愈、自清洁等功能。
关于材料学专业方面论文范文材料学是学生接触材料领域、定位未来方向的入门课程,学习和掌握该课程内容意义至关重要。
下文是店铺为大家整理的材料学方面论文的范文,欢迎大家阅读参考!材料学方面论文篇1浅析高分子材料成型加工技术摘要:近些年来,国防尖端工业和航空工业等特殊领域的发展对高分子材料成型的加工技术要求更高,更精细。
在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的方法,对促进我国高新技术及产业的发展具有重要的意义。
关键词:高分子材料加工方法成型技术一、前言近些年来,国防尖端工业和航空工业等特殊领域的发展要求更高性能的聚合物材料,开发研制满足特定要求的高聚合物迫在眉睫[1]。
在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的方法,对促进我国高新技术及产业的发展具有重要的意义。
二、高分子材料成型成型加工技术的相关定义1.高分子材料高分子材料是指由相对分子质量较高的化合物为基础构成的材料,其一般基本成分是聚合物或以含有聚合物的性质为主要性能特征的材料;主要是橡胶、塑料、纤维、涂料、胶黏剂和高分子基复合材料。
高分子材料独特的结构和易改性与易加工特点,使它具有其他材料不可取代与不可比拟的优异性能,从而广泛运用到科学技术、国防建设和国民经济等领域,并已成为现代社会生活中衣食住行用等各方面不可缺少的材料。
2.高分子材料成型加工技术在高分子工业的生产中分为高分子材料的制备与加工成型两个过程。
高分子材料的成型加工技术就是运用各种加工方法对高分子材料赋予形状,使其成为具有使用价值的各种制品。
高分子材料加工主要目的是高性能、高生产率、快捷交货和低成本;向小尺寸、轻质与薄壁方向发展是高分子材料成型技术制品方面的目标;成型加工方向是全回收、零排放、低能耗,从大规模向较短研发周期的多品种转变。
判断高分子材料的成型加工技术的质量因素是加工后制品的外观性、尺寸精度、技能性中的耐化学性、耐热性等等。
有关材料学的论文范文在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。
下文是店铺为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!有关材料学的论文范文篇1论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO 而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.1实验部分1.1原材料苯胺(AR,国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR,湖南汇虹试剂);草酸(OX, AR,天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR,天津市光复精细化工研究所).1.2PANIF的制备PANIF的制备按我们先前提出的方法[14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入1.82 g CTAB,0.63 g 草酸以及0.9 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 1.3GO的制备采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL 三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.1.4PANIF/rGO复合材料制备按照一定比例将含一定量的PANIF液与一定量的6.8 mg/mL 的GO溶液混合,使混合液总体积为30 mL,GO在混合液中的最终浓度为0.5 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.1.5仪器与表征用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为-0.2~0.8V.比电容计算依据充放电曲线,按式(1)[15]计算:Cs=iΔtΔVm.(1)式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m 代表活性物质质量,g.2结果与讨论2.1形貌表征图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.2.2FTIR分析图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较,可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.2.4电化学性能分析图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为521.2 F/g.图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为0.5 A/g时,比电容分别为261和495 F/g)[18-19],而PANIF比电容最小,仅为378 F/g;且在10 A/g 电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为54.3%,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.3结论采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517,356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.有关材料学的论文范文篇2浅谈水泥窑用新型环保耐火材料的研制及应用1 概述随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达21.8亿吨,占世界总产量55%左右。
材料科学哎,材料科学这玩意儿,说起来就头大!跟AI那些算法、训练数据压根儿没关系,咱就说点儿人话。
最近啊,我琢磨着做个小玩意儿,给家里那只二哈做个专属的“防啃咬”碗。
为啥呢?那家伙,吃饭跟打仗似的,碗啊、盘子啊,它都当玩具!我一开始想用陶瓷,结实是结实,可那玩意儿太脆了,一不小心就碎了,想想都心疼。
然后又琢磨着不锈钢,耐用是耐用,可那冰冷的质感,看着就让人觉得没食欲,更别说二哈了,它才不会领情呢!最后,灵光一闪,我决定试试硅胶!为啥选硅胶呢?这东西我之前做烘焙的时候用过,软软的、捏起来感觉贼舒服,而且颜色多,可以选二哈最爱的蓝色。
关键是,这玩意儿耐摔耐咬啊!我可是亲眼见过我朋友家的小孩儿把硅胶做的玩具扔来扔去的,摔地上愣是一点事儿没有!然后呢,我就开始各种研究。
网上搜啊搜,发现硅胶的种类也贼多,什么食品级、工业级、医用级的,看得我眼花缭乱。
这可真是考验人啊,我一个搞材料的,居然也被材料给整懵了!最终,我选了一种食品级的硅胶,毕竟是给二哈吃饭用的,安全第一嘛!接着,就是找模具了。
这模具,还得是专门做硅胶的,普通的那种肯定不行。
网上找了一圈,终于找到一家靠谱的店,店家还很热情地给我推荐了几个合适的模具,还给我讲了好多硅胶制作的注意事项,比如温度啊、时间啊,巴拉巴拉说了一大堆,听得我耳朵都起茧子了!最后,我把材料和模具都准备好了,开始动手制作。
说实话,这过程比我想象的要复杂得多。
先得把硅胶按比例配好,搅拌均匀,不能有气泡,这活儿可真费劲!然后,慢慢地倒进模具里,再放到真空机里脱气,最后还要放在烤箱里烘烤,等它完全固化。
整个过程,大概花了小半天时间。
等它冷却下来,小心翼翼地从模具里取出来,哇,一个蓝色的、可爱的小碗就这么诞生了!哈哈,看着自己亲手做的碗,成就感满满!关键是,二哈很喜欢!这小家伙,用它吃饭,再也没啃过碗了!虽然这碗现在已经有点变形了,毕竟二哈的咬合力也不是盖的,可这效果,绝对是杠杠的!这整个过程,从材料的选择到最后的成品,都充满了对材料科学的理解和实践,完全不用AI,纯人力,哈哈!所以说啊,材料科学,其实很有意思,关键是,得用心去做!。
材料科学的应用哎,说材料科学的应用啊,其实它离咱们的生活可近着呢,比你想象的还近!就说我前几天的事儿吧,简直笑死我了。
我那破旧的自行车,哎,骑着跟坐跷跷板似的,链条老是掉,烦死人了!链条这玩意儿,说白了就是材料科学的成果啊,是吧?铁链子,得够结实才能扛得住我那“神力”一般的蹬车,还得耐磨,不然老得换,钱包受不了。
结果,那天链条又给我掉链子了,我正准备破口大骂,仔细一看,哎呦,不对啊,这次不是链条断了,是连接链条的那个小卡子——那个小小的,几毛钱一个的,金属小零件——它变形了!变形得像个小S型,我当时就愣住了,这玩意儿是怎么变形的?我寻思着,这小卡子材料本身应该挺结实的,毕竟它要承受链条的拉力嘛。
那么问题来了,为啥它会变形呢?我开始发挥我的“福尔摩斯”精神啊,仔细研究了一下。
这卡子是那种有点暗红色的,说明它可能加了某种合金元素,增加强度和韧性吧。
然后,我发现卡子变形的地方,还有些细微的裂纹,像是被拉扯过度导致的。
这让我联想到了一个说法,材料科学里讲应力腐蚀,就是说材料在受力同时,又受到某些环境因素的影响,比如湿度、腐蚀性物质啥的,就会更容易疲劳断裂,或者像这样变形。
我那破自行车平时风吹日晒的,链子又经常沾上泥巴,这卡子长期在潮湿又带点油污的环境里,那可不就容易出问题了吗?这应力腐蚀,就跟人一样,平时压力大,身体又不好好保养,更容易垮掉,是吧。
所以说啊,材料科学的应用,还真不是随便说说。
就一个不起眼的小卡子,都在体现着材料的选取、工艺的控制,以及环境因素的影响。
要是能把材料选得更耐腐蚀,或者设计得更合理,这小卡子能用个十年八年,我都不用反复折腾它,省钱省力又省心。
这自行车上的小零件,都能让我感受到材料科学的厉害,更别说那些高科技的应用了,航空航天、电子芯片、医疗器械…… 那更是材料科学的舞台啊!想想就觉得,材料科学,真牛!。
有关材料学专业的论文(2)有关材料学专业的论文篇2浅谈基于人文价值的老旧材料再利用随着人们物质文化水平的提高,现在人们对生活环境、装修品位等方面也提出了更高的要求,当前新材料、新工艺的不断出现和使用,使我们的生活环境有了新的面貌。
然而也伴随着新的危机――环境污染和审美价值观念扭曲,环境质量问题不容小觑,但是审美价值观念要更加重视。
现代装饰中“新陈代谢”更替快,再次建造会选用新材料,一些拆卸下来的带有历史价值和人文内涵的物质材料会被无情丢弃,既造成了经济上的损失,又带来了地域文化的减弱。
设计师应该用怎样的视角来构建、传承与创造三者之间的关系?如何帮助人们对老旧材料建立新的美学的认识,以及老旧材料在满足功能需求的同时怎样体现人文价值及意境的表达?都是值得我们思考的。
一、人文触觉“人文”这个词的英文直译是“Humanities”,其含义在狭义上讲专指哲学,特指美学范畴,在广义上的解释是文化。
人文触觉是指具有历史的或文化的某一物质在特定空间中被多重感知产生的特殊情感,由此引起人们的集体无意识记忆。
而记忆是人脑对经验过的事物的识记、保持、再现或再认,它是进行思维、想象等高级心理活动的基础。
记忆的表现形式以回忆和认知的方式出现,过去的事物不在面前,人们在头脑中把它重新呈现出来的过程叫做回忆;过去的事物在面前感到熟悉,确信是以前感知过的叫做认知。
记忆联结着人类心理活动的过去和现在,记忆的历史性认知能使人的行为活动具有人文意义。
如上世纪90年代的Loft风格的形成,就是在旧工厂、旧厂房原有的基础上通过老旧材料进行的艺术创作,再现工业革命时期的场景,引发人们的集体记忆的回忆。
还有纽约SOHO艺术区,巴萨罗那卡洛尔化工厂,2001年松迪克、向京等大批艺术家创作了北京798艺术区,之后出现了昆明“创库”、重庆“坦克库”、上海8号桥、苏州河两岸的艺术家创库等。
这些创作都是对老旧材料所具有的历史的或文化的属性进行研究,然后创作出了这些各具地域文化的场所。
材料工程导论论文导论:材料工程是一门涉及物质的性质、结构和性能相互关系的学科,它对于人类社会的发展起到重要的推动作用。
在这篇论文中,我将介绍材料工程的概念、发展历史以及它在现代社会中的应用。
一、材料工程概念材料工程是一门综合性的学科,它研究如何利用各种材料制造出具有特定功能和性能的工程产品。
这些材料包括金属、陶瓷、聚合物、复合材料等,它们在不同的工程领域中都起着重要的作用。
材料工程的研究范围包括材料的物理性质、化学性质、机械性能、电磁性能等方面。
通过研究不同材料的性质和结构,材料工程师可以设计出更加优良的材料,以满足不同工程领域的需求。
二、材料工程的发展历史材料工程的发展可以追溯到人类最早制造工具的时期。
最早的材料可以追溯到石器时代,人们利用石头制造刀、斧等工具。
随着时间的推移,人们开始使用金属材料,如铜、铁等。
材料工程的发展也与人类的工业革命密切相关,随着工业化的进程,对材料的需求也越来越多样化。
现代材料工程起源于20世纪初,随着科学技术的进步,材料工程师开始研究利用材料的结构和性质来设计新材料。
从20世纪60年代开始,复合材料的研究逐渐兴起,这种材料可以融合不同材料的特性,具有优异的性能,广泛应用于航空航天、汽车、建筑等领域。
三、材料工程的应用1.航空航天领域:航空航天是材料工程的重要应用领域之一、用于航空航天的材料需要具有轻质、高强度、耐高温等特点。
例如,钛合金、高温合金等材料在飞机、航天器的结构中发挥着重要作用。
2.汽车工业:材料工程在汽车制造中的应用也非常广泛。
例如,汽车发动机使用的材料需要具有耐高温、耐腐蚀等特性;汽车车身和底盘使用的高强度钢材可以提高汽车的安全性能。
3.能源领域:材料工程对能源领域的发展也起到重要的推动作用。
太阳能电池板、燃料电池等能源设备需要高性能、高效率的材料才能实现。
4.生物医学领域:生物医学领域对材料工程的要求也越来越高。
例如,人工关节、心脏支架等医疗器械需要使用生物兼容性强的材料,以确保与人体组织的相容性。
关于材料的论文题目:材料的制备与应用研究摘要:本论文主要探讨了材料及其制备方法与应用领域的研究进展。
首先介绍了材料的定义和分类,包括金属材料、陶瓷材料、复合材料等。
然后详细阐述了各种材料的制备方法,包括传统工艺和先进技术,如溶胶-凝胶法、物理气相沉积等。
接着,本文探讨了材料的应用领域,包括能源、环境、医疗和电子等方面的应用。
最后,对未来材料研究的发展方向进行了展望,并提出了一些挑战与解决方案。
关键词:材料;制备方法;应用领域;发展方向;挑战与解决方案引言:材料科学和工程是一门广泛应用于各个领域的学科,材料的制备方法和应用领域的研究一直备受关注。
随着技术的发展和人们对材料性能要求的提高,新材料的研发和应用已成为当前研究的热点。
本论文将围绕材料的制备和应用展开研究,旨在为相关领域的研究人员提供参考和借鉴。
一、材料的定义和分类1.1 材料的定义1.2 材料的分类:金属材料、陶瓷材料、高分子材料、复合材料等二、材料的制备方法2.1 传统工艺:熔炼、固相反应等2.2 先进技术:溶胶-凝胶法、物理气相沉积、分子束外延等三、材料的应用领域3.1 能源领域:太阳能电池、锂离子电池等3.2 环境领域:污水处理、废弃物处理等3.3 医疗领域:生物材料、药物传递系统等3.4 电子领域:传感器、电子器件等四、材料研究的发展方向4.1 新材料的合成和改性方法研究4.2 材料性能的表征和评价方法研究4.3 材料应用的创新和拓展研究五、挑战与解决方案5.1 材料制备中的工艺控制和优化5.2 材料性能与应用之间的矛盾5.3 材料的可持续发展与环境保护结论:材料的制备方法和应用广泛应用于各个领域,对社会和经济的发展起到了重要作用。
随着技术的进步,材料的研究还面临一些挑战,但也提供了解决方案的机会。
未来的研究应该注重新材料的合成和改性方法研究,提高材料性能的评价和表征手段,推动材料应用的创新和拓展。
只有通过不断地研究和进步,才能使材料科学和工程更好地为社会做出贡献。
跟材料学有关的论文材料学作为战略性领域的基础学科,在国防建设、基础设施、军用民用等领域具有广阔的应用价值。
下文是店铺为大家整理的跟材料学有关的论文的范文,欢迎大家阅读参考!跟材料学有关的论文篇1浅析导电高分子材料及其应用摘要:自从1977年来,导电高分子材料的研究受到了普遍的重视和发展。
介绍了导电高分子材料的分类、导电机制、在各领域中的应用及研究进展。
关键词:高分子材料;导电机理;导电塑料;用途20世纪70年代,白川英树、Heeger和MacDiarmid等人首次合成了聚乙炔薄膜,后来又经掺杂发现了可导电的高聚物,这就是导电高分子材料。
导电高分子材料的发现,改变了人们对传统塑料、橡胶等高分子材料是电、热的不良导体的观念,经过40多年的发展,导电高分子材料也从最初的聚乙炔发展到聚苯胺、聚吡咯、聚噻吩等数十种高分子材料,成为金属材料和无机导电材料的优良替代品。
而今这种导电高分子材料已广泛应用于电子工业、航空航天工业之中,并对新型生物材料和新能源材料的开发产生巨大的影响。
1 高分子材料的分类及导电机理导电高分子材料通常是指一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10-6 S/cm以上的聚合物材料。
这类高分子材料具有密度小、易加工、耐腐蚀、可大面积成膜,以及电导率可在绝缘体-半导体-金属态(10-9到105 S/cm)的范围里变化。
这种特性是目前其他材料所无法比拟的。
按照材料结构和制备方法的不同可把导电高分子材料分为结构型(或本征型)导电高分子材料和复合型导电高分子材料两大类。
1.1 结构型导电高分子材料结构型导电高分子材料是指高分子本身或少量掺杂后具有导电性质的高分子材料,一般是由电子高度离域的共轭聚合物经过适当电子受体或供体进行掺杂后制得的。
结构型导电高分子材料具有易成型、质量轻、结构易变和半导体特性。
最早发现的结构型高分子聚合物是用碘掺杂后形成的聚乙炔。
这种掺杂后的聚乙炔的电导率高达105 S/cm。
后来人们又相继开发出了聚苯硫醚、聚吡咯、聚噻吩、聚苯胺等导电高分子材料。
这些材料掺杂后电导率可达到半导体甚至金属导体的导电水平。
1.1.1 聚乙炔纯净聚乙炔掺进施主杂质(碱金属(Li、Na、K)等)或受主杂质(卤素、AsF5、PF5等)后才能导电。
与半导体不同的是,掺杂聚乙炔导电载流子是孤子。
聚乙炔中孤子是怎样形成的呢?反式聚乙炔结构有两种形式,互为镜像,如图1所示:A相和B相能量相等,都是基态。
如果原来整个反式聚乙炔处于A 相,通过激发可以变为B相,中间出现的过渡区域,称为正畴壁,反之称为反畴壁。
正畴壁称为孤子,反畴壁称为反孤子[1]。
激发过程中所提供的能量只分布在正、反畴壁中,畴壁以外的部分能量不变。
孤子态是由导带和价带各提供1/2个能级构成的,因此电荷Q=0,当用施主或受主杂质进行掺杂形成荷电孤子后,Q=±e。
反式聚乙炔掺杂后,施主杂质向碳链提供电子,被激发形成的孤子带有负电,如果是受主杂质,将从碳链中吸取电子,使孤子带有正电。
这样孤子就成为反式聚乙炔中的导电载流子。
聚乙炔是目前世界上室温下电导率最高的一种非金属材料,它比金属质量轻、延展性好,可用作太阳能电池、电磁开关、抗静电油漆、轻质电线、纽扣电池和高级电子器件等。
1.1.2 聚对苯撑聚对苯撑(PPP)有如图2 所示两种结构形式:其中(a)式稳定,而(b)不稳定,很难单独存在,当FeCl3与PPP掺杂时发生电荷转移使PPP分子链成为正离子,而FeCl3以FeCl4-负离子的形式加到分子链上,同时FeCl3被还原成FeCl2[2],即:2FeCl3+e→FeCl4-+FeCl2因此,掺杂过程实际上是一个氧化还原过程或电荷转移过程。
如果掺杂剂为受体分子,电荷转移使高分子链成为正离子,掺杂剂为负离子,如果掺杂剂为给体时,则相反。
聚对苯撑(PPP)的导电性和热稳定性优良,有多种合成方法,常温下为粉末,难以加工成型。
电化学聚合可得到薄膜状产品,但电化学聚合的产物聚合度小、电气特性和机械性能低,可采用可溶性预聚体转换工艺提高其聚合度。
1.1.3 聚噻吩噻吩的分子结构如图3所示,环上有两类C原子,因此在发生聚合反应时会有3种连接结构,其中α-α连接时,噻吩环之间的扭转角度最低,当其与一些复合材料发生掺杂时会通过π-π键共轭作用结合在一起,形成一个个相对独立的导电单元,这些导电单元相对纯的聚噻吩而言,具有更高的电导率[3]。
1.1.4 聚吡咯聚吡咯(PPy)是少数稳定的导电高聚物之一,但纯PPy只有经过合适掺杂剂掺杂后才能表现出较好的导电性。
聚吡咯常用的掺杂剂有金属盐类如FeCl3,卤素I2、Br2,质子酸如H2SO4等。
不同种类的掺杂剂对PPy掺杂及形成高导电性的机理不同,但大部分具有氧化性的掺杂剂,其掺杂过程可以用电荷转移机理来解释。
按此机理掺杂时,聚合物链给出电子,掺杂剂被还原成掺杂剂离子,然后此离子与聚合物链形成复合物以保持电中性。
以FeCl3为氧化剂制备聚吡咯,通过电荷转移形成复合物,反应按下式进行[4]:1.1.5 聚苯胺与其他导电高聚物一样,聚苯胺(PAN)是共轭高分子,在高分子主链上交替重复单双链结构,具有的价电子云分布在分子内,相互作用形成能带等。
其化学结构如图4 所示。
聚苯胺可以看作是苯二胺与醌二亚胺的共聚物,x的值用于表征聚苯胺的氧化还原程度,不同的x值对应于不同的结构、组分及电导率。
完全还原型(x=1)和完全氧化型(x=0)都为绝缘体,在0聚苯胺(PAN)的研究后来居上,它与热塑性塑料掺混具有良好的导电性,与其他导电高聚物相比,具有良好的环境稳定性,易制成柔软、坚韧的膜,且价廉易得等优点。
在日用商品及高科技方面有着广泛的应用前景。
1.2 复合型导电高分子材料复合型导电高分子材料是以高分子聚合物作基体,加入相当数量的导电物质组合而成的,兼有高分子材料的加工性和金属导电性。
既具有导电填料的导电性、导热性以及电磁屏蔽性,又具有基体高聚物的热塑性、柔韧性以及成型性,因而具有加工性好、工艺简单、耐腐蚀、电阻率可调范围大、价格低等很多优良的特点,已被广泛应用于电子工业、信息产业以及其他各种工程应用中。
复合型导电塑料是经物理改性后具有导电性的塑料,一般是将导电性物质如碳黑、金属粉末、金属粒子、金属丝和碳纤维等掺混于树脂中制成。
在技术上比结构型导电塑料成熟,不少品种已商业化生产。
目前,关于复合型导电高分子材料的导电机理有宏观渗流理论,即导电通路学说、微观量子力学隧道效应理论和微观量子力学场致发射效应等三种理论[6]。
(1)渗流理论:这一理论认为,当复合体系中导电填料用量增加到某一临界用量时,体系电阻率急剧下降,体系电阻率-导电填料用量曲线出现一个狭小的突变区域,在此区域内导电填料的任何微小变化都会导致电阻率显著变化,这种现象称为渗滤现象,导电填料的临界用量通常称为渗滤阈值。
(2)隧道效应理论:该理论认为复合体系在导电填料用量较低时,导电粒子间距较大,混合物微观结构中尚未形成导电网络通道,此时仍不具有导电现象。
这是因为此时高分子材料的导电性是由热振动电子在导电粒子之间的迁移造成的。
隧道效应现象几乎仅仅发生在距离很接近的导电粒子之间,间隙过大的导电粒子之间没有电流传导行为。
(3)场致发射效应理论:该理论认为,当复合体系中导电填料用量较低,导电粒子间距较大、导电粒子内部电场很强时,电子将有很大几率飞跃树脂界面势垒跃迁到相邻电子离子上,产生场致发射电流,形成导电网络。
1.2.1 炭黑添加型导电高分子材料炭黑不仅价格低廉、导电性能持久稳定,而且可以大幅度调整复合材料的体积电阻率。
因此,由炭黑填充制成的复合导电高分子材料是目前用途最广、用量最大的一种导电材料。
复合材料导电性与填充炭黑的填充量、种类、粒度、结构及空隙率有关,一般来说粒度越小,孔隙越多,结构度越高,导电性就越强。
1.2.2 金属添加型导电聚合物这类导电塑料具有优良的导电性,比传统的金属材料重量轻、易成型、生产效率高、成本低,进入20世纪80年代后,在电子计算机外壳、罩、承插件、传输带等方面得到应用,成为最年轻、最有发展前途的新型导电和电磁屏蔽材料。
常见的金属类导电填充剂有金、银、铜、镍等细粉末。
2 导电高分子材料的广泛应用2.1 在电子元器件开发中的应用2.1.1 用于防静电和电磁屏蔽方面导电高聚物最先应用是从防静电开始的。
将特定比例的十二烷基苯磺酸和对甲苯磺酸混合酸掺杂的PANI与聚(丙烯腈-丁二烯-苯乙烯)树脂(ABS)共混挤出,制备了杂多酸掺杂PANI/ABS复合材料,通过现场聚合的方法在透明聚酯表面聚合了一层导电PANI,表面电阻可控制在106~109 Ω[7]。
通过对复合材料EMI屏蔽的研究,发现在101 GHz下,复合材料的屏蔽效能随其中PANI含量的增大而增大。
掺杂能提高PANI的屏蔽效能。
2.1.2 导电高分子材料在芯片开发上的运用在各种带有微芯片的卡片以及条码读取设备上,高分子聚合物逐渐取代硅材料。
塑料芯片的价格仅为硅芯片的1 %~10 %,并且由于其具有可溶性的特性而更易于加工处理[8]。
目前国际上已经研制出集成了几百个电子元器件的塑料芯片,采用这种导电塑料制造的新款芯片可以大大缩小计算机的体积,提高计算机的运算速度。
2.1.3 显示材料中的导电高分子材料有机发光二极管是由一层或多层半导体有机膜,加上两头电极封装而成。
在发光二极管的两端加上3伏~5伏电压,负极上的电子向有机膜移动,相反,与有机膜相连的正极上的电子向负极移动,这样产生了相反运动方向的正负电荷载体,两对电荷载体相遇,形成了“电子-空穴对”,并以发光的形式将能量释放[9]。
由于它发光强度高、色彩亮丽,光线角几乎达到180度,可用于制造新一代的薄壁显示器,应用在手机、掌上电脑等低压电器上,也应用于金融信息显示上,使图像生动形象,并可图文通显。
利用电致变色机理,还可用于制造电致变色显示器、自动调光窗玻璃等。
2.2 在塑料薄膜太阳能电池开发中的应用传统的硅太阳能电池不仅价格昂贵,而且生产过程中消耗大量能源,因此成本昂贵,无法成为替代矿物燃料的能源,而塑料薄膜电池最大的特点就是生产成本低、耗能少。
一旦技术成熟,可以在流水线上批量生产,使用范围也很广。
制造塑料薄膜太阳能电池需要具有半导体性能的塑料。
奥地利科学家用聚苯乙烯和碳掺杂形成富勒式结构的材料,再将它们加工成极薄的膜,然后在膜层上下两面蒸发涂上铟锡氧化物或铝作为电极。
由于聚苯乙烯受到光照时会释放出电子,而富勒式结构则会吸收电子,如果将灯泡接在这两个电极上,电子开始流动就会使灯泡发光[10]。
2.3 在生物材料开发中的应用在生命科学领域,导电高分子材料可制成智能材料,用于医疗和机器人制造方面。