高等数学知识点
- 格式:doc
- 大小:1.50 MB
- 文档页数:23
第1章 集合与函数小结一、函数的概念1.函数()y f x =的定义域()D f 及其求法.2.函数的两个基本要素:定义域和对应法则.3.分段函数:一个函数在其定义域的不同子集上用不同的表达式来表示,即一个函数由两个或两个以上的式子表示.4.熟练掌握绝对值函数:,0,,<0x x y x x x ≥⎧==⎨-⎩的定义、图像及性质二、函数的奇偶性、单调性、周期性和有界性三、复合函数5.由函数()y f u =与()u g x =复合而成的复合函数()()y f g x =的概念.(难点:复合函数分解为若干个简单函数,与后续章节的复合函数求导、微分、积分的联系)四、基本初等函数和初等函数6.五种基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数(以sin y arc x =,cos y arc x =为主)的性质及其图形. (加强点:幂函数的根式、分式转换;指数、对数的运算性质 )7.初等函数:由常数和基本初等函数经过有限次四则运算和有限次复合而构成,并能用一个解析式表示的函数. 五、常用经济函数第二章 极限与连续 知识点归纳一、极限的概念 1.极限的定义(1)lim n n x A →∞=. (2)()lim x f x A →∞= 、()lim x f x A →+∞=、()lim x f x A →-∞= (3)()0lim x x f x A →= 、左极限()()000lim x x f x f x A -→-==、右极限()()000lim x xf x f x A +→+== 2.极限的基本性质(1)唯一性:若()lim f x A =(或lim n n x A →∞=),()lim f x B =(或lim n n x B →∞=)则A B =. (2)有界性:收敛数列必有界.(3)保号性:若函数极限为正(或负),则在极限变化某过程中函数也为正(或负). (4)()lim x f x A →∞=⇔()()lim lim x x f x f x A →+∞→-∞==.(5)()0lim x xf x A →=⇔()()0lim lim x x x x f x f x A -+→→==.二、无穷小量1. 无穷小(量):0)(lim )(=⇔x f x f2. 无穷大(量):3. 无穷小与无穷大的关系(课本53页例3、55页例9,57页的引理2)4. 两个无穷小的比较5. 重要的等价无穷小当0x →时,sin ~x x ,tan ~x x ,211cos ~2x x -,1~x e x -,()ln 1~x x +1~2x-, (1)1~a x x α+-(α∈R ). 三、求极限的方法 1. 利用极限的四则运算 例1:求下列极限2213252175763221121(1)lim;(2)lim();;(3)lim;123211421(4)lim(5)lim;(6)lim;116216210(7)lim;31321(8)lim;(9)lim21n n xx x xxx xn n n xn n x xx xx x x xx xx xx xx x→∞→∞→→→-→∞→∞→∞→∞-+++--+-+-+⎛⎫-⎪+-+-⎝⎭-++--++--2. 利用函数的连续性求极限(代入法).3. 两个重要极限和变量替换法并用(1)sinlim1xxx→=,()0sin()lim1()u xu xu x→=.(2) 1lim(1)nnen→∞+=,1lim(1)xxex→∞+=,1lim(1)ettt→+=.例2:求下列极限()1000023(1)lim1;(2)lim1;(3)lim12;1sin3sin3(4)lim;(5)lim;(6)lim;1tan71111(7)lim sin;(8)lim sin;(9)lim sin;(10)lim sinn xxn x xxx x xx x x xxn xx x xx x xx x x xx x x x →∞→∞→→∞→→→∞→→∞→⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭-⎛⎫⎪+⎝⎭4. 利用无穷小的重要性质和等价无穷小代换(1)无穷小的重要性质:有界变量与无穷小的乘积是一个无穷小.(2)等价无穷小代换例3:求下列极限223000200tan71cos4tan sin(1)lim;(2)lim(3)lim;sin221cos1cos(4)lim(5)limln(1)1x x xxx xx x x xx x xx xxe→→→→→----+-四、函数连续性 1. 函数连续的概念(1)若()()00lim x xf x f x →=,称()f x 在点0x 处连续. (2)若()()00lim x xf x f x -→=,称函数()f x 在点0x 左连续; 若()()00lim x xf x f x +→=,称()f x 在点0x 右连续. ()f x 在点0x 连续⇔()f x 在点0x 左连续且右连续.(3)若()f x 在(),a b 内每一点都连续,称函数()f x 在(),a b 内连续. (4)若()f x 在(),a b 内连续,在x a =右连续,在x b =左连续,称()f x 在[],a b 上连续.2. 初等函数的连续性重要结论: 基本初等函数在其定义域内都是连续的。
高等数学必须的知识点总结高等数学是大学数学的一门重要课程,它是数学学科中的一颗明珠。
在学习高等数学的过程中,我们需要掌握一些基础的数学知识点,这些知识点将为我们建立起一个坚实的数学基础。
本文将从基础知识点开始,逐步展开,为大家总结高等数学必须掌握的知识点。
一、函数与极限1.函数:函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。
函数的定义域、值域、图像等是我们需要了解的基本概念。
2.极限:极限是函数分析中的重要概念,它描述了函数在某一点附近的趋势。
极限的求解需要掌握极限的性质、极限的运算法则等。
二、导数与微分1.导数:导数是函数在某一点处的变化率,它描述了函数在该点的瞬时变化情况。
导数的求解需要使用导数的定义、导数的性质、导数的运算法则等。
2.微分:微分是导数的一种应用,它描述了函数在某一点附近的近似变化情况。
微分的计算需要使用微分的定义、微分的性质等。
三、定积分与不定积分1.定积分:定积分是函数在一个区间上的累积变化量,它描述了函数在该区间上的总体变化情况。
定积分的计算需要使用定积分的定义、定积分的性质以及定积分的计算方法等。
2.不定积分:不定积分是定积分的逆运算,它描述了函数在某一点的原函数。
不定积分的计算需要使用不定积分的定义、不定积分的性质以及不定积分的计算方法等。
四、级数1.数项级数:数项级数是将一列数相加得到的无穷级数,它可以是收敛的或发散的。
数项级数的求和需要使用级数的定义、级数的收敛判别法等。
2.函数项级数:函数项级数是将一列函数相加得到的无穷级数,它可以是收敛的或发散的。
函数项级数的求和需要使用函数项级数的定义、函数项级数的收敛判别法等。
五、常微分方程常微分方程是描述物理、生物、经济等领域中变化规律的一种数学模型。
常微分方程的解法需要使用常微分方程的分类、常微分方程的求解方法等。
六、多元函数与偏导数多元函数是依赖于多个变量的函数,它在数学建模、物理、工程等领域中有广泛的应用。
高数知识点总结电子版一、极限与连续1. 函数的极限(1) 函数极限的定义(2) 函数极限的性质(3) 无穷小量与无穷大量(4) 夹逼准则2. 连续与间断(1) 连续的定义(2) 连续函数的性质(3) 间断点的分类(4) 间断函数的构造二、导数与微分1. 导数的定义(1) 导数的几何意义(2) 导数的计算方法(3) 导数的性质(4) 高阶导数2. 微分的定义(1) 微分的几何意义(2) 微分的计算方法(3) 微分的性质(4) 隐函数求导三、微分中值定理与泰勒公式1. 罗尔中值定理(1) 罗尔中值定理的条件(2) 罗尔中值定理的应用2. 拉格朗日中值定理(1) 拉格朗日中值定理的条件(2) 拉格朗日中值定理的应用3. 柯西中值定理(1) 柯西中值定理的条件(2) 柯西中值定理的应用4. 泰勒公式(1) 泰勒公式的表述(2) 泰勒公式的应用四、不定积分与定积分1. 不定积分(1) 不定积分的概念(2) 不定积分的计算方法(3) 不定积分的性质(4) 不定积分的换元法2. 定积分(1) 定积分的概念(2) 定积分的计算方法(3) 定积分的性质(4) 定积分的应用五、微分方程1. 微分方程的基本概念(1) 微分方程的定义(2) 微分方程的类型(3) 微分方程的解的存在唯一性定理2. 一阶常微分方程(1) 可分离变量的微分方程(2) 齐次微分方程(3) 一阶线性微分方程3. 高阶常微分方程(1) 高阶线性微分方程(2) 常系数齐次线性微分方程六、多元函数微分学1. 多元函数的极限(1) 多元函数极限的定义(2) 多元函数极限的性质(3) 重要极限的计算2. 偏导数(1) 偏导数的定义(2) 偏导数的计算方法(3) 高阶偏导数3. 方向导数(1) 方向导数的定义(2) 方向导数的计算方法(3) 梯度4. 多元函数的微分(1) 多元函数的全微分(2) 多元函数的微分近似七、多元函数积分学1. 二重积分(1) 二重积分的定义(2) 二重积分的计算方法(3) 二重积分的性质(4) 二重积分的应用2. 三重积分(1) 三重积分的定义(2) 三重积分的计算方法(3) 三重积分的性质(4) 三重积分的应用3. 曲线积分与曲面积分(1) 曲线积分的定义(2) 曲线积分的计算方法(3) 曲面积分的定义(4) 曲面积分的计算方法八、向量分析1. 向量及其运算(1) 向量的基本概念(2) 向量的线性运算(3) 向量的数量积与叉积2. 曲线与曲面的方程(1) 曲线的参数方程(2) 曲线的一般方程(3) 曲面的参数方程(4) 曲面的一般方程3. 向量场与散度(1) 向量场的定义与性质(2) 散度的概念与计算(3) 散度的物理意义4. 向量场与旋度(1) 旋度的概念与计算(2) 旋度的物理意义(3) 欧拉公式以上就是高等数学的知识点总结,希望对你的学习有所帮助。
高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。
掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。
下面将为大家整理总结大一高数中最全的知识点。
第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。
2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。
3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。
第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。
2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。
3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。
第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。
2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。
3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。
第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。
2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。
3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。
第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。
2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。
3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。
第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。
2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。
高等数学是大学理工科学生的一门基础课程,涉及到数学分析、线性代数、概率论和数学物理方法等内容。
本文将对高等数学的知识点进行总结,以供参考。
一、数学分析1.极限与连续极限是数学分析的基础概念,主要研究函数在某一点的邻域内的性质。
极限的性质包括保号性、保序性等。
连续性是极限的一种特殊情况,一个函数在某一点的极限等于该点的函数值,则称该函数在该点连续。
2.导数与微分导数研究函数在某一点的切线斜率,是函数变化率的具体体现。
导数的计算方法包括定义法、导数法则和高阶导数等。
微分是导数的一种应用,主要研究函数在某一点的微小变化。
3.积分与不定积分积分是导数的逆运算,研究函数在某一区间内的累积变化。
积分的计算方法包括牛顿-莱布尼茨公式、换元积分法和分部积分法等。
不定积分是积分的一种扩展,没有明确的积分界限,主要用于求解原函数。
级数是数学分析中的重要部分,研究函数的和式。
常见的级数包括幂级数、泰勒级数和傅里叶级数等。
级数的收敛性判断是级数研究的关键,常用的判断方法有比较判别法、比值判别法和根值判别法等。
5.多元函数微分学多元函数微分学研究多个变量之间的函数关系。
主要内容包括偏导数、全微分、方向导数和雅可比矩阵等。
重积分是研究函数在空间区域上的累积变化。
重积分的计算方法包括一重积分、二重积分和三重积分等。
7.常微分方程常微分方程是描述自然界和工程技术中具有变化规律的数学模型。
常微分方程的解法包括分离变量法、常数变易法和线性微分方程组等。
二、线性代数矩阵是线性代数的基本工具,用于描述线性方程组和线性变换。
矩阵的运算包括加法、减法、数乘和矩阵乘法等。
矩阵的行列式用于判断线性方程组的解的情况。
2.线性方程组线性方程组是实际问题中常见的数学模型。
线性方程组的解法包括高斯消元法、矩阵求逆法和克莱姆法则等。
3.向量空间与线性变换向量空间是具有加法和数乘运算的向量集合。
线性变换是从一个向量空间到另一个向量空间的线性映射。
4.特征值与特征向量特征值和特征向量是描述矩阵性质的重要概念。
高等数学知识点总结pdf
高等数学知识点总结
一、函数与极限
1. 函数的定义、连续性与间断点
2. 导数与极值
3. 不定积分与定积分
4. 泰勒展开式与幂级数展开
5. 重要的极限定理:夹逼定理、洛必达法则等
二、微分方程
1. 一阶常微分方程与分离变量法
2. 一阶线性微分方程
3. 高阶线性常系数齐次微分方程
4. 高阶线性常系数非齐次微分方程
5. 欧拉方程与特征方程法
三、多元函数与偏导数
1. 多元函数的定义与性质
2. 偏导数与全微分
3. 隐函数与参数方程
4. 多元函数的极值与条件极值
四、重积分与曲线积分
1. 重积分的概念与性质
2. 极坐标系与二重积分
3. 三重积分与球坐标系
4. 曲线积分的概念与性质
5. 向量场的曲线积分和曲面积分
五、无穷级数与傅里叶级数
1. 数列极限与数列的收敛性
2. 数项级数的概念与性质
3. 正项级数的审敛法与一致收敛性
4. 幂级数与傅里叶级数的展开
六、空间解析几何
1. 点、直线与平面的方程
2. 曲线与曲面的方程
3. 空间中的向量运算
4. 空间曲线的切线与法平面
5. 空间曲面的切平面与法线
七、常微分方程
1. 一阶常微分方程的概念与解法
2. 高阶常微分方程的特征方程法
3. 常系数线性齐次微分方程的解法
4. 变系数线性齐次微分方程的解法
这些是高等数学中的一些重要知识点总结,掌握了这些知识,对于解题和理解高等数学的相关概念非常有帮助。
高等数学知识点高等数学知识点在日复一日的学习中,大家最熟悉的就是知识点吧?知识点有时候特指教科书上或考试的知识。
哪些知识点能够真正帮助到我们呢?下面是小编为大家收集的高等数学知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
高等数学知识点1第一章:函数与极限1.理解函数的概念,掌握函数的表示方法。
2.会建立简单应用问题中的函数关系式。
3.了解函数的奇偶性、单调性、周期性、和有界性。
4.掌握基本初等函数的性质及图形。
5.理解复合函数及分段函数的有关概念,了解反函数及隐函数的概念。
6.理解函数连续性的概念(含左连续和右连续)会判别函数间断点的类型。
7.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左右极限间的关系。
8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
9.掌握极限性质及四则运算法则。
10.理解无穷孝无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
第二章:导数与微分1.理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求初等函数的微分。
3.会求隐函数和参数方程所确定的函数以及反函数的导数。
4.会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
第三章:微分中值定理与导数的应用1.熟练运用微分中值定理证明简单命题。
2.熟练运用罗比达法则和泰勒公式求极限和证明命题。
3.了解函数图形的作图步骤。
了解方程求近似解的两种方法:二分法、切线法。
4.会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。
第四章:不定积分1.理解原函数和不定积分的概念,掌握不定积分的基本公式和性质。
2.会求有理函数、三角函数、有理式和简单无理函数的不定积分3.掌握不定积分的分步积分法。
第一讲: 极限与连续一. 数列函数: 1. 类型:(1)数列: *()n a f n =; *1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *0()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xaF x f x t dt =⎰(8)级数和函数(数一,三): 0(),nn n S x a xx ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒=二. 极限性质:1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11n n →, 1(0)1n a a >→, 1()max(,,)nnn na b c a b c ++→, ()00!na a n >→1(0)x x→→∞, 0lim 1xx x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0lim ln 0nx x x +→=, 0,xx e x →-∞⎧→⎨+∞→+∞⎩四. 必备公式:1. 等价无穷小: 当()0u x →时, sin ()()u x u x ; tan ()()u x u x ; 211cos ()()2u x u x -; ()1()u x eu x -; ln(1())()u x u x +; (1())1()u x u x αα+-;arcsin ()()u x u x ; arctan ()()u x u x2. 泰勒公式:(1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞, 2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞) 3. 1∞处理(其它如:00,∞)4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xe x →∞; 1(0)x e x →; (3)分段函数: x , []x , max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分;(4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?): 00lim'()x ff x x→=3. 积分和: 10112lim [()()()]()n nf f f f x dx n n n n→∞+++=⎰,4. 中值定理: lim[()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n →∞) (2)121lim()n n n n a a a a ∞→∞=+++=∑,(3){}n a 与11()nn n aa ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?n f x kx x →(1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔()()!!nn na a f x x x x n n α=+ (2)()xxn f t dtkt dt ⎰⎰2. 渐近线(含斜):(1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xaf x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()limx f x x f x x→+-; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-= (注:0()lim (x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导) 2. 微分与导数:()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒=(1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数)3. 隐式((,)0f x y =)导: 22,dy d y dx dx (1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx5. 高阶导()()n f x 公式:()()ax n n axe a e =; ()11!()()n n n b n a bx a bx +=--; ()(sin )sin()2n n ax a ax n π=+⨯; ()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n n n n uv u v C uv C u v --=+++注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二):ρ=曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润) 五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =): (1) '()0()f x f x ≥⇒; '()0()f x f x ≤⇒;(2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x→→→≠≠≠⇒=的特点) (2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xaF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x fg f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计:'()f f x ξ=九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用]第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xx aax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰(2)'()()f x dx f x c =+⎰; ()()df x f x c =+⎰二. 不定积分常规方法 1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()k f x k g x dx k f x dx k g x dx +=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简): x t =5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xa x x f t dt ⎰);(2)“反对幂三指”: ,ln ,n axnx edx xxdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x ++⎰; (2)(),()sin kxp x e dx p x axdx ⎰⎰快速法; (3)()()n v x dx u x ⎰三. 定积分: 1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值)*20(0)8a a π>=⎰; *()02baa bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()x xaax t f t dt f t dt -=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()baf t dt ⎰的方程.4. 变量代换: ()(())'()baf x dx f u t u t dt βα=⎰⎰(1)00()()()aa f x dx f a x dx x a t =-=-⎰⎰,(2)()()()[()()]aaaaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰, (4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()xaf x =⎰时, 求()baf x dx ⎰6. 附: 三角函数系的正交性: 22200sin cos sin cos 0nxdx nxdx nx mxdx πππ===⎰⎰⎰2200sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰22220sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11pdx x +∞⎰; (2)101p dx x ⎰五. 应用: (柱体侧面积除外)1. 面积, (1)[()()];baS f x g x dx =-⎰(2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(b a S f x π=⎰2. 体积: (1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()d by caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: ds = (1)(),[,]y f x x a b =∈as =⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩21t t s =⎰(3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理):(1)1[,]()baf a b f x dx b a =-⎰; (2)0()[0)limxx f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =(1)解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程:(,)zf x y x∂=∂; 3. 一阶线性(重点): '()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x e y M x q x dx y M x ⎰=⇒=+⎰(2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+= 4. 齐次方程: '()y y x=Φ (1)解法: '(),()ydu dxu u xu u x u u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂ dU Mdx Ndy U C =+⇒=6. 一阶差分方程(数三): 1*()()x x x x x n xx y ca y ay b p x y x Q x b+=⎧-=⇒⎨=⎩三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =⇒=-= 五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设()(),()0xaf x dx F x F a ==⎰3. 导数定义立方程: 含双变量条件()f x y +=的方程4. 变化率(速度)5. 22dv d x F ma dt dt === 6. 路径无关得方程(数一): Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++==8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+(2)lim ,lim ,lim y x x y f ff f f x y∆∆∆==∆∆ (3)22,lim()()x y f df f x f ydf x y ∆-++ (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义: 00(,0)(0,0)(0,)(0,0)(0,0)lim,(0,0)lim x y x y f x f f y f f f x y→→--==2. 特例:(1)22(0,0)(,)0,(0,0)xyx y fx y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算:1. 显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)xx y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩ (存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程.三. 二元极值(定义?);1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R -+-≤; 2222:1x y D a b+≤;双纽线222222()()x y a x y +=- :1D x y +≤ 4. 特例:(1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积DS与重心(,)x y5. 无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd Sσ⇔⎰⎰;(2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三)一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++; (3)lim n n S →∞(如1(1)!n nn ∞=+∑)注: (1)lim n n a →∞; (2)n q ∑(或1na ∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛. 2. 性质: (1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: nS ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1p n∑, (2)ln k n n α∑, (3)1ln kn n ∑ 3. 审敛方法: (注:222ab a b ≤+,ln ln ba ab =)(1)比较法(原理):np ka n(估计), 如10()n f x dx ⎰; ()()P n Q n ∑(2)比值与根值: *1limn n nu u +→∞*n (应用: 幂级数收敛半径计算)三. 交错级数(含一般项):1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛? 注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n +-∑; (2)11(1)n p n +-∑; (3)11(1)ln n pn+-∑ 3. 莱布尼兹审敛法(收敛?) (1)前提:na∑发散; (2)条件: ,0nn a a →; (3)结论:1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→. 5. 注意事项: 对比na∑;(1)nna-∑;na∑;2na∑之间的敛散关系四. 幂级数: 1. 常见形式: (1)nna x∑, (2)()nna x x -∑, (3)20()nna x x -∑2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)nna x∑与20()nna x x -∑之间的转换4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域)23111,2!3!xe x x x R =++++Ω= 24111()1,22!4!x x e e x x R -+=+++Ω=35111(),23!5!x x e e x x x R --=+++Ω=3511sin ,3!5!x x x x R =-+-Ω= 2411cos 1,2!4!x x x R =-++Ω=;211,(1,1)1x x x x =+++∈--; 211,(1,1)1x x x x=-+-∈-+2311ln(1),(1,1]23x x x x x +=-+-∈-2311ln(1),[1,1)23x x x x x -=----∈-3511arctan ,[1,1]35x x x x x =-+-∈-(2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++)(3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑(2)'()S x =,(注意首项变化)(3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程 (5)应用:()(1)n nn n aa x S x a S ⇒=⇒=∑∑∑.6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)nA p +; (2)现值: (1)nA p -+五. 傅里叶级数(数一): (2T π=)1. 傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ∞==++∑ 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdx a f x dx n b f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰4. 题型: (注: ()(),?f x S x x =∈) (1)2T π=且(),(,]f x x ππ=∈-(分段表示)(2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑ 00001()cos sin 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲: 向量,偏导应用与方向导(数一)一. 向量基本运算1. 12k a k b +; (平行b a λ⇔=)2. a ; (单位向量(方向余弦) 01(cos ,cos ,cos )a a aαβγ=)3. a b ⋅; (投影:()a a b b a⋅=; 垂直:0a b a b ⊥⇔⋅=; 夹角:(,)a b a b a b⋅=)4. a b ⨯; (法向:,n a b a b =⨯⊥; 面积:S a b =⨯) 二. 平面与直线 1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕=(2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D π-+-+-=⇒+++= (3)其它: *截距式1x y za b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕= (2)方程(点向式): 000:x x y y z z L m n p---== (3)一般方程(交面式): 111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩)3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++= (2)距离公式: 如点000(,)M x y 到平面的距离d =(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒ (或(,1)x y n z z =--)2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩, 或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =⨯)3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面1. 圆柱面: 222x y R += 2. 球面: 2222x y z R ++=变形: 2222x y R z +=-,z =,2222x y z az ++=, 2222000()()()x x y y z z R -+-+-=3. 锥面: z =变形: 222x y z +=,z a = 4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=± 6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=, 注: (,)(,1)x y z f x y n f f =⇒=- (2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒= (2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩, 12s n n =⨯六. 方向导与梯度(重点) 1. 方向导(l 方向斜率):(1)定义(条件): (,,)(cos ,cos ,cos )l m n p αβγ=⇒ (2)计算(充分条件:可微):cos cos cos x y z uu u u lαβγ∂=++∂ 附: 0(,),{cos ,sin }z f x y l θθ==cos sin x y zf f lθθ∂⇒=+∂ (3)附: 2222cos 2sin cos sin xx xy yy f f f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G : (1)计算:()(,)(,)x y a z f x y G gradz f f =⇒==; ()(,,)(,,)x y z b u f x y z G gradu u u u =⇒== (2)结论 ()a ul∂∂0G l =⋅; ()b 取l G =为最大变化率方向; ()c 0()G M 为最大方向导数值.第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法: (1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()baD z I dz fdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式 二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式:()[,]((),(()b aLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰3. 补充说明: (1)重心法:()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换:LLA ds A dr τ⋅=⋅⎰⎰4. 应用范围(1)第一类积分(2)柱体侧面积 (),Lz x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点):(1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心)(3)分片2. 计算公式:(1)(,),(,)(,,(,xyxy D z z x y x y D I f x y z x y =∈⇒=⎰⎰(2)与第二类互换: A ndS A d S ∑∑⋅=⋅⎰⎰⎰⎰四: 第二类曲线积分(1): (,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰ 常见(1)水平线与垂直线; (2)221x y +=2. Green 公式:(1)()L D Q P Pdx Qdy dxdy x y ∂∂+=-∂∂⎰⎰⎰;(2)()L A B →⎰: *P Q y y ∂∂=⇒∂∂换路径; *P Q y y ∂∂≠⇒∂∂围路径(3)L ⎰(x y Q P =但D 内有奇点)*L L =⎰⎰(变形) 3. 推广(路径无关性):PQy y ∂∂=∂∂(1)Pdx Qdy du +=(微分方程)()B A L A B u →⇔=⎰(道路变形原理) (2)(,)(,)L P x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F dr Γ=⋅⎰ (Γ有向τ,(,,)F P Q R =,(,,)d r ds dx dy dz τ==)五. 第二类曲面积分:1. 定义:Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧) 2. 计算:(1)定向投影(单项): (,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =--[()()]x yPdydz Qdzdx Rdxdy P z Q z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰ (3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ=(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑⇒++=++⎰⎰⎰⎰3. Gauss 公式及其应用:(1)散度计算: P Q R divA x y z∂∂∂=++∂∂∂ (2)Gauss 公式: ∑封闭外侧, Ω内无奇点Pdydz Qdzdx Rdxdy divAdv ∑Ω++=⎰⎰⎰⎰⎰(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰(含奇点) 4. 通量与积分:A d S ∑Φ=⋅⎰⎰ (∑有向n ,(),,A P Q R =,(,,)d S ndS dydz dzdx dxdy ==)六: 第二类曲线积分(2): (,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧)(1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂ (2)交面式(一般含平面)封闭曲线: 00F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =或{,,}x y z G G G ; (3)Stokes 公式(选择):()A dr A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰ (a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰。
高等数学知识点汇总高等数学是大学理工科和经济类等专业的重要基础课程,它包含了丰富的知识体系,对于培养学生的逻辑思维、分析问题和解决问题的能力具有重要意义。
下面就为大家汇总一下高等数学中的一些主要知识点。
一、函数与极限函数是高等数学研究的基本对象之一。
函数的概念包括定义域、值域和对应法则。
常见的函数类型有初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数)以及由这些初等函数经过有限次四则运算和复合运算得到的函数。
极限是高等数学中的一个重要概念,它用于描述函数在某个过程中的变化趋势。
例如,当自变量趋于某个值时,函数值的趋近情况。
极限的计算方法有很多,如代入法、有理化法、等价无穷小替换法、洛必达法则等。
二、导数与微分导数是函数的变化率,它反映了函数在某一点处的瞬时变化速度。
导数的定义是函数的增量与自变量增量之比的极限。
通过求导公式和求导法则可以求出函数的导数,常见的求导公式有基本初等函数的求导公式,求导法则包括四则运算求导法则、复合函数求导法则等。
微分是函数增量的线性主部,它与导数密切相关。
函数在某一点处的微分可以表示为 dy = f'(x)dx 。
三、中值定理与导数的应用中值定理是高等数学中的重要定理,包括罗尔中值定理、拉格朗日中值定理和柯西中值定理。
这些定理在证明等式和不等式、研究函数的性质等方面有着广泛的应用。
导数的应用非常广泛,例如利用导数判断函数的单调性、极值和最值;利用导数研究函数的凹凸性和拐点;利用导数解决优化问题,如求最大利润、最小成本等。
四、不定积分不定积分是求导的逆运算,它是求一个函数的原函数的过程。
不定积分的基本公式包括基本初等函数的不定积分公式,不定积分的计算方法有换元积分法(包括第一类换元法和第二类换元法)和分部积分法。
五、定积分定积分表示的是一个数值,它是由函数在某个区间上的积分和所定义的。
定积分的几何意义可以是曲边梯形的面积。
定积分的计算方法有牛顿莱布尼茨公式,即如果函数 F(x) 是 f(x) 的一个原函数,则∫a,bf(x)dx = F(b) F(a) 。
高等数学知识点关键信息项1、函数与极限函数的概念与性质极限的定义与计算方法无穷小与无穷大2、导数与微分导数的定义与几何意义基本函数的导数公式微分的定义与运算3、中值定理与导数的应用罗尔定理、拉格朗日中值定理、柯西中值定理函数的单调性与极值曲线的凹凸性与拐点函数的最值问题4、不定积分不定积分的概念与性质基本积分公式换元积分法与分部积分法5、定积分定积分的定义与性质牛顿莱布尼茨公式定积分的计算与应用反常积分6、多元函数微分学多元函数的概念与极限偏导数与全微分多元函数的极值与最值7、重积分二重积分的概念与性质二重积分的计算方法三重积分8、曲线积分与曲面积分对弧长的曲线积分对坐标的曲线积分格林公式对面积的曲面积分对坐标的曲面积分高斯公式与斯托克斯公式9、无穷级数数项级数的概念与性质正项级数的审敛法任意项级数的审敛法幂级数函数展开成幂级数11 函数与极限111 函数的概念函数是数学中的一个基本概念,设集合 D 是实数集的子集,如果对于 D 中的每个实数 x ,按照某种确定的对应关系 f ,都有唯一确定的实数 y 与之对应,则称变量 y 是变量 x 的函数,记作 y = f(x) ,其中 x称为自变量,y 称为因变量,D 称为函数的定义域,值域是函数值的集合。
112 函数的性质函数具有单调性、奇偶性、周期性等性质。
单调性是指函数在某个区间上的增减性;奇偶性是指函数关于原点或 y 轴对称的性质;周期性是指函数在一定区间上重复出现的性质。
12 极限的定义极限是高等数学中的一个重要概念。
当自变量无限趋近于某个值时,函数值无限趋近于一个确定的常数,这个常数就是函数在该点的极限。
13 极限的计算方法极限的计算方法包括利用极限的四则运算法则、两个重要极限、等价无穷小替换、洛必达法则等。
14 无穷小与无穷大无穷小是以 0 为极限的变量,无穷大是绝对值无限增大的变量。
无穷小与无穷大之间存在着密切的关系。
21 导数与微分211 导数的定义导数是函数在某一点的变化率,它反映了函数在该点处的瞬时变化趋势。
第一讲: 极限与连续一. 数列函数:1. 类型:(1)数列: *()n a f n =; *1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *00()(),x x f x F x x x a ≠⎧=⎨=⎩;*(4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)x aF x f x t dt =⎰(8)级数和函数(数一,三): 0(),nnn S x ax x ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y fx --=⇔=⇒=二. 极限性质:1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型:0,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11nn →, 1(0)1n a a >→, 1()max(,,)nnnn a b c a b c ++→,()00!naa n >→1(0)x x→→∞, 0lim 1xx x +→=, lim0n xx x e→+∞=, ln lim0nx x x→+∞=,l i m l n 0nx x x +→=, 0,x x e x →-∞⎧→⎨+∞→+∞⎩四. 必备公式:1. 等价无穷小: 当()0u x →时,s i n ()()u x u x ; tan ()()u x u x ; 211cos ()()2u x u x -;()1()u x e u x - ; ln(1())()u x u x + ; (1())1()u x u x αα+- ; a r c s i n ()(u x u x ; arctan ()()u x u x 2. 泰勒公式: (1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+; (4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=)1. 抓大弃小()∞∞,2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞)3. 1∞处理(其它如:000,∞) 4. 左右极限(包括x →±∞): (1)1(0)x x→; (2)()xe x →∞; 1(0)x e x →; (3)分段函数: x , []x , m ax ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim1x x x x→-与0ln lim1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xe e e e -++-=-)(3)含变限积分;(4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x > 2. 导数定义(洛必达?): 00lim '()x f f x x→=3. 积分和: 10112lim[()()()]()n n f f f f x dx n n n n→∞+++=⎰,4. 中值定理: lim [()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!limnnn n n→∞) (2)121lim ()n nn n a a a a∞→∞=+++=∑ ,(3){}n a 与11()n n n a a ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?nf x kx x → (1)(1)()(0)'(0)(0)0,(0)n n f f f fa -=====⇔ ()()!!n nna a f x x x x n n α=+(2)00()xxnf t dt kt dt ⎰⎰2. 渐近线(含斜): (1)()lim,lim [()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xa f x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()limx f x x f x x→+- ; 0'()f x =000()()limx x f x f x x x →--(1)0()(0)'(0)limx f x f f x→-= (注:0()lim(x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导)2. 微分与导数: ()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒= (1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dyy =三. 各类求导(方法步骤): 1. 定义导: (1)'()f a 与'()x af x =; (2)分段函数左右导; (3)0()()lim h f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()x aF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'xb b aaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数)3. 隐式((,)0f x y =)导: 22,dy d ydx dx(1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx 5. 高阶导()()n fx 公式:()()ax n n axe a e=; ()11!()()nn n b n a bxa bx +=--; ()(sin )sin()2n nax a ax n π=+⨯; ()(cos )cos()2n nax a ax n π=+⨯()()1(1)2(2)()'"n nn nn n uv uv C uv C uv --=+++注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++ ()(0)!n n fa n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二): 23"()(1'())f x f x ρ=+(曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润)五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =):(1) '()0()f x f x ≥⇒ ; '()0()f x f x ≤⇒ ; (2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim0,lim00x x x x x x f x f x f x x xxx→→→≠≠≠⇒=的特点)(2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒==2. 辅助函数构造实例: (1)()f ξ⇒()()x aF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒=(3)()'()()()'()0()()f x fg f g F x g x ξξξξ-=⇒=(4)'()()()0f f ξλξξ+=⇒()()()x dx F x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n fx -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计: '()f f x ξ=九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-;2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用] 第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰ 注(1)()()x aF x f t dt =⎰(连续不一定可导);(2)()()()()xx a ax t f t dt f t dt f x -⇒⇒⎰⎰(()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰ (2)'()()f x dx f x c =+⎰; ()()df x f x c =+⎰二. 不定积分常规方法 1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()kf x kg x d x k f x d x k g x d x+=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+) 如: 211(),,ln ,2dx dx d ax b xdx dx d x ax=+==2dx d x x=221,(1l n )(l n )1x d x d x x d x d x x x=++=+ 4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,1xx t ax b t t e t x=+==+=(2)作用与引伸(化简):21x x t ±-=5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xa x x f t dt ⎰);(2)“反对幂三指”: ,ln ,n axnx e dx x xdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()fx F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x++⎰; (2)(),()sin kx p x e dx p x axdx ⎰⎰快速法; (3)()()nv x dx u x ⎰三. 定积分: 1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值) *22(0)8a ax x dx a a π->=⎰; *()02baa b x dx +-=⎰(3)附:()()b af x dx M b a ≤-⎰,()()()b b aaf xg x dx Mg x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()x ax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()xx aax t f t dt f t dt -=⎰⎰;()()()x af x dt x a f x =-⎰(3)由函数()()x aF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()b af x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()ba f t dt ⎰的方程.4. 变量代换:()(())'()b af x dx f u t u t dt βα=⎰⎰(1)00()()()aaf x dx f a x dx x a t =-=-⎰⎰,(2)0()()()[()()]a a aaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰(如:4411sin dx x ππ-+⎰)(3)2201sin nn n n I xdx I nπ--==⎰,(4)220(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)0(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()x af x =⎰时, 求()ba f x dx ⎰6. 附: 三角函数系的正交性: 22200s i n c o s s i n c o s 0n x d x n x d x n x m x dx πππ===⎰⎰⎰2200sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰2222sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()a a f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11pdx x+∞⎰; (2)101pdx x⎰五. 应用: (柱体侧面积除外)1. 面积, (1)[()()];b aS f x g x dx =-⎰(2)1()dcS fy dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:22()1'()b aS f x f x dx π=+⎰2. 体积:(1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()dby caV fy dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: 22()()ds dx dy =+(1)(),[,]y f x x a b =∈ 21'()b as f x d x=+⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩ 2122'()'()t t s x t y t dt =+⎰(3)(),[,]r r θθαβ=∈: 22()'()s r r d βαθθθ=+⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理): (1)1[,]()b af a b f x dx b a=-⎰;(2)0()[0)limx x f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()T f t dt f T=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =(1)解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程: (,)z f x y x∂=∂;3. 一阶线性(重点): '()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxxx M x e y M x q x dx y M x ⎰=⇒=+⎰(2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+=4. 齐次方程: '()yy x =Φ(1)解法: '(),()y dudx u u xu u xu u x=⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dxa xb yc ++=++5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N M xy∂∂=∂∂d U M d xN d yU =+⇒=6. 一阶差分方程(数三): 1*()()xx x x x n xx y ca y ay b p x y x Q x b +=⎧-=⇒⎨=⎩ 三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dp y p x y f x p dx=⇒==3. "(,')y f y y =: 令'()"(,)dp y p y y pf y p dy=⇒==四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法)(3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy D y =⇒=-= 五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设()(),()0x af x dx F x F a ==⎰3. 导数定义立方程:含双变量条件()f x y += 的方程4. 变化率(速度)5. 22dv d x F ma dt dt===6. 路径无关得方程(数一): Q P xy∂∂=∂∂7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++== 8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+(2)lim ,lim ,limy x x y f f f f f xy∆∆∆==∆∆(3)22,lim()()x y f df f x f y df x y ∆-++ (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义:(,0)(0,0)(0,)(0,0)(0,0)lim ,(0,0)limx y x y f x f f y f f f xy→→--==2. 特例:(1)22(0,0)(,)0,(0,0)xyx y f x y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)22(0,0)(,)0,(0,0)xy f x y x y⎧≠⎪=+⎨⎪=⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算:1. 显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)xx y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩ (存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程. 三. 二元极值(定义?); 1. 二元极值(显式或隐式): (1)必要条件(驻点);(2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *12D D D = ; *(,)f x y 分片定义; *(,)f x y 奇偶 2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R-+-≤; 2222:1x y D ab+≤;双纽线222222()()x y a x y +=- :1D x y +≤4. 特例:(1)单变量: ()f x 或()f y(2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积D S 与重心(,)x y5. 无界域上的反常二重积分(数三)五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd S σ⇔⎰⎰; (2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三)一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++ ; (3)lim n n S →∞(如1(1)!n n n ∞=+∑)注: (1)lim n n a →∞; (2)nq ∑(或1na∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛.2. 性质: (1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: n S ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1pn∑, (2)ln kn nα∑, (3)1ln kn n∑3. 审敛方法: (注:222ab a b ≤+,ln ln baa b=)(1)比较法(原理):n pk a n(估计), 如1()n f x dx ⎰;()()P n Q n ∑(2)比值与根值: *1limn n nu u +→∞*limnn n u →∞(应用: 幂级数收敛半径计算)三. 交错级数(含一般项):1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛?注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n+-∑; (2)11(1)n pn+-∑; (3)11(1)ln n pn+-∑3. 莱布尼兹审敛法(收敛?) (1)前提:n a ∑发散; (2)条件: ,0n n a a → ; (3)结论:1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→. 5. 注意事项: 对比 na∑;(1)nn a -∑;n a ∑;2na∑之间的敛散关系四. 幂级数: 1. 常见形式:(1)n n a x ∑, (2)0()n n a x x -∑, (3)20()nn a x x -∑2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),nnn n a na x x n∑∑与nn a x ∑同收敛半径(2)n n a x ∑与20()nn a x x -∑之间的转换4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域) 23111,2!3!xe x x x R =++++Ω=24111()1,22!4!xxe e x x R -+=+++Ω=35111(),23!5!x xe ex x x R --=+++Ω=3511sin ,3!5!x x x x R =-+-Ω= 2411cos 1,2!4!x x x R =-++Ω= ;211,(1,1)1x xx x=+++∈-- ; 211,(1,1)1x x x x=-+-∈-+2311ln(1),(1,1]23x x x x x +=-+-∈- 2311ln(1),[1,1)23x x x x x -=----∈-3511arctan ,[1,1]35x x x x x =-+-∈-(2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++)(3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑(2)'()S x = ,(注意首项变化) (3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程 (5)应用:()(1)nn nna ax S x aS ⇒=⇒=∑∑∑.6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)n A p +; (2)现值: (1)n A p -+五. 傅里叶级数(数一): (2T π=) 1. 傅氏级数(三角级数): 01()cos sin 2nn n a S x anx b nx ∞==++∑2. D irichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++3. 系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdxa f x dx nb f x nxdxπππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰4. 题型: (注: ()(),?f x S x x =∈)(1)2T π=且(),(,]f x x ππ=∈- (分段表示)(2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2nn n a S x anx b nx ∞==++∑00001()c o s s i n 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲:向量,偏导应用与方向导(数一)一. 向量基本运算1. 12k a k b + ; (平行b a λ⇔=)2. a ; (单位向量(方向余弦) 01(c o s ,c o s,c o s)a a aαβγ= ) 3. a b ⋅ ; (投影:()a a b b a ⋅= ; 垂直:0a b a b ⊥⇔⋅= ; 夹角:(,)a ba b a b⋅=)4. a b ⨯ ; (法向:,n a b a b =⨯⊥ ; 面积:S a b =⨯)二. 平面与直线 1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕=(2)方程(点法式): 000:()()()00A x x B y y C z z Ax By C z D π-+-+-=⇒+++= (3)其它: *截距式1x y z a b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕=(2)方程(点向式): 00:x x y y z z L mnp---==(3)一般方程(交面式): 111122220A x B y C z D A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩)3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++= (2)距离公式: 如点000(,)M x y 到平面的距离000222A xB yC z Dd A B C+++=++(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒(或(,1)x y n z z =-- )2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩, 或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t =(或12s n n =⨯ )3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面1. 圆柱面: 222x y R += 2. 球面: 2222x y z R++=变形: 2222x y R z +=-, 222()z R x y =-+,2222x y z a z ++=,2222000()()()x x y y z z R -+-+-=3. 锥面: 22z x y =+变形: 222x y z +=, 22z a x y =-+4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=± 6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)xy z F x y z n F F F =⇒=, 注: (,)(,1)x y z f x y n f f =⇒=- (2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒=(2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩, 12s n n =⨯六. 方向导与梯度(重点)1. 方向导(l方向斜率):(1)定义(条件): (,,)(cos ,cos ,cos )l m n p αβγ=⇒(2)计算(充分条件:可微):cos cos cos x y z u u u u lαβγ∂=++∂附: 0(,),{cos ,sin }z f x y lθθ==cos sin x y zf f lθθ∂⇒=+∂ (3)附:2222cos 2sin cos sin xx xy yy f f f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G:(1)计算:()(,)(,x y a z f x y G gradz f f =⇒==;()(,,)(,,xyzb u f x y z G g r a d u uu u=⇒==(2)结论 ()a u l∂∂0G l =⋅;()b 取l G =为最大变化率方向;()c 0()G M为最大方向导数值.第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法:(1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()b a D z I dzfdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 22sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I a x b y c z d V Ω=+++4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)G auss 公式 二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式: 22()[,]((),())'()'()()b aLx x t t a b fds f x t y t x t y t dt y y t =⎧∈⇒=+⎨=⎩⎰⎰3. 补充说明: (1)重心法:()()Lax by c ds a x b y c L ++=++⎰;(2)与第二类互换: LLA ds A d r τ⋅=⋅⎰⎰4. 应用范围 (1)第一类积分 (2)柱体侧面积(),L z x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰) 1. “积”前工作(重点):(1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心) (3)分片 2. 计算公式:(1)22(,),(,)(,,(,))1xyxy x y D z z x y x y D I f x y z x y z z dxdy =∈⇒=++⎰⎰(2)与第二类互换: A ndS A d S ∑∑⋅=⋅⎰⎰⎰⎰四: 第二类曲线积分(1):(,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰常见(1)水平线与垂直线; (2)221x y += 2. Green 公式: (1)()LDQ P Pdx Q dy dxdy xy∂∂+=-∂∂⎰⎰⎰ ;(2)()L A B →⎰: *P Q yy∂∂=⇒∂∂换路径; *P Q yy∂∂≠⇒∂∂围路径(3)L⎰ (x y Q P =但D 内有奇点)*LL =⎰⎰(变形)3. 推广(路径无关性):P Q yy∂∂=∂∂(1)Pdx Qdy du +=(微分方程)()B AL A B u→⇔=⎰(道路变形原理)(2)(,)(,)LP x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F d r Γ=⋅⎰ (Γ有向τ ,(,,)F P Q R = ,(,,)d r ds dx dy dz τ==)五. 第二类曲面积分: 1. 定义: PdydzQdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧)2. 计算:(1)定向投影(单项):(,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =--[()()]xy Pdydz Q dzdx Rdxdy P zQ z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰(3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ=(c o s c o s c o s )P d y d zQ d z d xR d x d y PQ R d Sαβγ∑∑⇒++=++⎰⎰⎰⎰ 3. G auss 公式及其应用:(1)散度计算: P Q Rdiv A x y z∂∂∂=++∂∂∂ (2)G auss 公式: ∑封闭外侧, Ω内无奇点P d y d zQ d z d xR d x d yd ∑Ω++=⎰⎰⎰⎰⎰(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰(含奇点)4. 通量与积分:A d S ∑Φ=⋅⎰⎰ (∑有向n ,(),,A P Q R = ,(,,)d S ndS dydz dzdx dxdy ==)六: 第二类曲线积分(2):(,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =时, 可任选路径; (2)功(环流量):I F d r Γ=⋅⎰2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧) (1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂(2)交面式(一般含平面)封闭曲线: 00F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F = 或{,,}x y z G G G ;(3)Stokes 公式(选择): ()A d r A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰(a )化为Pdydz Q dzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰以上都是一些必备公式 觉得学好微积分 这些公式应该都要理解和使用。