2019年中考数学模拟试题及答案分析241941
- 格式:doc
- 大小:754.41 KB
- 文档页数:16
2019年中考仿真卷数学注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第I卷(选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A .支出20元B .收入20元C .支出80元D .收入80元 2.下列运算正确的是( ) A .1212-=- B .623x x x =⋅C .422x x x =+ D .4226)3(x x =3.下图是一个几何体的三视图,则这个几何体是( )A. 三棱柱B. 圆柱C. 圆台D. 圆锥4.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8 200 000吨,将8 200 000用科学记数法表示为( )5.8.210A ⨯ 6B.8.210⨯ 7C.8.210⨯ 5D.8210⨯5.下列选项中,哪个不可以得到l 1∥l 2?( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180°6. 如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影.转动指针,指针落在有阴影的区域内的概率为a ;如果投掷一枚硬币,正面向上的概率为B .关于a ,b 大小的正确判断是( )A .a >bB .a <bC .a =bD .不能判断7.如图,四边形ABCD 和A B C D '''' 是以点O 为位似中心的位似图形,若:2:3OA OA '= ,则四边形ABCD 与四边形A B C D ''''的面积比为( A )A . 4:9B . 2:5 C. 2:3 D.2:38.如图,已知直线l 1:y =﹣2x +4与直线l 2:y =kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (﹣2,0),则k 的取值范围是(D )A .﹣2<k <2B .﹣2<k <0C .0<k <4D .0<k <2班级姓名 准考证号 考场号 座位号此卷只装订不密封9. 如图,圆O 是Rt △ABC 的外接圆,∠ACB=90°,∠A=25°,过点C 作圆O 的切线,交AB 的延长线于点D ,则∠D 的度数是( )A .25°B .40°C .50°D .65°10.如图,二次函数y=ax 2+bx+c (a >0)图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1和3,则下列结论正确的是( )A .2a ﹣b=0B .a+b+c >0C .3a ﹣c=0D .当a=时,△ABD 是等腰直角三角形第Ⅱ卷(非选择题 共70分)二、填空题:本大题共5小题,每小题3分,共15分. 11. 分解因式: . 12. 某射击俱乐部将名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,名成员射击成绩的中位数是 8 环.13.如图,将正方形纸片对折,折痕为.展开后继续折叠,使点落在上,折痕为,则的正切值是 .14. 如图,直线l⊥x 轴于点P ,且与反比例函数y 1=(x >0)及y 2=(x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1﹣k 2= 4 .15. 如图1所示,圆上均匀分布着11个点.从起每隔个点顺次连接,当再次与点连接时,我们把所形成的图形称为“阶正十一角星”,其中(为正整数).例如,图2是“2阶正十一角星”,那么 °;当900°时,= .三、解答题:本大题共7小题,共55分16.(本题6 .17. (本题6分)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB =DF .22369a b ab b -+=EF A EF GB ABG ∠12311,,,,A A A A A 1k A 1k +118k ≤≤k 1211A A A ∠+∠++∠=1211A A A ∠+∠++∠=k 0112cos301)()8-︒+-ECAB18. (本题7分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有名男生、名女生的概率.19.(本题8分)如图,码头A、B分别在海岛O的北偏东45°和北偏东60°方向上,仓库C在海岛O的北偏东75°方向上,码头A、B均在仓库C的正西方向,码头B和仓库C的距离BC=50km,若将一批物资从仓库C用汽车运送到A、B两个码头中的一处,再用货船运送到海岛O,若汽车的行驶速度为50km/h,货船航行的速度为25km/h,问这批物资在哪个码头装船,最早运抵海岛O?(两1.41.7)20. (本题8分)定义:P,Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中的四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____;当m=5,n=2时,如图2,线段BC与线段OA的距离是______ .(2)如图3,若点B落在圆心为A,半径为2的圆上,求线段BC与线段OA的距离d.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,若线段BC的中点为M,直接写出点M随线段BC运动所形成的图形的周长 .ab21.(本题9分)已知关于的一元二次方程有实数根,为正整数.(1)求的值;(2)当此方程有两个不为0的整数根时,将关于的二次函数的图象向下平移2个单位,求平移后的函数图象的解析式;(3)在(2)的条件下,将平移后的二次函数图象位于轴左侧的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象G.当直线与图象G有3个公共点时,请你直接写出的取值范围.22.(本题11分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长.二〇一九年高中段学校招生模拟考试一、选择题:1.C2.A3.D4.B5.C6.C7.A8.D9.B 10.A.二、填空题:11. 12.8 13. 23- 14.4 15.1260°,2或7三、解答题:16.原式.17.∵四边形ABCD是矩形,∴∠B=90°,AD∥B C.∴∠DAF=∠BEA.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD=90°.又∵AD=AE,∴△ADF≌△EB A.∴AB=DF.18.(1);(2);(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.( 名男生、名女生).19.如图,延长CA交OM于K.由题意,得∠COK=75°,∠BOK=60°,∠COK=45°,∠CKO=90°,x0132=-+-kxx kkx132-+-=kxxyy x5y x b=+b218=+-7=∴∠KCO =15°,∠KBO =30°,OK =KA . ∵∠KBO =∠C +∠BOC ,∴∠C =∠BOC =15°, ∴OB =BC =50(km ). 在Rt △OBK 中,OK =OB =25(km ),∴KB=(km). 在Rt △AOK 中,OK=AK =25(km ),∴OA =≈35km . ∴AB =KB ﹣AK≈17.5(km). ∴从A 码头的时间==3.4(小时), 从B 码头的时间= =3(小时),3<3.4. 答:这批物资在B 码头装船,最早运抵海岛O .20.(1)2(2)当时,; 当时,. (3).21.(1)∵ 方程有实数根 ∴ ∴ ∴. ∵为正整数∴为1,2,3.(2)当时,,方程的两个整数根为6,0 当时,,方程无整数根当时,,方程的两个整数根为2,1∴,原抛物线的解析式为:.∴平移后的图象的解析式为 .(3)∴的取值范围为 .22.(1)BQ =CP ;(2)成立:PC =BQ ;(3).123567.55025+50505025+24m ≤≤(22)d n n =-≤≤46m ≤≤2d =16+4π0∆≥1340k -≥134k ≤k k 1k =9∆=2k =5∆=3k =1∆=3k =232y x x =-+23y x x =-b 161b -<<4。
2019年中考模拟试卷数学卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1、在百度网页中搜索“霍金”,一共显示有19500000个搜索结果,用科学记数法表示19500000个,正确的是( ▲ ) A .61.9510⨯ B .71.9510⨯ C . 719.510⨯ D .80.19510⨯2、一列四个水平放置的几何体中,三视图如图所示的是( ▲ )3、下列计算正确的是( ▲ )4、在平面直角坐标系中,半径为1的圆的圆心P (a ,0)沿x 轴移动.已知⊙P 与y 轴相离,则a 的取值范围是( ▲ )A .a >1B .-1<a <1C .a >1或a <-1D .a <-15、(网络)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且AEAB =AD AC =12,则S △ADE ∶S 四边形BCED 的值为( ▲ ) A .1∶3 B .1∶2 C . 1∶ 3 D .1∶46、已知关于x 的方程2x +4=-m -x 的解为负数,则m 的取值范围是( ▲ )A .m <43 B .m >43C .m <-4D .m >-47、如图,正六边形ABCDEF 中,AB =5,点P 在ED 上,EP :PD =2:3连结AP ,则AP 的长为( ▲ )A .BC . 8 D8、关于分式232x x x a--+,有下列说法,错误的有( ▲ )个:(1)当x 取2时,这个分式有意义,则a ≠1;(2)当x=3时,分式的值一定为零;(3)若这个分式的值为零,则a ≠-3;(4)当x 取任何值时,这个分式一定有意义,则二次函数y=x 2+x+a 与x 轴没有交点。
A. 0 B. 1 C. 2 D. 39、抛物线y =ax 2+bx+c 图像如图所示,则一次函数y =-bx -4ac +b 2与反比例函数a b cy x ++=在同一坐标系内的图像大致为( ▲ )10、关于二次函数233y x kx k =-+-,以下结论:① 抛物线交x 轴有两个不同的交点;②不论k 取何值,抛物线总是经过一个定点;③设抛物线交x 轴于A 、B 两点,若AB=1,则k=9;;④ 抛物线的顶点在2y 3(1)x =--图像上.其中正确的序号是( ▲ ) A .①②③④ B .②④ C .②③ D .①②④二、耐心填一填(本题有6个小题,每小题4分,共24分)11、在实数范围内分解因式:4a 2﹣8=__▲__ .12、一个不透明的袋中装有除颜色外均相同的9个白球、5个红球和若干个黄球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到黄球的频率稳定于0.3,由此可估计袋中约有黄球__▲__个.13、把一个半径为8cm 的圆形硬纸片等分成4个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则这个圆锥的侧面积为__▲___;圆锥的高为__▲__.14、对于实数b a 、定义一种新运算“⊗”为:2aa b a b ⊗=-,这里等式右边是实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是 ▲ .15、如图,已知△ABC ,AB =AC =4,∠A =36°,∠ABC 的平分线BD 交AC 于点D ,则BD 的长是 ▲ ,△BDA 的面积与△BDC 的面积比是 ▲ .(结果保留根号)16、如图,在边长为3正方形ABCD 中,动点E 、F 分别以相同的速度从D 、C 两点同时出发,向C 和B 运动(任何一个点到达即停止),在运动过程中,则线段CP 的最小值为 ▲ .三、认真答一答:(本题7个小题,共66分)17、(本小题满分6分)计算:第16题01( 3.14)(sin 30)4cos 45π︒-︒-++-18、(本题满分8分)如图,已知弧AB .求作:(1)确定弧AB 所在圆的圆心O ;(2)过点A 且与⊙O 相切的直线.(要求用直尺和圆规作图,保留作图痕迹,不要求写作法)19、(本小题满分8分)如图,四边形ABCD 中,AD ∥BC ,AD =3,BC =7,∠B =∠C =60°,P 为BC 边上一点(不与B ,C 重合),过点P 作∠APE =∠B ,PE 交CD 于E .(1)求证:△APB ∽△PEC ; (2)若CE =3,求BP 的长.20、(本小题满分10分)我校对全部1200名学生就交通安全知识的了解程度,采用随机抽样调查的方式进行调查,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有___ 人,条形统计图中“了解”部分所对应的人数是 人; (2) 扇形统计图中“基本了解”部分所对应扇形的圆心角为_______°;(3)若没有达到“了解”或“基本了解”的同学必须重新接受安全教育。
2019中考数学模拟试题附答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019中考数学模拟试题附答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019中考数学模拟试题附答案(word版可编辑修改)的全部内容。
2016中考数学信息试卷一、选择题(每题3分,共24分)1.6-的绝对值等于( )A .6B .16C .16- D .6- 2.下列计算正确的是( )A .2x x x += B. 2x x x ⋅= C.235()x x = D 。
32x x x ÷=3. 一个几何体的主视图和左视图都是正方形,俯视图是一个圆,那么这个几何体是( )A .长方体B .正方体C .圆锥D .圆柱 4.如图,已知⊙O 是△ABC 的内切圆,且∠ABC =50°,∠ACB =80°, 则∠BOC 是( )A 。
110° B. 115° C 。
120° D. 125°第4题 第7题 第8题5.下列说法正确的是( )A .要了解人们对“低碳生活”的了解程度,宜采用普查方式B .一组数据3、4、5、5、6、7的众数和中位数都是5C .随机事件的概率为50%,必然事件的概率为100%D .若甲组数据的方差是0.168,乙组数据的方差是0.034,则甲组数据比乙组数据稳定6.圆锥的侧面积为8π ,母线长为4,则它的底面半径为( )45°CBAA .2B .1C .3D .47.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB =45°,则折叠后重叠部分的面积为( )A . 错误!cm 2B .错误!cm 2C .错误!cm 2D . 错误!cm 2 8.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为 ( )A .y=x 53 B .y=x 43 C .y=x 109D .y=x二、填空题(每题3分,共30分) 9.25的平方根是 .10.写出一个大于1且小于2的无理数 .11.太阳的半径约是6。
2019年中考模拟试题一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数是正数的是()A.0B.5C.﹣D.﹣2.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)下列计算正确的是()A.x7÷x=x7B.(﹣3x2)2=﹣9x4C.x3•x3=2x6D.(x3)2=x64.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)5.(3分)2019年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为()A.9.56×106B.95.6×105C.0.956×107D.956×1046.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形7.(3分)如图所示,该几何体的左视图是()A.B.C.D.8.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.9.(3分)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140D.﹣140=10.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为.A、5B、2C、D、二、填空题(本题共6小题,每小題3分,共18分)11.(3分)若在实数范围内有意义,则x的取值范围为.12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是.13.(3分)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相们比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.16.(3分)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n 的横坐标为(结果用含正整数n的代数式表示)三、解答题(第17题6分,第18、19题各5分,第20、21题各6分,第22、23题各10分,第24、25题各12分,共,72分)17.计算:(1)(﹣2)2++6(2)÷+18.某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.19.某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?20.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.21.如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,顶点C的纵坐标是﹣4,▱ABCD的面积是24.反比例函数y=的图象经过点B和D,求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.22.如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.23.某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?24.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.24.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).25.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.2019年中考模拟试题参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:0既不是正数,也不是负数;5是正数;和都是负数.故选:B.2.【解答】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B.3.【解答】解:A、x7÷x=x6,故此选项错误;B、(﹣3x2)2=9x4,故此选项错误;C、x3•x3=x6,故此选项错误;D、(x3)2=x6,故此选项正确;故选:D.4.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.5.【解答】解:将数据9560000科学记数法表示为9.56×106.故选:A.6.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.7.【解答】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.8.【解答】解:两次摸球的所有的可能性树状图如下:∴P两次都是红球=.故选:D.9.【解答】解:设甲型机器人每台x万元,根据题意,可得:,故选:A.10.【解答】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.11.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.12.【解答】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.13.【解答】解:以点O为位似中心,相们比为,把△ABO缩小,点A的坐标是A (4,2),则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故答案为:(2,1)或(﹣2,﹣1).14.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.15.【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.16.【解答】解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x 轴,C3D3⊥x轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×++()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1=故答案为:17.【解答】(1)解:原式=3+4﹣4+2+6×=3+4﹣4+2+2=7.(2)解:原式=×﹣=﹣=.18.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)1000×=300(人)答:这1000名学生中有300人参加了羽毛球社团;(4)画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.19.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元.20.【解答】证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=621、【解答】解:(1)∵顶点A的坐标是(0,2),顶点C的纵坐标是﹣4,∴AE=6,又▱ABCD的面积是24,∴AD=BC=4,则D(4,2)∴k=4×2=8,∴反比例函数解析式为y=;(2)由题意知B的纵坐标为﹣4,∴其横坐标为﹣2,则B(﹣2,﹣4),设AB所在直线解析式为y=kx+b,将A(0,2)、B(﹣2,﹣4)代入,得:,解得:,所以AB所在直线解析式为y=3x+2.22.【解答】(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠PAC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.23.【解答】解:(1)当0<x≤20且x为整数时,y=40;当20<x≤60且x为整数时,y=﹣x+50;当x>60且x为整数时,y=20;(2)设所获利润w(元),当0<x≤20且x为整数时,y=40,∴w=(40﹣16)×20=480元,当0<x≤20且x为整数时,y=40,∴当20<x≤60且x为整数时,y=﹣x+50,∴w=(y﹣16)x=(﹣x+50﹣16)x,∴w=﹣x2+34x,∴w=﹣(x﹣34)2+578,∵﹣<0,∴当x=34时,w最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.24.【解答】证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ∴∠EAC=2β∵AF平分∠EAC∴∠FAC=∠EAF=β∴∠FAC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF∵∠ABE=∠BAF,∠BGA=∠BAC=90°∴△ABG∽△BCA∴∵∠ABE=∠BAF,∠ABE=∠AFB∴△ABF∽△BAD∴,且AB=kBD,AF=BC=BF ∴k=,即∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°∴∠ABH=∠C,且∠BAC=∠BAC∴△ABH∽△ACB∴∴AB2=AC×AH设BD=m,AB=km,∵∴BC=2k2m∴AC==km∴AB2=AC×AH(km)2=km×AH∴AH=∴HC=AC﹣AH=km﹣=∴25.【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=1,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+…①,∵CE⊥PE,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=…②,联立①②并解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m=5或﹣3(舍去5),故点P(2,﹣3);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)=()2+4,解得:m=0或(均舍去),②当CP=PF时,(2﹣m)2=()2+m2,解得:m=或3(舍去3),③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2).。
2019年河北省中考数学模拟试卷(一)一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算﹣1的结果是()A.1B.﹣1C.D.﹣2.(3分)世界人口约7000000000人,用科学记数法可表示为()7 A.9×1010B.7×109C.7×109D.0.7×103.(3分)直线a,b,c按照如图所示的方式摆放,a与c相交于点O,将直线a绕点O按照逆时针方向旋转n°(0<n<90)后,a⊥c,则n的值为()A.60B.40C.30D.204.(3分)如图2,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A.①B.②C.③D.④5.(3分)将多边形的边数由n条增加到(n+x)条后,内角和增加了540°,则x的值为()A.1B.2C.3D.46.(3分)已知几个相同的小正方体所搭成的几何体的俯视图及左视图如图3所示,则构成该几何体的小正方体个数最多是()A .5 个B.7 个C.8 个D.9 个7.(3 分)下列结果不正确的是()2 2 5=3 A .(﹣3 )2 2 2 3=3 B.3 +3 +34 ﹣2 6÷ 3 =3 C.32019 2018﹣3D.3能被 2 整除8.(3 分)某班学生到距学校12 km 的烈士陵园扫墓,一部分同学骑自行车先行,经h 后,其余同学乘汽车出发,由于设自行车的速度为xkm/h,则可得方程为,根据此情境和所列方程,上题中表示被墨水污损部分的内容,其内容应该是()A .汽车速度是自行车速度的 3 倍,结果同时到达B.汽车速度是自行车速度的 3 倍,后部分同学比前部分同学迟到hC.汽车速度是自行车速度的 3 倍,前部分同学比后部分同学迟到hD.汽车速度比自行车速度每小时多 3 k m,结果同时到达2﹣4x+ c=0,则 c 的值为()9.(3 分)已知x 是的小数部分,且x 满足方程xA .6 ﹣8 B.8﹣6 C.4 ﹣3 D.3﹣410.(3 分)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z 关于x 的函数图象可能为()A.B.C.D.11.(2分)如图,数轴上的点A,B,C,D表示的数分别为﹣3,﹣1,1,2,从A,B,C,D四点中任意取两点,所取两点之间的距离为2的概率是()A.B.C.D.12.(2分)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长13.(2分)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A.B.C.D.14.(2分)图为歌神KTV的两种计费方案说明.若嘉淇和朋友们打算在此K TV的一间包厢里连续欢唱6小时,经服务员试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们同一间包厢里欢唱的人数至少有()A.6人B.7人C.8人D.9人15.(2分)如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,等腰直角△A BC中,∠ACB=90°,三角形的三个顶点分别在这三条平行直线上,则sinα的值是()A.B.C.D.2216.(2分)对于题目“当﹣2≤x≤1时,二次函数y=﹣(x﹣m)+m+1有最大值4,求实数m的值.”:甲的结果是2或,乙的结果是﹣或﹣,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确3分,19小题有2个空,每空3二、填空题,(本大题有3个小题,共12分.17-18小题各)分,把答案写在题中横线上17.(3分)的算术平方根是.18.(3分)已知非零实数a,b互为相反数,设M=1﹣,N=1﹣,则M N(填“>”“<”或”=”)19.(6分)一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40c m(1)小朋友将圆盘从点A滚到与BC相切的位置,此时圆盘的圆心O所经过的路为线长cm;为cm.(2)小朋友将圆盘从点A滚动到点D,其圆心所经过的路线长)三.解答题,(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤22﹣4x,B=2x20.(8分)小马虎做一道数学题,“已知两个多项式A=x+3x﹣4,试求A+2B.”其中多项式A的二次项系数印刷不清楚.2(1)小马虎看答案以后知道A+2B=x+2x﹣8,请你替小马虎求出系数“”;C,(2)在(1)的基础上,小马虎已经将多项式A正确求出,老师又给出了一个多项式C”看成“A+C“,结果求“A﹣C的结果.小马虎在求解时,误要求小马虎求出A﹣把2C“的正确答案2.请你替小马虎求出“A﹣出的答案为x﹣6x﹣21.(9分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随、),并对数据(成绩)进行整理机抽取60名学生进行测试,获得了他们的成绩(百分制描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x <70,70≤x<80,80≤x<90,90≤x≤100):b.A 课程成绩在70≤x<80 这一组的是:70 71 71 71 76 76 77 78 78.5 78.579 79 79 79.5c.A,B 两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A 75.8 m 84.5B 72.2 70 83根据以上信息,回答下列问题:(1)写出表中m 的值;(2)在此次测试中,某学生的 A 课程成绩为76 分,B 课程成绩为71 分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,计 A 课程成绩超过75.8 分的人数.(3)假设该年级学生都参加此次测试,估22.(9 分)观察下表三行数的规律,回答下列问题:第1 列第2 列第3 列第4 列第5 列第6 列⋯32 64 ⋯8a﹣第1 行﹣24﹣30 66 ⋯618﹣第2 行0 6﹣48﹣16 b ⋯第3 行﹣12﹣(1)第1 行的第四列数a=,第 3 行的第六列数b=.(2)若第 1 行的某一列的数为c,则第 2 行与它同一列的数为.(用含 c 的式子表示);(3)已知第n 列的三个数的和为642,试求n 的值.23.(9 分)如图是一块含30°(即∠CAB=30°)角的三角板和一个量角器拼在一起,三角板斜边A B 与量角器所在圆的直径M N 重合,其量角器最外缘的读数是从N 点开始(即N 点的读数为0),现有射线C P 绕着点 C 从CA 顺时针以每秒 2 度的速度旋转到与△ACB 外接圆相切为止.在旋转过程中,射线C P 与量角器的半圆弧交于E.C P 与△ABC 的外接圆相切时,求射线C P 旋转度数是多少?(1)当射线C P 分别经过△ABC 的外心、内心时,点 E 处的读数分别是多少?(2)当射线接BE,求证:B E=CE.(3)当旋转7.5 秒时,连24.(10分)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A 城.由于墨迹遮盖,图中提供的只是两车距B城的路程s甲(千米)、s乙(千米)与行驶时间t(时)的函数图象的一部分.(1)乙车的速度为千米/时;(2)分别求出s甲、s乙与t的函数关系式(不必写出t的取值范围);(3)求出两城之间的路程,及t为何值时两车相遇;(4)当两车相距300千米时,求t的值.25.(10分)在△ABC中,AB=BC,点O是AC的中点,P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为E和F,连接OE,OF.(1)如图1,线段OE与OF的数量关系是;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由;(3)若|CF﹣AE|=2,EF=2,当△POF为等腰三角形时,请直接写出线段PF的长.26.(11分)如图14,已知在平面直角坐标系xOy中,四边形OABC是矩形,OA=4,OC =3,动点P从C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时动点Q 从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动:设点P,点Q的运动时间为t(s)(1)当t=1s时,按要求回答下列问题①tan∠QPC=;②求经过O,P,A三点的抛物线G的解析式,若将抛物线G在x轴上方的部分图象记为G1,已知直线y=x+b与G1有两个不同的交点,求b的取值范围.(2)连接CQ,点P,Q在运动过程中,记△CQP与矩形OABC重叠部分的面积为S,求S与t的函数解析式.2019年河北省中考数学模拟试卷(一)参考答案与试题解析一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:原式=(﹣)=1.故选:A.92.【解答】解:7000000000=7×10.故选:C.3.【解答】解:如图所示,∠1=140°﹣80°=60°,将直线a绕点O按照逆时针方向旋转n°(0<n<90)后,a⊥c,则n=90﹣60=30.故选:C.4.【解答】解:有3个使之成为轴对称图形分别为:②,③,④.故选:A.5.【解答】解:n边形的内角和是(n﹣2)?180°,(n+x)边形的内角和是(n+x﹣2)?180°,则(n+x﹣2)?180°﹣(n﹣2)?180°=540°,解得:x=3,故选:C.6.【解答】解:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:构成该几何体的小正方体个数最多是7个,故选:B.2 7.【解答】解:A、(﹣3)24=3,计算错误,符合题意;22 B、3+3+323=3,正确,不合题意;4﹣26÷3=3C、3,正确,不合题意;201920182018﹣3=3×2,故能被2整除,正确,不合题意.D、3故选:A.8.【解答】解:由方程可知汽车速度是自行车速度的3倍,结果同时到达.故选:A.9.【解答】解:根据题意得:x=﹣1,代入方程得:4﹣2﹣4+4+c=0,解得:c=6﹣8,故选:A.10.【解答】解:∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选:D.11.【解答】解:画树状图为:共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,所以所取两点之间的距离为2的概率==,故选:D.12.【解答】解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,.故三种方案所用铁丝一样长故选:D.13.【解答】解:A、由作图可知,AC⊥BD,且平分BD,即对角线平分且垂直的四边形是菱形,正确;B、由作图可知AB=BC,AD=AB,即四边相等的四边形是菱形,正确;C、由作图可知AB=DC,AD=BC,只能得出ABCD是平行四边形,错误;D、由作图可知∠DAC=∠CAB,∠DCA=∠ACB,对角线AC平分对角,可以得出是菱形,正确;故选:C.14.【解答】解:设嘉淇和朋友们共有x人,若选择包厢计费方案需付:(225×6+25x)元,:135×x+(6﹣3)×20×x=195x(元),若选择人数计费方案需付∴225×6+25x<195x,解得:x>=7.∴至少有8人.故选:C.15.【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,在Rt△ACD中,AC===,在等腰直角△ABC中,AB=AC=×=,∴sinα==.故选:D.16.【解答】解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,m)22此时﹣(﹣2﹣+m+1=4,2矛盾,故m值不存在;,与m<﹣解得m=﹣②当﹣2≤m≤1时,x=m时,二次函数有最大值,2此时,m+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,m)22(1﹣此时,﹣+m+1=4,解得m=2,.综上所述,m的值为2或﹣所以甲、乙的结果合在一起也不正确,故选:D.12分.17-18小题各3分,19小题有2个空,每空3二、填空题,(本大题有3个小题,共分,把答案写在题中横线上)3=64,17.【解答】解:由于4∴=4,2又∵(±2)=4,∴4的算术平方根为2.故答案为:2.18.【解答】解:M=1﹣==,N=1﹣==,∴a,b互为相反数,∴a+b=0,∴M=N=0,故答案为:=;19.【解答】解:(1)如图,当圆盘滚到与BC相切,停止的位置设是圆D,与AB切于E,连接DE,DB,则DE⊥AB,∵在直角△DEB中,BE=DE?tan30°=10×=(cm),∴AE=AB﹣BE=60﹣(cm),即此时圆盘的圆心O所经过的路线长为(60﹣)cm.故答案为(60﹣);(2)如下图,画出圆盘滚动过程中圆心移动路线的分解图象.可以得出圆盘滚动过程中圆心走过的路线由线段OO1,线段O1O2,圆弧,线段O3O4四部分构成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.由(1)知OO1=AE=(60﹣)cm,易得Rt△O1BE和Rt△O1BF全等,∴BF=BE=cm,∴O1O2=BC﹣BF=(40﹣)cm.∵AB∥CD,BC与水平夹角为60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.则圆盘在C点处滚动,其圆心所经过的路线为圆心角为60°且半径为10cm的圆弧.∴的长==πcm.∵四边形O3O4DC 是矩形,∴O3O4=CD=40 c m.度是到D 点,其圆心经过的路线长综上所述,圆盘从A 点滚动(60﹣)+(40﹣)+ π+40=(140﹣+ π)cm.故答案为(140﹣+ π).三.解答题,(本大题共7个小题,共骤)66分.解答应写出文字说明、证明过程或演算步2 2 2 2﹣4x+4x20.【解答】解:(1)根据题意得:A+2B=ax +6 x﹣8=(a+4)x +2x﹣8=x +2x﹣8,可得a+4=1,解得:a=﹣3;故答案为:﹣3,﹣3;2 2 2(2)根据题意得:C=(x ﹣6x﹣2)﹣(﹣3x ﹣4x)=4x ﹣2x﹣2,2 2 2∴A﹣C=﹣3x ﹣4x﹣4x ﹣2x+2,+2x+2=﹣7x2则“A﹣C”的正确答案为﹣7x ﹣2x+2.21.【解答】解:(1)∵A 课程总人数为2+6+12+14+18+8 =60,∴中位数为第30、31 个数据的平均数,而第30、31 个数据均在70≤x<80 这一组,∴中位数在70≤x<80 这一组,∵70≤x<80 这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 7979.5,∴A 课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.(3)估计A课程成绩超过75.8分的人数为300×=180人.22.【解答】解:(1)第一行后一个数是前一个数乘以﹣2;∴a=16,第三行后一个数是前一个数乘以﹣2;∴b=32,故答案为16;32;(2)第二行的每一个数第一行对于数加2,故答案为c+2;(3)∵(﹣1)=642,n?2n+(﹣1)n?2n+2+(﹣1)n?2n1﹣∴n为偶数,n n n∴2=642,+2+2+?2n8∴2=2,∴n=8,∴n的值为8.23.【解答】(1)解:连接OC.∵射线CP与△ABC的外接圆相切,∴∠OCP=90°,∵OA=OC,∴∠ACO=∠A=30°,∴射线CP旋转度数是120°;(2)解:∵∠BCA=90°,∴△ABC的外接圆就是量角器所在的圆.当CP过△ABC外心时(即过O点),∠BCE=60°,∴∠BOE=120°,即E处的读数为120,当CP过△ABC的内心时,∠BCE=45°,∠EOB=90°,∴E处的读数为90.(3)证明:在图2中,∵∠PCA=2×7.5°=15°,∠BCE=75°,∠ECA=∠EBA=15°,∴∠EBC=∠EBA+∠ABC=∠BCE=75°,∴BE=EC.24.【解答】解:(1)120÷1=120千米/时,故答案为120;(1分)(2)设s甲与t的函数关系为s甲=k1t+b,∵图象过点(3,60)与(1,420),∴解得∴s甲与t的函数关系式为s甲=﹣180t+600.(4分)设s乙与t的函数关系式为s乙=k2t,∵图象过点(1,120),∴k2=120.∴s乙与t的函数关系式为s乙=120t.(5分)(3)当t=0,s甲=600,∴两城之间的路程为600千米.(6分)∵s甲=s乙,即﹣180t+600=120t,解得t=2.∴当t=2时,两车相遇.(8分)(4)当相遇前两车相距300千米时,s甲﹣s乙=300,即﹣180t+600﹣120t=300,解得t=1.(9分)当相遇后两车相距300千米时,s乙﹣s甲=300,即120t+180t﹣600=300.解得t=3.(10分)25.【解答】解:(1)如图1中,延长E O交CF于K.∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK(ASA),∴OE=OK,∵△EFK是直角三角形,∴OF=EK=OE.故答案为:OF=OE.(2)如图2中,延长E O交CF于K.∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE.为2或.(3)PF的长E O交CF于K.如图1中,点P在OA上,延长∵|CF﹣A E|=2,EF=2,AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=,∴∠FEK=30°,∴EK=2FK=4,OF=EK=2.∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2时符合条件;如图3,当点P在线段OC上时,作PG⊥OF于G.同法可得:KE=2,EF=2,∴tan∠KFE=,∴∠KFE=30°,∴FK=2KE=4,∵OK=OF,∴OK=OF=2,∵△OPF为等腰三角形,∴PO=PF.∵PG⊥OF,∴OG=GF=1,∴PF=.26.【解答】解:(1)①由题意知OQ=1,CP=2,如图1,过点Q作QD⊥BC于点D,则四边形OQDC是矩形,∴CD=OQ=DP=1,OC=DQ=3,∴tan∠QPC==3;②由①知P(2,3),∵抛物线过原点O,2∴可设抛物线解析式为y=ax+bx,将A(4,0),P(2,3)代入,解得:,2∴抛物线解析式为y=﹣x+3x,∵直线y=x+b与G1有两个不同的交点,22∴方程﹣x﹣10x+4b=0有两个不相等的实数根,且b≥0,+3x=x+b,即3x210)﹣4×3×4b>0,则△=(﹣解得0≤b<;故答案为:3.2,(2)当0≤t≤2时,如图由题意可知C P=2t,∴S=S△PCQ=×2t×3=3t;3,当2<t≤4时,设P Q交AB于点M,如图t,由题意可知P C=2t,OQ=t,则BP=2t﹣4,AQ=4﹣∵PC∥OA,∴△PBM∽△QAM,∴==,∴BM=?AM,WORD文档∴3﹣AM=?AM,解得AM=,∴S=S四边形BCQM=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×=24﹣﹣3t;当t>4时,设CQ与AB交于点M,如图4,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴=,即=,解得AM=,∴BM=3﹣=,∴S=S△BCM=×4×=;综上可知S=.谢谢.专业资料。
2019年中考模拟试卷 数学参考答案及评分标准二、填空题(每小题4分,共24分)11 11≠-≥x x 或 12. 82 x x 或- 13. .5215.(x y +≥2()4x y xy +≥,或222x y xy +≥2x y+等)16.π-4 ,=2S 22π- , =n S 13221---n n π(1分、1分、2分)三、解答题(共66分)17、(本小题6分)(b+c)-ad= 18. (本小题6分) 19.(本题6分)解:(1) 函数解析式为12000y x=.……1分填表如下:第1天 第2天第3天 第4天 第5天 第6天 第7天 第8天 售价x (元/千克) 400 300250 240200 150 125 120 销售量y (千克)30404850608096100……2分(2) 2 104-(30+40+48+50+60+80+96+100)=1 600, 即8天试销后,余下的海产品还有1 600千克. (1)分当x =150时,12000150y ==80. ……1分 1 600÷80=20,所以余下的这些海产品预计再用20天可以全部售出. (1)20.本题满分 8 分.解:(1)30;20. ·········································································································· 2 分 (2)12. ····················································································································· 2 分 (3)可能出现的所有结果列表如下:或画树状图如下:共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为63168P==;则小李获得车票的概率为35188-=. ∴这个规则对小张、小李双方不公平.21. (1)解:CD 与AC 互相垂直。
2019年中考数学模试试题(2)(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年中考数学模试试题(2)(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年中考数学模试试题(2)(含解析)的全部内容。
中考数学模试卷一、选择题(本大题共14小题,每小题3分,共42分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,互为倒数的是()A.﹣3与3 B.﹣3与C.﹣3与D.﹣3与|﹣3|2.(3分)如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°3.(3分)下列运算正确的是()A.||=B.x3•x2=x6C.x2+x2=x4D.(3x2)2=6x44.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(3分)如图,几何体是由3个完全一样的正方体组成,它的左视图是()A.B.C.D.6.(3分)某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是()A.B.C.D.7.(3分)已知一个正多边形的内角是140°,则这个正多边形的边数是()A.6 B.7 C.8 D.98.(3分)十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480元,出发时又有4名学生参加进来,结果每位同学比原来少分摊4元车费.设原来游玩的同学有x 名,则可得方程()A.﹣=4 B.﹣=4C.﹣=4 D.﹣=49.(3分)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.16,10。
2019届初中毕业考试中考模拟数学试卷(带答案解析)一、选择题1、在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B2、A 2B 2C 2D 2、D 2E 3E 4B3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015D .()20142、已知二次函数y=a (x ﹣2)2+c ,当x=x 1时,函数值为y 1;当x=x 2时,函数值为y 2,若|x 1﹣2|>|x 2﹣2|,则下列表达式正确的是( )A .y 1+y 2>0B .y 1﹣y 2>0C .a (y 1﹣y 2)>0D .a (y 1+y 2)>03、若单项式2x 2y a+b与﹣xa ﹣b y 4是同类项,则a ,b 的值分别为( )A .a=3,b=1B .a=﹣3,b=1C .a=3,b=﹣1D .a=﹣3,b=﹣14、今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000。
其中说法正确的有( )A .4个B .3个C .2个D .1个5、某商店举办促销活动,促销的方法是将原价x 元的衣服以(x ﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元 6、中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( ) A .44×108B .4.4×109C .4.4×108D .4.4×10107、如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°8、﹣3的相反数是( )A .3B .﹣3C .-D .二、填空题9、如图,已知AB=2,AD=4,∠DAB=90°,AD ∥BC .E 是射线BC 上的动点(点E 与点B 不重合),M 是线段DE 的中点,连结BD ,交线段AM 于点N ,如果以A ,N ,D 为顶点的三角形与△BME 相似,则线段BE 的长为 。
2019年中考数学模拟试题及答案分析
学校:__________
考号:__________
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 一、选择题
1.下列轴对称图形中,对称轴条数最少的是( ) A .等腰直角三角形
B .长方形
C .正方形
D .圆
2.已知:关于y x ,的方程组y x ,a y x a y x -⎩
⎨⎧-=++-=+则324
2的值为 ( )
A .-1
B .1-a
C .0
D .1
3.分解因式14
-x 得( ) A .)1)(1(22-+x x
B .22)1()1(-+x x
C .)1)(1)(1(2++-x x x
D .3)1)(1(+-x x
4.一个三角形的两边长为3和6,第三边长为方程(x -2)(x -4)=0的根,则这个三角形的周长是( ) A .11
B .12
C .13
D .11或13
5.二元一次方程的一个解是( ) A .两个数值 B .任意一对未知数的值
C .一对未知数的值
D 6.若使分式
2
x
x -有意义,则x ) A .2x ≠ B .2x ≠- C .2x >- D .2x <
7.下列各式中,不能..继续分解因式的是( ) A .2
2
862(43)xy x xy x -=- B .11
3(6)22
x xy x y -
=- C .3
2
2
4844(+21)x x x x x x ++=+ D .2
2
1644(41)x x -=-
8. 用加减法解方程组479(1)
2715(2)x y x y +=⎧⎨
-+=-⎩
时,①一②得( )
A .66x =-
B .224x =
C .26x =-
D .624x =
9.某种商品在降价x %后,单价为a 元,则降价前它的单价为( ) A .
%
a x B .%a x ⋅
C .
1%
a
x -
D .(1%)a x -
10.若分式32
42
x x +-有意义,则字母x 的取值范围是( ) A .12
x =
B .2
3
x =-
C .12x ≠
23
x ≠- 11.在一周内体育老师对某运动员进行了5次百米短跑测试,若想了解该运动员的成绩是否稳定,老师需要知道他5次成绩的( ) A .平均数
B .方差
C .中位数
D .众数
12.如图,AB ∥DE ,︒=∠65E ,则C B ∠+∠=( ) A . ︒135
B . ︒115
C . ︒36
D . ︒65
13.如图,AC ⊥BE ,∠A =∠E ,不能判断△ABC ≌△EDC 的条件是( ) A .BC =DC
B .∠B =∠CDE
C .AB =DE
D .AC =CE
14.下列各组条件中,能判定△ABC 为等腰三角形的是 ( ) A .∠A=60°,∠B=40° B .∠A=70°,∠B=50° C .∠A=90°,∠B=45°
D .∠A=120°,∠B=15°
15.由四个大小相同的小正方体搭成的几何体的左视图如图,则这个几何体的搭法不可能是 ( )
A .
B .
C .
D .
16.某几何体的三视图如图所示,则该几何体是( )
A . 圆柱
B . 球
C .圆锥
D .长方体
17.某校八年级有六个班.一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同.下列说法中,正确的是( )
A. 全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间
B. 将六个平均成绩之和除以6,就得到全年级学生的平均成绩 C .这六个平均成绩的中位数就是全年级学生的平均成绩。