全光网基础知识
- 格式:ppt
- 大小:2.02 MB
- 文档页数:84
PON基本知识介绍1、PON是一种点到多点的(P2MP)结构的无源光网络,PON的本质特征就是ODN 全部由无源光器件组成,不包含任何有源电子器件。
2、PON由光线路终端(OLT)、光网络单元(ONU)、光分配网络(ODN)组成。
3、GPON三大优势:1、更远的传输距离:采用光纤传输,接入层的覆盖半径20KM;2、更高的带宽:对每用户下行2.5G/上行1.25G(物理层);3、分光特性:局端单根光纤经分光后引出后多路多户光纤,节省光纤资源;4、GPON可以提供全业务竞争方案可以有效解决双绞线接入的带宽瓶颈,满足用户对高带宽业务的需求,如高清电视、实况转播等,GPON是三网融合的上佳方案。
5、GPON采用WDM技术,实现单纤双向传输;分光比为1:16、1:32、1:64,可升级为1:128。
6、GPON广播方式:下行为广播方式,下行帧长固定为125us,所有的ONU都能收到相同的数据,但是通过GEMPORT ID来区分不同的业务的数据,ONU 通过过滤来接收属于自己的数据;上行采用TDMA方式(时分复用)传输数据,上行链路被分成不同的时隙,根据下行帧的字段来为给每个ONU分配上行时隙,这样所有的ONU都可以按照一定的秩序发送自己的数据了,不会产生为了争夺资源而冲突,每帧共有9120个时隙。
7、GPON的关键技术:1、突发光电技术:快速开启和关断能力2、测距:通过Ranging测距过程获取ONU的往返延迟,从而指定合适的均衡延迟参数,保证每个ONU发送数据时不会在分光器上产生冲突。
8、ONU需在OLT中注册使用。
9、GPON的保护方式:10、GPON系统可支持的最大物理距离,当光分路比为1:16时,应支持20km的最大物理距离;当光分路比为1:32时,应支持10km的最大物理距离。
11、光纤接入网的形式:FTTB(光纤到大楼);FTTC(光纤到路边);FTTZ(光纤到小区);FTTH(光纤到用户);FTTO(光纤到办公室);FTTF(光纤到楼层);FTTP(光纤到电杆);FTTN(光纤到邻里);FTTD(光纤到门);FTTR(光纤到远端单元)。
关于光纤的基础知识一、光纤接入网的拓朴结构电信网络最基本的拓朴结构有线形、星形和环形,由这3种基本结构组合而成的有双星形。
环形/星形、双环形、树形、网状网等等。
其中线形、星形(包括多星形)、树形、网状网结构是适用于光纤接入网的拓朴结构。
1.线形网络结构上、下业务灵活,可以节省光纤,简化设备,因此有广泛的应用前景。
2星形网络结构无论是其容量还是其业务服务内容都可以根据需要进行扩容、升级;并且,多星形结构馈线部分的复用系数很大,所以,采用星形类结构,可以大大节省光纤数量和建设成本,是光纤投入网发展中最主要的网络拓朴结构。
3.树形网络结构适用于广播式信息传递,其应用有一定的局限性。
但是在有线电视或采用TDMA或CDMA技术的电信光源光网络(PON)中有很大的应用前景。
4网状网结构经济、灵活、维护运行费用低,网络升级方便,在接入网中具有很大的优越性。
二、光纤用户接入系统的组成目前,接入网的用户终端设备都属于电气设备(如计算机。
电话机、传真机、电话机等),所以在局端和用户端之间,以光波作为载波,光纤作为传输媒介时,在两端都要进行光信号与电信号之间的转换。
光通信系统的组成主要有光源、光纤、光检测器。
发端的光源在电信号的作用下,发出与之时应的光信号,完成电/光转换的任务。
常用的光源有半导体激光二极管和半导体发光二极管。
接收端收到从发端经过光纤送来的光载波时,首先由光检测器把收到的光信号转换成对应的电信号,再经过放大均衡,还原成所需要的电信号。
可见,光检测器是光信号接收的关键器件。
在光纤通信中,常用的光检测器有PIN光电二极管和雪崩光电二极管。
光纤在信号的传输过程中起着媒介的作用。
光纤按其传输模式可分为单模光纤和多模光纤。
在光纤中只能传送一个模式时称为单模光纤,同时传送多个模式时称为多模光纤。
目前,在光纤通信系统中使用的载波波长有3个:0.85pm、1.31pm、1.55pm。
第1代光纤通信系统使用的是0.85pm波长,多模光纤;第2、3代光纤通信系统使用的是1.31pm 波长,多模光纤和单模光纤;最新的第4代光纤通信系统是用1.55pm波长,单模光纤。
光纤知识点(5-9章)第五章知识点1.数字传输体制有两种:是不同的传输体制协议。
SDH(同步数字传输体制)PDH(准同步数字传输体制)2. SDH对模型的下列几个方面做了规定:(1)网络节点接口(2)同步数字体系的速率(3)帧结构。
(1)网络节点接口传输设备:光缆传输系统设备;微波传输系统设备;卫星传输系统设备。
网络节点:只有复用功能(简单);复用、交叉连接多种功能(复杂)。
(2)速率:同步传输模块:STM-N,N=1、4、16 等。
STM-1 155.520Mbit/s 155Mbit/sSTM-4622.080Mbit/s 622Mbit/sSTM-16 2488.320Mbit/s 2.5Gbit/sSTM-64 9953.280Mbit/s 10Gbit/sSTM-256 39813.12Mbit/s 40Gbit/s(3)帧结构:SDH 帧为块状帧结构,共有9 行,270 列,以字节为单位。
一个STMN 帧有9 行,每行由270×N 个字节组成。
这样每帧共有9×270×N 个字节,每字节为8 bit。
帧周期为125μs,即每秒传输8000 帧。
对于STM1 而言,传输速率为9×270×8×8000=155.520 Mb/s 。
字节发送顺序为:由上往下逐行发送,每行先左后右。
(结构图见书127页,重点)3.STM-N 帧包括三个部分:SOH、AU-PTR、PAYLOAD(结构图见书127页,重点)(1)段开销SOH:RSOH,再生段开销:1~3 行。
MSOH,复用段开销:5~9 行。
区别:监管范围不同。
如:若光纤上传输2.5G 信号,RSOH 监控STM-16 整体的传输性能。
MSOH 监控每一个STM-1 的传输性能。
(2)管理指针AU-PTR:指示净负荷PAYLOAD 中信息的起始字节位置,便于接收端从正确的位置分解出有效传输信息。
光传输网设备基础知识pptx xx年xx月xx日contents •光传输网概述•光传输网设备介绍•光传输网技术原理•光传输网设备安装与维护•光传输网发展趋势与挑战•光传输网应用场景与案例分析目录01光传输网概述定义:光传输网是一种使用光信号进行长距离数据传输的通信网络,它以光纤为传输介质,以光信号为信息载体。
特点传输距离远:光纤传输不受电磁辐射干扰,传输距离远,适合长距离传输。
传输速度快:光纤传输带宽宽,传输速率高,适合高速数据传输。
传输容量大:光纤传输具有较高的多路复用能力,能够实现大容量的数据传输。
安全性高:光纤传输具有较好的保密性能,能够保护数据安全。
定义与特点03支持多样化的通信业务光传输网能够支持各种不同的通信业务,如语音、视频、数据等,满足不同领域的需求。
光传输网的重要性01实现高速、大容量、远距离的数据传输光传输网具有高速、大容量、远距离的传输特点,能够满足不断增长的数据传输需求。
02促进通信网络的发展光传输网是现代通信网络的基础设施,对通信网络的发展起着关键的推动作用。
光传输网的发展可以追溯到20世纪70年代,当时光纤技术开始出现,逐渐应用于数据传输领域。
此后,光传输技术不断发展,经历了模拟信号、数字信号、DWDM(密集波分复用)等不同阶段。
发展随着技术的不断进步,光传输网的传输速率、传输距离和传输容量不断提高。
目前,光传输网已经广泛应用于电信、广电、铁路、军事等领域,成为现代通信网络的核心组成部分。
同时,光传输网还在不断发展和演进,如5G通信网络的建设和推广、全光网络的研究和应用等。
历史光传输网的历史与发展VS02光传输网设备介绍OTN设备定义光传送网(OTN)设备是一种将光信号进行封装、复用、传输和解复用的设备,它基于光波长作为单位进行划分和管理。
OTN设备OTN设备功能OTN设备可以实现光波长的复用和解复用、光信号的调制和解调制、光信号的传输和路由选择等功能。
OTN设备组成OTN设备主要由光信号处理模块、光波长复用和解复用模块、光信号调制和解调制模块、光信号传输和路由选择模块等组成。
全光网(POL)网络基础知识及其应用特点(网络人应知道)伴随着网络带宽不断提升,终端设备不断发展,高清视频会议,云服务,海量数据交换,移动办公等让企业成为更加高效和更加开放的平台,从而促进企业的智能化和信息化办公,并对网络带宽及速率的要求也越来越高,传统的企业和园区局域网在面临这些应用对带宽的巨大挑战时,都存在着网络升级的诉求;那么传统的综合布线系统在经历了接近30年的快速发展已经逐步不能满足时代发展需求了;大型园区、楼宇基础网络建设主要面临以下挑战:1.大量交换机占用机房空间,功耗大,散热难2.汇聚路由器之间连接复杂,而且占用管道空间,走线和维护难度大3.交换机位置分散,管理复杂,需要庞大的维护团队4.传输距离的限制5.网络新增设备操作复杂6.升级和扩容难对于传输距离,网络平滑升级,高可靠性,灵活组网,易部署,简捷运维等方面,传统综合布线系统已经全面落后于全光网网络(POL),全光网把传统综合布线的传输和光纤到桌面,光纤到用户单元,光纤到公共区域进行整体的融合;另外,加入网络设备把原有的3层网络变成扁平的二层架构,全光网(POL)网络融合园区+边缘云,企业可将数据,语音、视频安防以及无线等不同的系统融合在一张光纤网络中,具有传统综合布线不可比拟的优势。
全光网的组成及传输方式POL采用PON技术;PON(Passive Optical Network)是一种点到多点(P2MP)结构的无源光网络,其组成涵盖三部分:OLT, ODN, ONUPOL: Passive Optical LAN 无源全光局域网在POL组网中传统LAN中的汇聚交换机被OLT替代;水平铜缆被光纤替代;接入交换机由无源的分光器替代;ONU提供二/三层功能,通过有线或者无线接入用户的数据、语音及视频等业务。
PON网络下行采用广播方式:通过分光器将OLT发出的光信号分成多份带有相同信息的光信号,传送到每个ONU;ONU根据报文中所带的标记,选择性接收属于自己的报文,对标记不符的进行丢弃处理。
全光网技术特点及未来应用探讨摘要:全光网是指基于光纤通信技术的网络体系结构,其具有高速、大带宽、低延迟等优势,可以满足未来高速通信和应用的需求。
本期刊主要探讨全光网技术的特点以及未来应用,分析全光网技术的发展现状和趋势,探讨其在5G、云计算、大数据等领域中的应用前景和挑战。
关键词:全光网;光纤通信;高速通信;5G;云计算;大数据引言随着信息技术的迅猛发展,全光网络作为下一代通信网络,具有高速、大带宽、低时延等优势,成为未来网络发展的趋势。
全光网技术以光纤为基础,实现了全光化的传输,避免了传统通信中光纤与铜线混合传输的局限性,提供了更加可靠和高效的通信服务。
本文将对全光网络技术的特点和未来应用进行探讨,以期进一步推动全光网络技术的发展和应用。
1全光网技术概述全光网技术是一种基于光纤传输的网络技术,相比传统的铜线网络技术具有更高的传输速度和更好的可靠性。
全光网技术包括光纤通信技术和光网络技术两大部分。
光纤通信技术是指利用光纤作为传输介质来实现数据传输,采用激光技术将信息转换为光信号,传输速度非常快。
而光网络技术则是在光纤通信技术的基础上,进一步提高网络的可靠性和灵活性,可以实现高速率、大容量、低时延、低成本的网络通信。
近年来,全光网技术在通信领域得到了广泛的应用,也成为了未来网络发展的趋势。
2 全光网技术的特点全光网技术是一种基于光纤的传输网络,与传统的铜线通信相比,具有许多独特的技术特点。
本文将详细介绍全光网技术的特点,以便更好地了解这种技术的优势和未来应用的可能性。
(1)高速率全光网技术的主要特点之一是其高速率。
相对于传统的铜线通信,光纤通信的传输速度更快,可以支持更高的带宽需求。
光纤通信的理论带宽可以达到数百TBps,而且随着技术的不断升级,其带宽也在不断提高。
因此,全光网技术可以满足高速数据传输和处理的需求,特别是在大规模数据中心和云计算中心等应用场景中具有明显的优势。
(2)高可靠性相对于传统的铜线通信,光纤通信具有更高的可靠性。