线粒体和过氧化物酶体
- 格式:ppt
- 大小:487.50 KB
- 文档页数:31
e29-2 超长链脂肪酸的β-氧化
如图e29-2所示,在过氧化物酶体或乙醛酸循环体内发生的β-氧化与线粒体内发生的β-氧化十分相似,只不过催化第一步反应的酶并非脂酰-CoA脱氢酶,而是脂酰-CoA氧化酶(acyl-CoA oxidase)。
该酶将脂酰-CoA失去的电子经过FAD交给O2,而并非呼吸链,从而形成H2O2,且没有ATP的生成。
形成的H2O2会被这两种细胞器内的过氧化氢酶迅速分解为无害的H2O和O2。
图e29-2 线粒体和非线粒体β-氧化反应的异同
过氧化物酶体或乙醛酸循环体内催化其余三步β-氧化反应的酶,与线粒体基质内相应的酶并无本质上的差别,只是产生的NADH和乙酰-CoA需要先离开这两种细胞器,在进入线粒体以后才能进一步氧化分解。
此外,过氧化物酶体内的β-氧化酶系对碳链短的脂酰-CoA
不起作用,当碳链被缩短到6~8个碳原子以后,需要进入线粒体才能继续进行β-氧化。
不过,乙醛酸循环体内的β-氧化酶系可将脂酰-CoA完全分解为乙酰-CoA。
过氧化物酶体或乙醛酸循环体内产生的短链脂酰-CoA的离开需要肉碱的帮助,即需要先转变成脂酰肉碱,然后自由扩散到线粒体,通过其外膜和内膜,在基质一侧再转变成脂酰-CoA,继续被氧化分解。
植物内过氧化物酶系统的功能与调控植物细胞中存在着一种重要的短暂性氧化剂,即过氧化氢。
过氧化氢在正常生理活动中是必需的,但过多的过氧化氢会导致氧化损伤以及细胞死亡。
为了维持细胞内的氧化还原平衡,植物发展了过氧化物酶系统。
植物内过氧化物酶系统由多种不同的酶组成,主要包括过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)等。
这些酶能够清除氧化损伤产生的有害氧化物,细胞内氧化还原平衡得以维持。
过氧化物酶(POD)是一种重要的氧化还原酶类,具有氧化多酚类物质的能力。
在植物身上,POD广泛存在于细胞质、叶绿体、线粒体、内质网等部位,参与植物的生理生化反应过程。
POD酶对称除去过氧化氢以及一些亚硝酸盐、有机酸和酚类氧化物质,同时在植物逆境胁迫、植物病理和植物抵抗等方面也具有重要作用。
研究发现,POD酶的活性水平会因抗氧化酶的生物合成、胁迫刺激和激素等生理活动而产生变化。
过氧化氢酶(CAT)是一种负责清除过氧化氢的酶,广泛存在于植物细胞的各个部位。
过氧化氢酶能够将过氧化氢(H2O2)催化分解成水和氧气,以清除氧化剂对细胞的氧化损伤。
同时,CAT酶的生理意义与植物逆境胁迫、植物抵抗病毒等方面也密切相关。
研究表明,CAT酶的活性水平受到高温、干旱、盐碱等逆境因子的影响。
超氧化物歧化酶(SOD)是一类清除超氧自由基的酶,具有抗氧化作用,主要包括Cu/ZnSOD、FeSOD和MnSOD等多种亚型。
在植物中,Cu/ZnSOD分布在细胞质和叶绿体中,FeSOD分布在叶绿体和线粒体中,而MnSOD则只存在于线粒体内。
不同亚型的SOD酶也对应植物的不同生物学功能,如Cu/ZnSOD主要参与超氧自由基的清除,而MnSOD则与线粒体功能有关。
植物内过氧化物酶系统的调控机制十分复杂。
在生命活动过程中,植物会根据外部环境的变化调整其过氧化物酶的活性水平。
在植物的应答过程中,一些逆境胁迫因子(如高盐、干旱、低温、病毒感染等)会促使过氧化物酶的合成和活性水平升高,以应对氧化损伤对植物的威胁。
线粒体超氧化物歧化酶线粒体超氧化物歧化酶(Superoxide Dismutase,简称SOD)是一种酶类,广泛存在于动植物的细胞中,具有非常重要的生物学功能。
1. SOD的基本概念SOD主要是用于清除机体内过量产生的超氧自由基(O2-)。
超氧自由基是一种非常活泼的氧化物质,会造成机体内如蛋白质、DNA、脂质等大量的氧化损伤,因此,SOD具有非常重要的生物学意义。
2. SOD的种类与结构SOD分为三种基本类型,即胞浆型(Cu/Zn SOD)、线粒体型(Mn SOD)和胶质型(EC SOD)。
而其中最重要的是线粒体类型的SOD,它主要位于线粒体内膜上,负责清除线粒体内大量产生的超氧自由基,防止线粒体功能受损。
SOD的分子结构比较复杂,具有四个亚基,每个亚基中含有一个金属离子,通常为铜和锰。
这些金属离子的存在是SOD的功能发生的重要前提,也是SOD的研究热点之一。
3. SOD的生物学功能SOD是一种非常重要的抗氧化酶,可以清除机体内过量产生的超氧自由基。
超氧自由基是一种具有极强氧化性的自由基物质,可以对人体内的各种生物大分子进行氧化损伤,如蛋白质结构的改变、破坏细胞膜的完整性、DNA的损伤等。
SOD负责清除这些超氧自由基,从而使细胞和组织得到保护,从而维持细胞健康。
在某些疾病或生理情况下,机体的SOD活性下降,则会产生大量的超氧自由基,导致机体出现不同程度的氧化损伤。
此外,SOD还具有其它生物学功能,如参与细胞周期调节、生长发育等生命过程,尤其在人类肿瘤组织的清除方面具有独特作用。
总之,SOD是一种非常重要的生物学分子,在人类的健康和生命中扮演着重要的角色。
对SOD的研究将有助于我们更好地了解生命的本质,探索疾病的本质,为人类健康做出更大的贡献。
植物生理学问答题1、试述植物光呼吸和暗呼吸的区别;答:比较项目暗呼吸光呼吸底物葡萄糖乙醇酸代谢途径糖酵解、三羧酸循环等途径乙醇酸代谢途径发生部位胞质溶胶、线粒体叶绿体、过氧化物酶体、线粒体发生条件光、暗处都可以进行光照下进行对O2、CO2浓度的反应无反应高O2促进,高CO2抑制2、光呼吸有什么生理意义答:1光呼吸使叶片在强光、CO2不足的条件下,维持叶片内部一定的CO2水平,避免光合机构在无CO2时被光氧化破坏;2光呼吸过程消耗大量O2,降低了叶绿体周围O2浓度和CO2浓度之间的比值,有利于提高RuBP氧化酶对CO2的亲和力,防止O2对光合碳同化的抑制作用;综上,可以认为光呼吸是伴随光合作用进行的保护性反应;3、试述植物细胞吸收溶质的方式和机制;答:1扩散:①简单扩散:简单扩散是指溶质从高浓度区域跨膜移向临近低浓度区域的过程;不需要细胞提供能量;②易化扩散:又名协助扩散,是指在转运蛋白的协助下溶质顺浓度梯度或电化学梯度的跨膜转运过程;不需要细胞提供能量;2离子通道:离子通道是指在细胞膜上由通道蛋白构成的孔道,作用是控制离子通过细胞膜;3载体:载体是跨膜转运的内在蛋白,在夸膜区域不形成明显的孔道结构;①单向运输载体:单向运输载体能催化分子或离子顺电化学梯度单向跨膜转运;②反向运输器:反向运输器与膜外的H+结合时,又与膜内的分子或离子结合,两者朝相反的方向运输;③同向运输器:同向运输器与膜外的H+结合时,又与膜外的分子或离子结合,两两者朝相同的方向运输;4离子泵:离子泵是膜上的A TP酶,作用是通过活化A TP推动离子逆化学势梯度进行跨膜转运;5胞饮作用:胞饮作用是指细胞通过膜的内陷从外界直接摄取物质进入细胞的过程;4、试述压力流动学说的基本内容;答:1930年明希提出了用于解释韧皮部光合同化物运输机制的“压力流动学说”,其基本观点是:1光合同化物在筛管内随液流流动,液流的流动是由输导系统两端的膨压差引起的;2膨压差的形成机制:①源端:光合同化物进入源端筛管分子 → 源端筛管内水势降低 → 源端筛管分子从临近的木质部吸收水分 → 源端筛管内膨压增加;②库端:库端筛管中的同化物不断卸出 → 库端筛管内水势提高 → 水分流向临近的木质部 → 库端筛管内膨压降低;③源端光合同化物装载和库端光合同化物卸出不断进行,使源库间维持一定的膨压差,在此膨压差下,光合同化物可经韧皮部不断地由源端向库端运输;5、试述同源异形的概念及ABC 模型的主要内容;答:1同源异形:分生组织系列产物中一类成员转变为与该系列种在形态和性质上不同的另一类成员的现象称为同源异形现象;导致同源异型现象发生的基因称为同源异型基因;2“ABC ”模型:A 类基因在第一 、二轮花器官中表达,B 类基因在第二、三轮花器官中表达,C 类基因在第三、四轮花器官中表达;其中AB 、BC 相互重叠,但AC 相互拮抗,即A 抑制C 在第一、二轮花器官中表达,C 抑制A 在第三、四轮花器官中表达;A 单独决定萼片的发育,AB 共同决定花瓣的发育,BC 共同决定雄蕊的发育,C 单独决定心皮的发育;6、试述光合磷酸化的机理;答:1光合磷酸化的概念:光照条件下电子传递与磷酸化作用相偶联,进而生成ATP 的过程称为光合磷酸化;2光合磷酸化的类型:①环式光合磷酸化:光照条件下环式电子传递与磷酸化作用相偶联,进而生成ATP的过程称为环式光合磷酸化;环式光合磷酸化是非光合放氧生物光能转换的唯一途径,主要在基质片层内进行; ADP + Pi ATP + H20②非环式光合磷酸化:光照条件下非环式电子传递与磷酸化作用相偶联,进而生成ATP 的过程称为非环式光合磷酸化;非环式光合磷酸化为含有基粒片层的放氧生物所特有,在光合磷酸化中占主要地位;−−−→−光,光合膜−−−→−光,光合膜2ADP + 2Pi + 2NADP + 2H2O 2ATP + 2NADPH + 2H+ + 2H2O + O22H2O 在反应前表示水的光解,在反应后表示ADP 与Pi 结合时所脱下的水;③假环式光合磷酸化:光照条件下假环式电子传递与磷酸化作用相偶联,进而生成ATP 的过程称为假环式光合磷酸化;ADP + Pi + H2O ATP + O2- + 4H + NADP+ 3光合磷酸化的机理—化学渗透学说:该学说假设能量转换和偶联机构具有以下特点:①由磷脂和蛋白质构成的膜对离子和质子具有选择性;②具有氧化还原电位的电子传递体不匀称地嵌合在膜内;③膜上有偶联电子传递的质子转移系统;④膜上有转移质子的ATP 酶;在解释光合磷酸化机理时,该学说强调:光合电子传递链的电子传递会伴随膜内外两侧产生质子动力,并由质子动力推动ATP 的合成;7、试述气孔运动的淀粉-糖转化学说和无机离子吸收学说;答:1淀粉-糖转化学说:①光照时,保卫细胞进行光合作用,消耗CO2,使细胞内PH 值升高,促使淀粉在淀粉磷酸化酶的催化作用下转变为可溶性糖;从而使保卫细胞水势下降,保卫细胞吸水,气孔张开;②在黑暗中,保卫细胞进行呼吸作用,产生CO2, 使细胞内PH 值下降,促使−−−→−光,光合膜可溶性糖在淀粉磷酸化酶的催化作用下转变为淀粉;从而使保卫细胞水势升高,保卫细胞失水,气孔关闭;2无机离子吸收学说:光照时,保卫细胞进行光合作用,产生ATP,ATP活化存在于细胞质膜上的K-H离子泵,保卫细胞吸收K+,水势降低,气孔张开;8、试述脱落酸诱导气孔关闭的信号转导途径;答:ABA与质膜上的受体结合→保卫细胞质膜上的Ca2+通道打开→保卫细胞内Ca2+浓度和PH值上升→抑制K+内流,激发K+、Cl-外流→保卫细胞内水势上升,水分外流→气孔关闭;9、植物呼吸作用的多样性表现在哪些方面从其中一个方面叙述之;答:1植物呼吸作用的多样性表现在三个方面:呼吸代谢途径的多样性、电子传递链的多样性、末端氧化酶的多样性;2各种末端氧化酶主要特性的比较:酶金属辅基需要辅酶定位与O2的亲和力与ATP的偶联CN的抑制CO的抑制酚氧化酶Cu NADP 细胞质中- + + 抗坏血酸氧化酶Cu NADP 细胞质低- + - 乙醇酸氧化酶黄素蛋白NAD 过氧化物酶体极低- - - 细胞色素氧化酶Fe NAD 线粒体极高+++ + + 交替氧化酶Fe非血红素NAD 线粒体高+ - - 10、植物呼吸代谢途径的多样性对植物生存有何适应意义答:植物呼吸代谢途径的多样性使其能够适应时常变化的环境条件;例如植物遭受病菌浸染时,戊糖磷酸途径增强,形成植保素、木质素以提高其抗病能力;又如水稻根系在淹水缺氧时,乙醇酸途径增强以保持根系的正常生理功能;11、植物光合作用与呼吸作用有何区别与联系答:12、为什么C4植物光合效率高于C3植物;答:1PEPcase磷酸烯醇式丙酮酸羧化酶比Rubisco核酮糖-1,5-二磷酸羧化/加氧酶对CO2的亲和力大,导致植物的CO2补偿点低于C3植物;b.逆境下气孔关闭对C4植物光合作用的影响程度更小;2C4途径的存在使C4植物的光呼吸低于C3植物;3C4植物光呼吸产生的CO2经叶肉细胞时可被再利用,C3植物不能再利用光呼吸产生的CO2;13、C4植物与CAM植物在碳代谢上有哪些异同答:1相同点:①固定与还原CO2的途径基本相同,二者都是由C4途径固定CO2,由C3途径还原CO2;②二者都是由PEPcase磷酸烯醇式丙酮酸羧化酶固定空气中的CO2,由Rubisco核酮糖-1,5-二磷酸羧化/加氧酶羧化C4二羧酸脱羧释放的CO2;2不同点:C4植物是在同一时间白天、不同空间叶肉细胞和维管束鞘细胞中完成CO2的固定和还原;CAM植物是在不同时间黑夜和白天、同一空间叶肉细胞中完成CO2的固定和还原;14、C3途径卡尔文循环可分为哪几个阶段各阶段的作用是什么答:C3途径可分为以下三个阶段:1羧化阶段:该阶段进行CO2的固定;RuBP核酮糖-1,5-二磷酸在Rubisco核酮糖-1,5-二磷酸羧化/加氧酶的催化作用下与CO2反应生成3-PGA3-磷酸甘油酸;2还原阶段:利用同化力NADPH、ATP将3-PGA还原成3-GAP3-磷酸甘油醛, 即光合作用中第一个三碳糖;3更新阶段:光合碳循环中生成的3-GAP,经一系列转变,重新生成RuBP;在卡尔文循环中3分子CO2转变为1分子3-GAP的总反应式为:3CO2 + 9ATP + 6NADPH + 6H+ + 6H2O →3-GAP + 9ADP + 9Pi + 6NADP+ 15、试述光对C3途径卡尔文循环的调节;答:光对卡尔文循环的调节是通过调节酶活性实现的;在卡尔文循环中,有5种酶属于光调节酶,即Rubisco核酮糖-1,5-二磷酸羧化/加氧酶、FBPase果糖-1,6二磷酸磷酸酶、GAPDH甘油醛-3-磷酸脱氢酶、Ru5PK核酮糖-5-磷酸激酶、SBPase景天庚酮糖-1,7-二磷酸酶; 光对酶活性的调节分为三种情况:1微环境调节:光驱动电子传递促使H+从叶绿体基质向类囊体腔转移,Mg2+则从类囊体腔向叶绿体基质转移;于是,叶绿体基质的PH值从7上升到8,Mg2+浓度增加;在较高的PH值和Mg2+浓度下,上述5种光调节酶活化;2效应物调节:FBPase、GAPDH、Ru5PK和SBPase四种酶通过Fd-Td系统铁氧还蛋白-硫氧还蛋白系统受光调节;3光对Rubisco的调节表现在以下几个方面:①光对Rubisco大小亚基的基因转录有影响;②光调节Rubisco的活性表现出昼夜节律变化;③光促进ATP的形成,Rubisco活化酶与ATP水解酶偶联而活化Rubisco;④光照有利于Rubisco活化酶的解离作用;16、试述生长素IAA促进细胞伸长的作用机理;答:1酸生长学说:IAA激活细胞质膜上的质子泵→活化的质子泵将细胞内的H+泵到细胞壁中→酸性条件下,细胞壁中某些多糖水解酶活化→细胞壁中多糖分子交织点断裂→细胞壁松弛→细胞水势下降,细胞吸水→细胞伸长;2基因活化学说:IAA与细胞质膜上的或细胞质中的受体结合→生长素-受体复合物诱发IP3产生,IP3打开细胞器的Ca2+通道,细胞质中的Ca2+水平增加→Ca2+进入液泡,置换出H+,H+活化细胞质膜上的ATP酶→蛋白质磷酸化→活化的蛋白质与生长素形成蛋白质-生长素复合物→蛋白质-生长素复合物诱导细胞核转录合成mRNA →合成构成细胞质和细胞壁的蛋白质→细胞伸长;17、试述生长素IAA极性运输的机理;答:化学渗透极性扩散假说:IAA在植物体内有两种存在形式,即阴离子型IAA-和非解离型IAAH;植物形态学上端细胞的基部有IAA-输出载体,细胞中的IAA-由输出载体运载到细胞壁,IAA-与细胞壁中的H+结合形成IAAH,IAAH再从下一个细胞的顶部扩散进入该细胞,或由IAA-H+共向转运体运入该细胞,细胞质PH值高,IAAH脱质子化,重新变成IAA-;如此重复下去,即形成极性运输;18、如何用实验证明生长素IAA具有极性运输的特点;答:1极性运输的概念:极性运输是指物质只能从植物形态学上端向植物形态学下端进行运输的运输过程;极性运输属于主动运输,需要载体和能量;2实验过程:①取2个胚芽鞘;②A胚芽鞘上端放置含有生长素的琼脂块,下端放置不含有生长素的琼脂块;③B胚芽鞘倒置,B胚芽鞘上端放置含有生长素的琼脂块,下端放置不含有生长素的琼脂块;④一段时间后,A胚芽鞘下端的琼脂块中出现生长素,B胚芽鞘下端的琼脂块中任然不含有生长素;上述实验即可证明生长素具有极性运输的特点;19、设计实验证明植物成花接受低温影响的部位和春化素的存在;答:1①植物成花接受低温影响的部位:茎尖生长点;②证明植物成花接受低温影响的部位的实验:栽培于室温中的芹菜,由于得不到成花所需的低温,因而不能开花结实;如果用胶管将芹菜茎尖缠绕起来,通入冷水,使茎尖生长点得到低温,芹菜则能够通过春化作用开花;反之,如果将芹菜置于低温条件下,但茎尖生长点通入温水,芹菜则不能通过春化作用开花;该实验即可证明植物成花接受低温影响的部位是茎尖生长点;2证明春化素存在的实验:将春化的二年生天仙子叶子嫁接到没有春化的同种植株的砧木上,可诱导后者开花,该实验即可证明春化素的存在;20、设计实验证明植物开花的光周期感受部位和开花刺激物成花素的传导;答:1①植物开花的光周期感受部位:叶片;②证明植物开花的光周期感受部位的实验:a.将植物全株置于不适宜的光周期条件下,植物不开花而保持营养生长;b.将植物全株置于适宜的光周期条件下,植物开花;c.只将植物叶片置于适宜的光周期条件下,植物开花;d.只将植物叶片置于不适宜的光周期条件下,植物不开花;上述四组实验即可证明植物开花的光周期感受部位是叶片;2证明开花刺激物成花素传导的实验:将数株短日植物苍耳嫁接串联在一起,只将其中一株的一片叶置于适宜的光周期条件下,而其他植株均置于不适宜的光周期条件下,结果数株苍耳全部开花;该实验即可证明开花刺激物成花素的传导;21、植物进行正常的生命活动需要哪些矿质元素如何证明植物生长需要这些元素答:1植物进行正常的生命活动所需的矿质元素:①大量元素:N、P、K、Ca、Mg、S、Si;②微量元素:Cl、Fe、B、Mn、Cu、Mo、Zn、Ni、Na;2证明植物生长需要某种元素的方法溶液培养法:①准备A、B两份培养液,其中A培养液不含某种元素;②取两株长势相同且状态良好的植株分别放入A、B培养液中培养一段时间;③A培养液中的植株出现转移缺乏症,B培养液中的植株正常生长,从而说明植物生长需要该种元素;22、试述细胞吸水过程中相对体积变化与水势及其组分的关系;答:在高水势的溶液中,细胞吸水,细胞相对体积增大,Ψp、Ψs升高,Ψw也随之升高;当细胞吸水达到饱和状态时, Ψw=0, Ψp=-Ψs;23、植物生长的相关性表现在哪些方面试述一个方面的相关性;答:1植物生长的相关性表现在三个方面:主枝与侧枝或主根与侧根的相关性、根与地上部分的相关性、营养生长与生殖生长的相关性;2根与地上部分的相关性:第26题第1问的答案;3营养生长与生殖生长的相关性:第27题的答案;24、试述“根深叶茂,本固枝荣”、“水长苗、旱长根”的植物生理学原理;答:1“根深叶茂,本固枝荣”的植物生理学原理:该谚语反映了植物的根系和地上部分之间相互促进、相互依存的关系;根系生长需要地上部分供给光合产物、生长素和维生素等物质,而地上部分生长又需要根系供给水分,矿物质和细胞分裂素等物质;所以说“根深叶茂,本固枝荣”;2“水长苗、旱长根”的植物生理学原理:该谚语反映了土壤水分供应状况对根冠比的影响;土壤干旱时,根系的水分供应状况优于地上部分,根系仍能较好地生长,但地上部分的生长因缺水而受阻,根冠比上升,即为“旱长根”;土壤水分充足时,地上部分生长旺盛,消耗大量光合产物,使输送给根系的有机物减少,使根系生长受阻,根冠比下降,即为“水长苗”;25、试述营养生长和生殖生长的关系;答:1依赖关系:营养生长是生殖生长的基础;花芽基于一定的营养生长才能分化;生殖器官生长所需的养料,大部分是由营养器官供应的;2对立关系:营养器官生长过旺,会影响到生殖器官的形成和发育;生殖生长的进行会抑制营养生长;26、在调控植物生长发育上,五大类植物激素之间有哪些方面表现出增效作用或拮抗作用;IAA生长素、CTK细胞分裂素、ABA脱落酸、GA赤霉素答:1增效作用:①IAA和GA在促进节间伸长上具有增效作用;②IAA和CTK在促进细胞分裂上具有增效作用;③ABA和乙烯在促进衰老与脱落上具有增效作用;2拮抗作用:①ABA和GA在淀粉酶合成上具有拮抗作用;②ABA和IAA在脱落上具有拮抗作用;③ABA和CTK在衰老上具有拮抗作用;④IAA和CTK在顶端优势上具有拮抗作用;27、植物衰老有哪些类型植物衰老的原因是什么答:1植物衰老的类型:①一生中能多次开花的植物,其营养生长与生殖生长交替进行,叶片或茎秆会多次衰老死亡,而地下部分一直存活;②一生中只开一次花的植物,在开花结实后整株衰老死亡;2植物衰老的原因:①营养亏缺理论:该理论认为生殖器官从营养器官中吸取营养导致营养体衰老;②激素调控理论:该理论认为促进植物衰老的激素如ETH、ABA等的增加与抑制植物衰老的激素如CTK、IAA等的减少导致植物衰老;③自由基伤害理论:该理论认为植物体内过量的自由基对细胞产生破坏作用,进而导致植物衰老;④细胞凋亡理论:该理论认为在基因控制下,细胞高度有序的解体导致植物衰老;⑤DNA损伤理论:该理论认为DNA的损伤导致植物体机能失常,进而导致植物衰老;28、试述施肥增产的原因;答:1直接原因:N、P、Mg、Cu、Fe、Ca等元素直接参与光合机构的组成;2间接原因:施肥改善植物光合性能;例如K肥防倒伏,N肥延长叶片寿命,增加叶片面积;综上,直接或间接促进植物光合作用是施肥增产的原因所在;29、光照后类囊体腔中的pH值低于叶绿体基质的原因是什么答:光照后类囊体腔中水的光解及PQ穿梭使H+在类囊体腔中积累,所以光照后类囊体腔中的pH值低于叶绿体基质;30、顶端优势如何形成棉花打顶的原理是什么会引起哪些生长效应答:1顶端优势的形成:顶芽合成的生物素向下运输,大量积累在侧芽部位,并且侧芽对生长素的敏感程度高于顶芽,所以表现为顶芽优先生长而侧芽的生长受到抑制,即形成顶端优势;2棉花打顶的原理及其生长效应:棉花打顶破坏了顶端优势,打破了生长素与细胞分裂素的平衡,因而能够降低主茎高度,促进侧枝生长,使结铃部位增加;31、使菊花提前开花应采取哪些措施植物成花诱导途径有哪些答:1使菊花提前开花的措施:菊花是短日植物,要使菊花提前开花,应采取人工缩短日照的措施,例如用黑布遮盖菊花或将菊花放在人工气候室中暗处理;2植物成花诱导途径:①光周期途径:即光周期诱导;②自主和春化途径:依赖生理年龄或春化作用促进植物开花的植物成花诱导途径称为自主和春化途径;③糖类途径:糖类物质促进基因表达从而促进植物开花的植物成花诱导途径称为糖类途径;④赤霉素途径:赤霉素促进基因表达从而促进植物开花的植物成花诱导途径称为赤霉素途径;上述4条途径集中于促进花分生组织的关键基因SOCI的表达;32、果蔬、粮食储藏中应该控制哪些条件为什么答:1果蔬储藏中主要控制湿度、温度、O2及CO2浓度、乙烯水平等条件;①控制湿度的目的在于维持果蔬的含水量以保证新鲜状态,但湿度过大会使果蔬容易感染病害;②控制温度、O2及CO2浓度的目的在于降低呼吸作用以减小有机物的消耗;③乙烯具有促进果蔬成熟、衰老的作用,所以要控制其水平;2粮食储藏中主要控制含水量、温度、O2浓度等条件;①控制含水量的目的在于降低呼吸作用及防止霉变;②控制温度、O2浓度的目的在于降低呼吸作用;33、试述乙烯的生物合成及其自我催化、自我抑制;答:1乙烯的生物合成:乙烯的生物合成途径为蛋氨酸→SAM →ACC →乙烯,主要调节酶是ACC合酶、ACC氧化酶、ACC-丙二酰基转移酶;2乙烯的自我催化、自我抑制:乙烯的自我催化、自我抑制是指乙烯通过调节ACC合酶等酶的活性促进或抑制乙烯生物合成的现象;营养组织、非骤变型果实及骤变型果实骤变前表现为自我抑制,骤变型果实骤变后表现为自我催化;。
过氧化物酶体增殖物激活受体的作用
过氧化物酶体增殖物激活受体是一种位于细胞质膜的跨膜受体,
参与细胞凋亡、炎症和免疫应答等多种生理和病理过程。
它可以结合
许多配体,如细胞因子、趋化因子和病毒颗粒等,激活多种信号通路,从而影响细胞增殖、巨噬细胞的活化、细胞内钙平衡和线粒体的功能等。
在很多疾病中都发现过氧化物酶体增殖物激活受体的异常表达和
活化,例如肿瘤、自身免疫性疾病和感染性疾病等。
因此,过氧化物
酶体增殖物激活受体是一个重要的治疗目标,可作为药物研发和治疗
策略的靶点。
过氧化物酶体的标志酶
过氧化氢酶(CAT),是催化过氧化氢分解成氧和水的酶,存在于细胞的过氧化物体内。
过氧化氢酶是过氧化物酶体的标志酶,约占过氧化物酶体酶总量的40%。
过氧化氢酶存在于所有已知的动物的各个组织中,特别在肝脏中以高浓度存在。
过氧化氢(H2O2)即人们熟知的双氧水,比水(H2O)多了一个氧原子(0),这个氧原子极不稳定,总想从别的物质分子中再夺取一个氧原子,形成O2.平时我们用双氧水杀菌消毒,就是因为细菌遭到H2O2的破坏而死亡,消毒时起泡是产生氧气的结果。
然而,过氧化氢可穿透大部分细胞膜,因此它比超氧阴离子自由基(不能穿透细胞膜)具有更强的细胞毒性,穿透细胞膜后可与细胞内的铁发生反应生成羟基自由基。
过氧化氢酶(CAT)是抗氧化酵素系统的重要一员,又被称为触酶,是以铁卟啉为辅基的结合酶。
SOD酵素将氧自由基歧化后生成过氧化氢(H2O2)和氧气(O2),过氧化氢在体内仍然是具有氧化剂毒性的物质,过氧化氢酶的作用就是促使过氧化氢分解为分子氧和水,使细胞免于遭受H2O2的毒害。
CAT作用于过氧化氢的机理实质上是过氧化氢的岐化,必须有两个
H2O2分子先后与CAT相遇且碰撞在活性中心上,才能发生反应。
H2O2浓度越高,分解速度越快几乎所有的生理机体,都存在过氧化氢酶。
其普遍存在于能呼吸的生物体内,主要存在于植物的叶绿体、线粒体、内质网以及动物的肝和红细胞中其酶促活性为机体提供了抗氧化防御机理。
过氧化氢酶的生物功能是在细胞中促进过氧化氢分解,使其不会进一步产生毒性很大的氢氧自由基,从而保护抗氧化酵素系统的功能作用,对于人体的生长发育和代谢活动亦具有重要意义。
第一章细胞概述1举例说明细胞的形态与功能相适应。
细胞形态结构与功能的相关性与一致性是很多细胞的共同特点。
如红细胞呈扁圆形的结构,有利于O2和CO2的交换。
高等动物的卵细胞和精细胞不仅在形态、而且在大小方面都是截然不同的。
2真核细胞的体积一般都是原核细胞的1000倍,真核细胞如何解决细胞内重要分子的浓度问题?真核细胞为了解决细胞内重要分子的浓度问题,出现了特化的内膜系统,使一些反应局限于特定的膜结合的细胞器,这样,一些重要反应的分子浓度并没有被稀释。
3组成蛋白质的基本构件只是20种氨基酸,为什么蛋白质却具有如此广泛的功能?根本原因是蛋白质具有几乎无限的形态结构,因此蛋白质仅仅是一类分子的总称。
换句话说,蛋白质之所以有如此广泛的作用,是因为蛋白质具有各种不同的结构,特别是在蛋白质高级结构中具有不同的结构域,而这种不同的空间构型使得蛋白质能够有选择地同其他分子进行相互作用,这就是蛋白质结构决定功能放入特异性。
正是由于蛋白质具有如此广泛特异性才维持了生命的高度有序性和复杂性。
4为什么解决生命科学的问题不能不仅靠分子生物学而要靠细胞生物学?第二章细胞生物学研究方法第三章细胞质膜和跨膜运输1有人说红细胞是研究膜细胞结构的最好材料,你能说说理由吗?①首先是红细胞数量大,取材容易(体内的血库),极少有其他类型的细胞污染。
②其次,成熟的哺乳动物的红细胞中没有细胞核和线粒体等膜相细胞器,细胞质膜是它唯一的膜结构,所以在分离后不存在其他膜污染问题。
2十二烷基磺酸钠(SDS)和TritonX-100都是去垢剂,哪一种可用于分离分离有生物功能的膜蛋白?SDS是离子型的去垢剂,不仅可使细胞膜崩溃,并与膜蛋白的疏水部分结合使其分离,而且还破坏膜蛋白内部的非共价键,使蛋白质变性,故不宜用于分离膜蛋白。
TritonX-100是非离子型的去垢剂,它可以使膜脂溶解,又不会使蛋白质变性。
故用于分离膜蛋白。
3为什么所有带电荷的分子(离子),不管它多少,都不能自由扩散?物质的带电性是限制扩散的一个主要因素。
细胞生物学名词解释细胞生物学习题及答案一、名词解释1、Na+/K+泵:能水解ATP,使α亚基带上磷酸基团或去磷酸化,将钠离子泵出cell,而将钾离子泵进cell的膜转运载体蛋白。
2、胞间连丝:相邻植物cell之间的连通,直接穿过两相邻cell的细胞壁。
3、受体蛋白:能够识别和选择性的结合某种配体的蛋白质分子。
4、细胞连接:在瞎报质膜的特化区域,通过膜蛋白、支架蛋白或者胞外基质形成的细胞与细胞之间,细胞与胞外基质间的连接结构。
5、过氧化物酶体:真核细胞中含多种活性酶的细胞。
利用分子氧氧化有机物。
6、细胞培养:在合适的环境条件下,对细胞进行体外培养,包括原核生物细胞、真核单细胞植物和动物细胞的培养以及与此密切相关的病毒的培养。
7、转移小泡:也称小囊泡,直径40—80nm,常散布于扁平囊的形成面,一般认为它是糙面内质网芽生而来,把rER合成的蛋白质转运到扁平囊上,并使扁平囊不断得到补充、更新。
8、Ras 蛋白:单体G蛋白家族成员,在信号从细胞表面传递到细胞核的过程中发挥重要的作用。
9、信号序列:蛋白质中有特定氨基酸组成的连续序列,决定蛋白质在细胞中的最终定位。
10、细胞通讯:信号细胞发出的信息传递到靶细胞并与受体相互作用,引起靶细胞产生特异性生物学效应的过程。
11、G-蛋白:GTP结合蛋白,具有GTPase活性,以分子开关的形式通过结合或水解GTP调节自身活性。
有三体和G蛋白两大家族。
12、微丝:由肌动蛋白单体组装而成的细胞骨架纤维。
他们在细胞内与几乎所有形式的运动相关。
13、信号转导:细胞将外部信号转变为自身应答反应的过程。
14、细胞识别:细胞通过其表面的受体与胞外信号物质分子(或配体)选择相互作用,从而导致胞内一系列生理变化,最终表现为细胞整体的生物学效应的过程,它是细胞通讯的一个重要环节。
15、细胞周期:一次细胞分裂结束到下一次分裂完成之间的有序过程。
16、细胞周期检验点:在细胞周期中特异的监控机制,可以鉴别细胞周期进行中的错误,并诱导产生特异的抑制因子,阻止细胞周期进一步运行。
一、填空题1.原核细胞的呼吸酶定位在上,而真核细胞则位于上。
2.线粒体内膜上的ATP合酶在状态可催化ATP的分解,而在状态可催化ATP的合成。
3.前导肽是新生肽端的一段序列,含有某些信息。
4.线粒体内膜呼吸链成员中的是内膜上的外周蛋白。
5.氯霉素可抑制中的蛋白质合成,而对真核生物中的蛋白质合成无抑制作用。
6.放线菌酮对中的蛋白质合成有很强的抑制作用,而对中的蛋白质合成无抑制作用。
7.真核生物细胞内不参加膜流动的两个细胞器和具有合成ATP的功能。
8.前导肽的作用是引导定位。
9.线粒体之所以被称为半自主性细胞器,是因为它。
10.线粒体内膜上ATP酶复合物膜部的作用是通道。
11.过氧化物酶体的标志酶是过氧化氢酶,溶酶体的标志酶是,高尔基体的标志酶是,内质网的标志酶是。
12.线粒体内膜和外膜在化学组成上的主要区别是脂和蛋白质的比例不同,内膜是,外膜是。
13.当由核基因编码的线粒体蛋白进入线粒体时,需要和提供能量来推动。
14.前体蛋白跨膜进入线粒体时,必须有相助。
15.线粒体DNA的复制时间是在细胞周期的期,叶绿体DNA的复制则在期。
16.过氧化物酶体含有多种酶,其中酶是过氧化物酶体的标志酶。
17.线粒体的质子动力势是由_和共同构成的。
18.前导肽参与的蛋白质运输属于运输。
19.线粒体的内膜通过内陷形成嵴,从而扩大了。
20.根据微体中含酶情况及其功能,可分为和两种类型,前者存在于动物细胞与植物的叶肉细胞。
21.过氧化物酶体和线粒体都能进行氧化反应,不同的是,前者产生的热量以,后者则以。
22.组成过氧物酶体的脂和蛋白质都是从胞质溶胶中摄取的,脂是在上合成,然后由运输到过氧化物酶体的膜上;蛋白质是在上合成,然后通过端特殊的信号与过氧化物酶体一个特殊的膜受体相互识别进入过氧化物酶体。
过氧化物酶体的标志酶是。
二、判断题1.成熟的红细胞没有细胞核和线粒体。
2.呼吸链的酶和氧化磷酸化作用定位于线粒体基质中。
3.线粒体虽然是半自主性细胞器,有自身的遗传物质,但所用的遗传密码却与核基因的完全相同。