聚谷氨酸的生物合成及应用
- 格式:docx
- 大小:136.80 KB
- 文档页数:6
γ-聚谷氨酸的合成、性质和应用彭英云;张涛;缪铭;沐万孟;江波【摘要】γ-聚谷氨酸是一种生物可降解的高分子聚合物,可由微生物发酵得到。
γ-聚谷氨酸具有良好的水溶性和吸附性,能彻底被生物降解,对环境和人体无害,这使得γ-聚谷氨酸在食品、化妆品、医药和农业等领域具有广阔的应用前景。
综述了γ-聚谷氨酸的化学结构、性质、生产方法及其应用。
【期刊名称】《食品与发酵工业》【年(卷),期】2012(038)006【总页数】6页(P133-138)【关键词】γ-聚谷氨酸;生物合成;生物可降解;应用【作者】彭英云;张涛;缪铭;沐万孟;江波【作者单位】江南大学食品科学与技术国家重点实验室,江苏无锡214122 盐城工学院化学与生物工程学院,江苏盐城224003;江南大学食品科学与技术国家重点实验室,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡214122【正文语种】中文【中图分类】TQ929γ-聚谷氨酸(Poly γ-Glutamate,γ-PGA)是一种多聚氨基酸类的环保型多功能生物可降解高分子材料。
作为一种高分子聚合物,γ-PGA具有一些独特的物理、化学和生物学特性,如良好的水溶性,超强的吸附性,能彻底被生物降解,无毒无害,可食用等,可作为诸如保水剂、增稠剂、絮凝剂、重金属吸附剂、药物/肥料缓释剂及药物载体等的原料,在农业、食品、医药、化妆品、环保、合成纤维和涂膜等领域具有广泛的应用前景。
近十几年以来,日本、韩国、德国、美国、加拿大、台湾等多个国家和地区的学者在γ-PGA合成与应用方面进行了很多的研究并取得一定的成果,国内一些高校和研究所对γ-PGA的研究正处于兴起阶段。
随着人们环保意识的增强,γ-PGA的研究和应用越来越受到世界各国学术界的关注,已成为生物降解高分子材料的研究热点之一。
聚谷氨酸产品介绍和市场状况——-—中国化工产品进出口公司聚谷氨酸(γ-PGA)是一种水溶性、可生物降解、可食用、无毒的生物高分子.它是一种由微生物合成的聚氨基酸,具有优良的生物相容性和生物可降解性,在生物体内降解为谷氨酸而直接被吸收,可作为生物医用材料,污水处理工程、也可应用于食品增稠剂、食品防冻保鲜和化妆品保湿剂等领域。
产品因具有很强的吸湿性能,可吸收4000倍以上重量的水。
在净水处理中,可去除水中重金属和放射性金属离子;污水处理工程可代替聚丙烯酰胺取得了突破性的进展;医药工业可作药剂之生物兼容性的载体;农业和卫生器材制品中,可作为高吸水剂等等。
自从20世纪90年代以来,在世界范围内,开发绿色化学产品成为生物化工行业发展的大趋势,而聚合氨酸系列产品的开发也由此崭露头角。
近年来,日本、美国等一些发达国家开展了聚谷氨酸的研究。
日本是世界上最大的氨基酸生产国和出口国,日本的研究走在了世界的前列.其中的日本味之素、日本明治制果公司,皆已实现了γ-聚谷氨酸的商业化生产,台湾味丹公司也实现了工业化生产。
世界消费市场上的聚谷氨酸主要以以上三家公司产品为主.该产品尚处于推广应用的初期阶段,我国国内目前只有少量生产厂家,相关γ—聚谷氨酸在污水处理工程的报道也不多.三家γ—聚谷氨酸生产企业的状况简单介绍如下:㈠日本Ajinomoto 公司(日本味之素)是世界上最大的氨基酸生产企业,包括日本在内分别在16个国家和地区建有102个工厂,在23个国家和地区投资经营。
其主要产品除味素和核苷酸外,还有赖氨酸、苏氨酸、色氨酸等饲料氨基酸,化妆品添加剂等。
味之素公司是世界最大的味精生产商,年产味精50多万吨,占世界总产量的30%。
据报道2005年度,该公司饲料级赖氨酸总产量27万吨,占全球市场的35%,饲料苏氨酸占全球的70%,饲料色氨酸占75%。
在医用和食用氨基酸市场拥有60%的市场份额。
日本味之素公司十分重视产品的研发和创新,在氨基酸方面,尤为重视开发氨基酸新品新领域的应用。
一、概述医用聚谷氨酸(PGA)作为一种生物降解材料,在医学领域具有广泛的应用前景。
其具有良好的生物相容性和可降解性,是一种理想的医用高分子材料。
本文将重点探讨医用聚谷氨酸及其材料制品的关键技术研发以及应用示范。
二、医用聚谷氨酸的特性1.生物相容性医用聚谷氨酸具有良好的生物相容性,可以与人体组织兼容、无毒无害,不易引起排异反应,适合用于医学领域。
2.可降解性医用聚谷氨酸是一种可降解的高分子材料,它可以在体内逐渐分解并被代谢排出,不会对人体造成长期的影响,符合生物降解材料的可持续利用特点。
3.生物活性医用聚谷氨酸具有一定的生物活性,可用于修复组织、支持细胞生长等医学应用领域。
三、医用聚谷氨酸材料制品的关键技术研发1.合成工艺医用聚谷氨酸的合成工艺是关键技术之一,目前主要采用微生物发酵法和化学合成法两种途径。
微生物发酵法具有环保、效率高、投入少等优点,但目前仍需不断改进提高产率和纯度;化学合成法则需要解决废弃物处理和环境污染等问题。
2.改性与功能化为了提高医用聚谷氨酸材料的性能,研究人员进行了大量的改性与功能化研究,包括表面改性、共混改性、接枝共聚等技术,以期改善其机械性能、稳定性和生物活性。
3.材料加工医用聚谷氨酸材料加工技术的研发对于制备各种医用产品至关重要,如支架、缝线、修复膜等。
目前,研究者们正努力探索新的加工工艺,以满足不同医学需求。
四、医用聚谷氨酸材料制品的应用示范1.生物医用器械医用聚谷氨酸材料可以制备各种生物医用器械,如骨修复材料、软组织修复材料、药物缓释载体等。
这些器械具有良好的生物相容性和可降解性,适用于各种临床应用。
2.组织工程医用聚谷氨酸材料在组织工程领域也有着广泛的应用,可以制备支架、膜、微球等材料,用于细胞培养、组织修复和再生医学研究。
3.药物缓释医用聚谷氨酸材料具有较大的比表面积和多孔结构,可以作为药物缓释载体,用于慢释、定向释放药物,提高药物的生物利用度和疗效。
五、结语医用聚谷氨酸及其材料制品的关键技术研发以及应用示范具有重要的理论和实际意义。
微生物发酵聚谷氨酸的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!微生物发酵聚谷氨酸是一种生物技术制备聚谷氨酸的重要方法,具有环境友好、成本低廉等优点,受到广泛关注。
2010年第6期郑重等:微生物聚谷氨酸(Y—PGA)合成酶及合成机理的研究进展55酰一A;然后谷氨酰连接到1一PGA片段上,并脱去A,完成1.PGA片段的延伸。
但是,Ashiuchi等¨刮于2001年在一株Bacillussubtil函中发现,该菌在合成.y—PGA时,ATP水解形成的是ADP,而非AMP,而由于capB的表达蛋白CapB属于氨基连接酶¨“,他们提出了另一条合成机制。
首先ATP被ATP水解酶水解为ADP和Pi。
然后磷酸基团结合到小分子7一PGA的c.末端,之后D-或者L.谷氨酸的氨基端与C端磷酸化了的小分子1一PGA发生亲核攻击,生成Pi并延伸^y.PGA链。
但是该机制仍待证明,比如引物分子是否是小分子'一PGA,其反应位置具体在何处等。
3.3^y.PGA合成酶各组分的功能目前,仍然不知道Y—PGA合成酶如何催化合成上述一系列反应。
虽然已经得知^y—PGA合成的必需基因(即pgsBCAE和capBCAE),但是其合成的各个蛋白(PgsBCAE和CapBCAE)的具体功能,仍待考察。
在Y-PGA生物合成过程中,可以人为将其分为两个部分,^y.PGA的聚合与1.PGA的转运。
1997年,Eveland¨刊对CapB/PgsB蛋白进行序列分析,发现其拥有一段序列与ATP酶相似度很高,可能含有ATP酶的活性并含有ATP结合位点(图4)。
Urush.ibata嵋叫于2002年称,PgsB能够在试管中单独催化聚合1一PGA,但是PgsB的两种形式(33kD和44kD)必须同时存在,并且该酶很稳定,对变性剂有一定抵御能力。
但是Ashiuehi等旧1于2003年用Uru.shibata¨u的方法进行验证性试验,却发现没有1.PGA。
以上试验,说明PgsB是否具有ATP酶活性,仍待研究。
但是他们都报道了¨毛驯PgsB和魄sC的混合物具有ATP酶活性,说明PgsB和PgsC很可能形成~种复合物,进而催化1.PGA的聚合。
聚谷氨酸百科名片聚谷氨酸分子式聚谷氨酸(γ-PGA),它是一种水溶性,生物降解,不含毒性,使用微生物发酵法制得的生物高分子。
γ-PGA聚谷氨酸是一种有粘性的物质,在“纳豆” ——发酵豆中被首次发现。
γ-PGA聚谷氨酸是一种特殊的阴离子自然聚合物,是以α - 胺基( α -amino) 和γ - 羧基( γ -caboxyl ) 之间经酰胺键结(amide linkage) 所构成的同型聚酰胺(homo-polyamide)γ -PGA的分子量从5万到2百万道尔顿不等。
中文名称聚谷氨酸、纳豆菌胶或多聚谷氨酸英文名称POLY-L-GLUTAMIC ACID 2'000-15'000英文同义词POLY-L-GLUTAMIC ACID 15'000-50'000 SODIUM SALT;POLY-L-GLUTAMIC ACID 2'000-15'000;POLY-L-GLUTAMIC ACID50'000-100'000SODIUMSALT;L-GLU-(L-GLU)N-L-GLU;alpha-l-glutamicaci dpolymer;glutamicacidpolymer;l-gamma-polyglutamicacid;l-glutamica cid,homopolymer;l-glutamicacidpolymer;l-glutamicacipeptides;poly( alpha-l-glutamicacid);poly-l-glutamate;Polu-L-glutamic acid2000-15000;G-poly glutamic acid其他基本信息CBNumber: CB2132778分子式L-Glu-(L-Glu)n-L-Glu分子量: 70万单位CAS号: 25513-46-6γ–PGA(γ–聚谷氨酸)的化学结构γ–PGA全名γ-Polyglutamic acid,是以左、右旋光性的谷氨酸为单元体,以γ-位上的醯胺键聚合而成同质多肽(Homo-polypeptide),聚合度约在1,000-15,000之间。
聚谷氨酸化学结构聚谷氨酸是一种重要的生物大分子,是由多个谷氨酸分子通过肽键连接而成的聚合物。
它在生物体内具有多种重要的功能和作用。
聚谷氨酸在生物体内参与蛋白质的合成和折叠过程。
蛋白质是生物体内最重要的功能分子之一,它们承担着构建细胞结构、催化化学反应、传递信号等多种生理过程。
聚谷氨酸作为一种氨基酸聚合物,可以提供谷氨酸的基本结构单元,参与蛋白质的合成过程。
此外,聚谷氨酸的化学结构中含有大量的酰胺键,这种特殊的化学键可以增强蛋白质的稳定性和折叠能力,有助于蛋白质的正确折叠和功能发挥。
聚谷氨酸在细胞内起到储能的作用。
聚谷氨酸的分子结构中具有大量的酰胺键,这种化学键的形成需要消耗能量。
当生物体在新陈代谢过程中产生多余的能量时,这些能量可以通过聚谷氨酸形成的酰胺键来储存起来。
在生物体需要能量时,聚谷氨酸可以通过酰胺键的断裂释放能量,满足生物体的能量需求。
聚谷氨酸还具有草酸盐的沉淀作用。
草酸盐是一种常见的无机盐,它在水中溶解度较低。
当聚谷氨酸与草酸盐共同存在时,它们之间会发生反应,形成不溶性的沉淀物。
这种沉淀作用可以被应用于水处理、废水处理等环境工程中,用于去除水中的草酸盐等污染物。
聚谷氨酸还具有良好的生物相容性和生物可降解性。
由于聚谷氨酸分子中含有大量的酰胺键,这种化学键在生物体内具有较好的稳定性和降解性。
聚谷氨酸可以在生物体内逐渐降解为谷氨酸分子,被细胞利用或代谢掉。
这种特性使得聚谷氨酸在生物医学领域具有广泛的应用前景,例如作为药物缓释系统、组织工程材料等。
聚谷氨酸是一种重要的生物大分子,具有多种重要的功能和作用。
它参与蛋白质的合成和折叠,起到储能的作用,具有草酸盐的沉淀作用,同时具有良好的生物相容性和生物可降解性。
聚谷氨酸的研究和应用将为生物医学领域的发展和进步带来新的机遇和挑战。
以Glu、Lys为原料,采用化学合成法生产聚谷氨酸、聚赖氨酸一、γ-聚谷氨酸γ-聚谷氨酸(γ-PGA)是自然界中微生物发酵产生的水溶性多聚氨基酸,其结构为谷氨酸单元通过α-氨基和γ-羧基形成肽键的高分子聚合物,即由多种杆菌(B acillus species)产生的一种胞外多肽,尤其是某些微生物荚膜的主要成分。
中文名称 : 聚谷氨酸 、多聚谷氨酸、聚-γ-谷氨酸英文名称:poly-γ-glutamic acid,简称PGA聚谷氨酸的结构式:聚谷氨酸的分子量:γ -PGA的分子量从5万到2百万道尔顿不等。
聚谷氨酸的性质:游离酸型的γ-聚谷氨酸p Kα值约为2.23,与谷氨酸的α羧基的大体一致,能够溶于二甲亚砜、热的N,N一二甲基酰胺和N一甲基吡咯烷酮。
金属盐(钠型)的γ-聚符氨酸的比旋光度约为-7.0 (C=1.0,H20)。
γ-PGA具有水溶性、不含毒性、可生物降解性,由微生物发酵法利用胞内γ-PGA合成酶系催化D- 和L-谷氨酸通过γ-谷氨酰胺键连接而成。
这种由杆菌产生的胞外多肽-γ-聚谷氨酸与化学合成的聚谷氨酸在分子结构上有本质的差异,前者的结合键是γ-酰基,其可以被土壤中的微生物分泌的水解酶所分解。
经研究表明,γ-聚谷氨酸是一种阴离子异形肽,分子量约为2.7×105。
分子中的氢键对γ- 聚谷氨酸的高水溶性起着关键作用。
聚谷氨酸的生产方法:γ-PGA的生产方法包括:化学合成法、酶转化法、提取法和微生物发酵法。
(1)化学合成法:a、传统的肽合成法传统的肽合成法是将PGA的前体即谷氨酸逐个连接或采用片段组合形成多肽,整个过程一般包括基团的保护、活化、偶联和脱保护等。
该法合成的PGA 为α-PGA,为不成环聚合,化学合成法是肽类合成的重要方法,但由于其合成路线复杂、步骤较多、副产物多、收率低(尤其是含20 个氨基酸以上的纯多肽合成)且需要光电等有毒气体,成本高,产率过低;故很大程度上限制了该法的应用。
聚谷氨酸γ-聚谷氨酸(γ-PGA)是由D-型或 L-型谷氨酸通过α-氨基和γ-羧基形成酰胺键而连接成的大分子化合物,可以归类于聚酰胺类化合物。
结构式如图1所示。
γ-聚谷氨酸主链上含有大量游离羧基, 可发生交联、螯合、衍生化等反应, 具有强水溶性、生物相容性、生物降解性等。
γ-聚谷氨酸生产主要有化学合成法、提取法和微生物发酵法3 种。
前两种方法因合成的γ-聚谷氨酸分子量低、副产物多且成本高等无法实现工业化应用。
合成方法特点传统多肽合成法工艺路线长、副产物多、收率低,成本高。
二聚体缩聚提取法合成由于纳豆中所含的γ-聚谷氨酸浓度甚微,且有波动,因此,提取工艺十分复杂,生产成本甚高,同样难以大规模生产。
酶转化法合成工艺路线周期短和简单,容易大规模生产。
但是得到的产物分子量小,而γ-PGA的许多物理化学性质与其高分子量密切相关,因而该法无实际生产应用价值。
微生物发酵法微生物发酵法工艺简单,适合大规模生产。
应用1.医药新型药物载体:聚氨基酸已用作缝合材料、人工皮肤和药物控释体系。
生物医用高分子材料:主要用于药物释放和送达载体及非永久性植入装置;作为外用药物的载体,γ- PGA 与明胶有较好的兼容性,适用制作外科及手术用的粘胶剂、止血剂及密封剂。
2.食品工业中的应用在淀粉类食品中加入γ- PGA 可以防止食品老化,增强质地、维持外形。
γ- PGA 还用作冰淇凌的稳定剂、果汁的增稠剂、各种食品的苦味祛除剂、保健食品、安定剂或作为添加剂改善口感。
3.农业由于γ- PGA 既具有生物可降解性、又具有高吸水性,向人们展示了其在固沙植被领域的广阔应用前景。
另外,在肥料、杀虫剂、除草剂、驱虫剂等使用时,加入适量的),γ- PGA盐可以延长这些药物在作用对象表面上的停留时间,不易因干燥、下雨而被冲刷掉。
4.工业γ- PGA 能吸附重金属和放射性核素。
生物高分子絮凝剂,不仅用在水处理领域,还可用于饮用水处理、食品和发酵工业等行业。
题目聚谷氨酸的生物合成及应用姓名学号曹明乐 **********
专业年级化工1201
聚谷氨酸的生物合成及应用
摘要:本文主要介绍了绿色高分子材料γ-聚谷氨酸的在工业上的生物合成及其在生活与工农业方面的应用。
关键词:γ-聚谷氨酸;微生物合成;应用
引言
随着材料科学和聚合物化学等相关高分子材料的快速发展,在其重要性日益凸现的同时,人们发现了它的不足之处,即大部分人工合成的高分子材料在自然界难以降解,也就是人们愈发关注的“白色污染”。
为了解决这个问题,人们开展了各种研究工作,制成了各种可降解材料,聚合氨基酸系列产品的开发也由此崭露头角。
近年来日本从一种常用食品----纳豆的黏液中提取出的γ-聚谷氨酸,开始引起人们的重视。
其最早发现于1913年,是一些芽孢杆菌的荚膜结构的主要成分,是一种生物自然合成的聚酰胺原料。
由于γ-聚谷氨酸具有增稠、成膜、保湿、黏合、无毒、水溶及生物可降解等性能,适用于食品、化妆品、生物医学和环境保护等领域,特别是近年来随着对γ-聚谷氨酸的深入研究,γ-聚谷氨酸作为一种高分子生物制品,愈来愈显现出广阔的研究及应用前景。
1 γ-聚谷氨酸的生物合成
1.1分子结构
1.2制备方法
γ-聚谷氨酸的制备方法主要有三种,即化学合成法、提取法和微生物发酵法。
较之前两种,微生物发酵法简单方便,容易控制和操作,并且γ-聚谷氨酸的产率高,适于工业大规模生产。
因此本文主要介绍微生物发酵法。
1.2.1γ-聚谷氨酸的制备
微生物发酵法在近几年得到了快速的发展和广泛的应用,主要体现在菌种的多样化、发酵方式与底物的多样化和添加剂的多样化。
目前应用于γ-聚谷氨酸生产的菌种主要是枯草芽孢杆菌、地衣芽孢杆菌和纳豆芽孢杆菌。
随着分子生物学及基因工程的发展,菌种筛选不仅停留在从自然界中获得高产菌,基因工程和诱变育种也得到了广泛的使用。
比如采用紫外、亚硝基胍以及γ射线对其进行复合诱变获得一株γ-聚谷氨酸高产突变株,在基础培养基中产量约是出发菌株的 3.11 倍。
常规的微生物发酵方法有液体发酵法和固体发酵法,在生产γ-聚谷氨酸时常用的是液体发酵培养。
目前γ-聚谷氨酸常用的发酵生产培养基是E-培养基,国内很多研究单位对培养基的优化进行了研究,比如利用纳豆芽孢杆菌接种到处理过的大豆中,然后保湿 1~2 昼夜后用生理盐水提取纳豆芽孢杆菌分泌在大豆表面的γ-聚谷氨酸,依次经过超滤、乙醇沉淀得到产品,同时也可以得到纳豆激酶和维生素 K2副产品。
为了降低生产成本,也可以以大豆加工的副产物豆粕为主要培养基,并加入 4 倍水及2%葡萄糖。
在利用枯草芽孢杆菌 NX-2 发酵生产γ-聚谷氨酸时,向培养基中添加甘油、吐温-80和二甲亚砜,不仅能提高产量,同时还能降低γ-聚谷氨酸的相对分子质量。
其既可以降低发酵液的粘度也能改变细胞膜的通透性促进菌体吸收营养成分,从而不但促进了菌体的生长还能刺激的γ-聚谷氨酸的合成。
在工业化生产中,宜用柠檬酸作碳源,可降低生产成本。
其中Mn2+和Mg2+对于提高γ-聚谷氨酸的产率也有很大的影响。
1.2.2γ-聚谷氨酸的分离提取
通过微生物发酵得到高黏度的发酵液,可用有机溶剂沉淀法、化学沉淀法和膜分离沉淀法获得γ-聚谷氨酸。
有机溶剂沉淀法是在生物制品的制备中应用最为广泛的一种沉淀方法,通常是向含有目标产物的水溶液中加入一定量亲水性的有机溶剂,能显著降低蛋白质等生物大分子的溶解度,使其沉淀析出。
提取γ-聚谷氨酸常用的有机溶剂有甲醇、乙醇和丙酮。
实验室操作的一般流程为:发酵液通过离心弃去菌体沉淀,包含γ-聚谷氨酸的上清液加入一定体积预冷的有机溶剂,放置一段时间后,沉淀物通过离心收集,通过冻干得到粗产品。
粗产品溶解在蒸馏水中,用蒸馏水反复透析数小时,透析液经过冷冻干燥得到纯品。
化学沉淀法利用的是盐析原理,向待提取液中加入一定量的无机盐或无机盐溶液使目标产物沉淀下来。
下图为化学沉淀法流程。
膜分离法得到γ-聚谷氨酸的流程为:先将发酵液调节 pH 小于 2,由于细胞表面的负电荷被中和了,所以很容易聚集沉淀,而γ-聚谷氨酸则很难附着在细胞外面,所以在低的离心速度下就能将细胞分开。
然后将含γ-聚谷氨酸的上层液体调节 pH 值至中性或者弱酸性(5~7),然后利用不同截留分子量的半透膜进行过滤而得到γ-聚谷氨酸纯品。
该方法几乎不用或者用很少量的有机溶剂,可以得到相对分子质量不同的γ-聚谷氨酸,还可以减少半透膜的消耗、减少水的用量、缩短操作时间、具有很高的效率。
1.2.3γ-聚谷氨酸的保存
分离提取得到的γ-聚谷氨酸需要冷冻干燥,并且它是吸湿性极强的高分子材料,需在低温干燥下保存以防吸水降解,人们通过研究发现在碱性条件下相对稳定,因此在实际工作中制备成钠盐有利于其稳定保存。
2 γ-聚谷氨酸的应用
2.1 医药
γ-聚谷氨酸在自然界或人体内能被生物降解成谷氨酸,不易产生积蓄和毒副作用。
它的分子链上具有活性较高的侧链羧基,易于和一些药物结合生成稳定的复合物,是一类理想的体内可生物降解医药用高分子材料;还可以作为药物载体和医用粘合剂;利用其超强吸水
性可制成和生物体含水量相近的各种组织材料,而且此材料吸水后形成的凝胶柔软,具有人体适应性。
此外,γ-聚谷氨酸荚膜作为炭疽芽胞杆菌的致病因素之一,能保护细胞免受机体自身的免疫系统的攻击,故可用作疫苗,增强机体的被动免疫。
2.2 食品
γ-聚谷氨酸广泛的应用于一次性餐具、食品包装等行业中,是一种非常有用的绿色材料。
γ-聚谷氨酸食用安全,可作为各种食品的苦味掩盖剂,可改善饮料的口感;它可以作为高钠调味剂的替代品,为高血压患者和糖尿病患者所用。
γ-聚谷氨酸也能够使面粉的抗冻性增加,用其制作蛋糕和面包可以延缓面粉变质、维持食品外形;其还能增强钙的溶解度,促进钙在肠内的吸收,为骨质疏松患者也提供了福音。
此外,γ-聚谷氨酸还可以作为增稠剂、稳定剂、膳食纤维的辅助材料以及保健食品等应用于食品领域。
2.3 日化用品
γ-聚谷氨酸可作为化妆品支持材料、皮肤保湿剂、表皮因子缓释剂、天然美容面膜等,其还可以作为高级皮革制品处理剂以及保湿剂等。
利用γ-聚谷氨酸还可制取一种新型护发液,并且它作为高吸水材料,还可以制作成妇女儿童用品,既无毒又有高吸湿作用。
环氧化合物与γ-聚谷氨酸盐混合得到乳化体系在催化剂的存在下反应得到聚酯类纺织品,这种纺织品可以作为混合纺面料、涤纶针织物、混合针织物等。
2.4 农业
γ-聚谷氨酸可作为一种对环境无害的肥料增效剂,提高农作物的产量和质量,缓和肥料的过度使用,最终减轻环境污染。
在珍稀花卉、苗木的运输中,可用γ-聚谷氨酸保持根系水分,有保鲜作用。
在干旱地区,可用γ-聚谷氨酸处理种籽,使其外部形成聚谷氨酸保湿膜,利于种子发芽、出苗。
在沙漠改造中,利用γ-聚谷氨酸吸水可减少沙土的水分蒸发量,以防止沙质土壤水分的过分流失,而且可以保持土壤结构的稳定性,改良土壤。
γ-聚谷氨酸的出现给沙漠变绿洲带来了新的希望。
2.5 工业
γ-聚谷氨酸可作为重金属吸附剂、螯合剂来处理重金属离子溶液以回收重金属,对冶金、工矿污水、电镀废水等的处理极有价值。
此外,以硅为基质的γ-聚谷氨酸膜的金属吸附能力已经接近以纤维素为基质的膜,并且还有优异的酸溶稳定性。
其在石油工业中用作油田处理剂、油水分离剂,在油田勘探中用作钻头润滑剂、泥浆凝胶剂。
γ-聚谷氨酸还可作为出色的绿色塑料,广泛用于食品包装、一次性餐具及其他各种工业用途中,在自然界可迅速降解,不会造成环境污染。
结语
随着氨基酸生产技术的不断革新,成本下降,进一步促进了氨基酸应用向多元化发展,应用领域已发展成熟。
水溶性的、可食用的聚谷氨酸已在“绿色化学产品”中崭露头角,然而我国在这方面的研究开发尚处于起步阶段,建立完整、系统、大规模的γ-聚谷氨酸的微生物生产方法是今后亟待解决的课题之一。
[参考文献]
[1] 陆树云. γ-聚谷氨酸的生物合成及提取工艺研究. 南京工业大学,2006,6(1)
[2] 游庆红等. γ-聚谷氨酸的生物合成应用. 现代化工,2002,12(20)
[3] 李德衡、赵兰坤、李树标. γ-聚谷氨酸的生物合成及提应用研究进展. 发酵科技通讯,2012,7(15)
[4] 孙先林、曾驰. γ-聚谷氨酸的微生物合成及应用. 广东化工,2012,10(15)
[5] 刘晓鸥等. 聚谷氨酸的生物合成及应用前景. 食品工程,2009,3(30)。