第四讲:光纤激光器与光放大器
- 格式:ppt
- 大小:826.00 KB
- 文档页数:12
光放大器与激光器原理
光放大器和激光器都是基于激光放大原理工作的光学器件,但它们在功能和应用上有所不同。
光放大器的原理是通过将输入的光信号经过放大后输出,从而增加光信号的强度。
光放大器通常使用光纤或半导体材料作为工作介质。
当输入光信号进入光放大器中,它会与工作介质中的激发态粒子相互作用,从而导致激发态粒子退激发并释放出额外的能量。
这些能量会被传递给输入光信号,使其增强。
典型的光放大器包括光纤放大器和半导体光放大器。
激光器的原理是通过光放大器中的正反馈和激发态粒子的逆转跃迁来产生激光光束。
在激光器中,初始的光信号被输入到光放大器中,然后通过正反馈的反射和逆转跃迁的过程,在工作介质中产生高度相干和高能量的光子。
这些光子会被反射或透射出来,形成一个激光束。
激光器广泛应用于通信、医疗、测量、材料加工等领域。
常见的激光器包括气体激光器、固体激光器和半导体激光器。
总的来说,光放大器的主要功能是增强输入光信号的强度,而激光器则是在此基础上产生高度相干和高能量的激光光束。
大模场面积光纤高功率光纤激光器与光纤放大器随着大功率半导体激光技术的发展,半导体激光泵浦的固体激光器(DPSSL)在很大程度上克服了灯泵浦固体激光器的效率低、规模难以扩大、亮度随规模扩大而增大有限、介质热变形导致的光束质量下降等问题。
随着半导体激光器阵列价格的下降和固体激光器性能的提高,高功率DPSSL必将获得更为广泛的应用。
虽然DPSSL相对于CO2和灯泵Nd:YAG具有很大的优越性和竞争力,但由于在激光产生时总有一部分能量以无辐射跃迁的方式转换为热,对于常规的棒状DPSSL,高功率时存在严重的热透镜和热致双折射效应,从而使得光束质量下降。
这部分热能量如何从棒状激光介质中散发、排除,成为获得高光束质量、高功率输出的关键。
将块状激光介质做成薄片或拉成细长光纤形状,将会有效增大散热表面积,使表面积/体积比大大提高,有利于固体激光器散热问题的解决,这就是高功率固体激光器发展的两个重要方向:薄片激光器和光纤激光器。
通常所说的光纤激光器,就是采用光纤作为激光介质的激光器,通过在光纤基质材料中掺杂不同的稀土离子,获得所对应波段的激光输出。
对于常规的单模光纤激光器,要求注入到纤芯的泵浦光也必须为单模,这限制了泵浦光的入纤效率,导致光纤激光器的输出功率和效率较低。
双包层光纤的提出,为提高光纤激光器的输出功率和转换效率提供了有效的技术途径,改变了光纤激光器只能作为一种小功率光子器件的历史。
考虑到量子转换效率、抗激光损伤阈值和基底损耗等原因,掺镱石英双包层光纤是实现高功率光纤激光器或放大器的最佳选择。
随着双包层光纤制作工艺和高功率半导体激光泵浦技术的发展,单根双包层光纤激光器的输出功率逐步提高,连续输出功率已经达到千瓦级。
大模场面积双包层光纤双包层光纤中折射率呈典型的阶跃式分布,对于圆形的掺杂纤芯,双包层光纤激光器能否实现单模激光输出,取决于纤芯的直径d和数值孔径NA0,实际的单模条件为归一化频率。
要保证双包层光纤激光器实现单模激光输出,纤芯的参数必须满足上述条件。
实验五 光纤激光器与光纤放大器的设计实验一、实验目的1、掌握掺铒有源光纤的增益放大特性;2、掌握光纤激光器的原理及其基本结构,掌握光纤激光器的设计及其波长调谐方法;3、掌握光纤放大器的原理及其基本结构,掌握光纤放大器的设计以及基本特性参数的测试方法。
二、实验原理(一)光纤激光器的基本结构光纤激光器和其它激光器一样,由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和激励光跃迁的泵浦源三部分组成。
纵向泵浦的光纤激光器的结构如图1所示。
图1 光纤激光器原理示意图一段掺杂稀土金属离子的光纤被放置在两个反射率经过选择的腔镜之间,泵浦光从左面腔镜耦合进入光纤。
左面镜对于泵浦光全部透射和对于激射光全反射,以便有效利用泵浦光和防止泵浦光产生谐振而造成输出光不稳定。
右面镜对于激射光部分透射,以便造成激射光子的反馈和获得激光输出。
这种结构实际上就是Fabry-perot 谐振腔结构。
泵浦波长上的光子被介质吸收,形成粒子数反转,最后在掺杂光纤介质中产生受激发射而输出激光。
激光输出可以是连续的,也可以是脉冲形式的,依赖于激光工作介质。
对于连续输出,激光上能级的自发发射寿命必须长于激光下能级以获得较高的粒子数反转。
通常当激光下能级的寿命超过上能级时只能获得脉冲输出。
光纤激光器有两种激射状态,一种是三能级激射,另一种是四能级激射,图2(a)、(b)分别表示三能级和四能级系统的跃迁系统的简化能级图。
两者的差别在于较低能级所处的位置。
在三能级系统中,激光下能级即为基态,或是极靠近基态的能级。
而在四能级系统中激光下能级和基态能级之间仍然存在一个跃迁,通常为无辐射跃迁,电子从基态提升到高于激光上能级的一个或多个泵浦带,电子一般通过非辐射跃迁到达激光上能级。
泵浦带上的电子很快弛豫到寿命比较长的亚稳态,在亚稳态上积累电子造成粒子数多于激光下能级,既形成粒子数反转。
电子以辐射光子的形式放出能量回到基态。
这种自发发射的光子被光学谐振腔反馈回增益介质中诱发受激发射,产生与诱发这一过程的光子性质完全相同的光子,当光子在谐振腔内所获得的增益大于其在腔内损耗时,就会产生激光输出。
第1章概述1-1、什么是光纤通信?参考答案:光纤通信(Fiber-optic communication)是以光作为信息载体,以光纤作为传输媒介的通信方式,其先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。
光经过调变后便能携带资讯。
光纤通信利用了全反射原理,即当光的注入角满足一定的条件时,光便能在光纤内形成全反射,从而达到长距离传输的目的。
1-2、光纤通信技术有哪些特点?参考答案:(1)无串音干扰,保密性好。
(2)频带极宽,通信容量大。
(3)抗电磁干扰能力强。
(4)损耗低,中继距离长。
(5)光纤径细、重量轻、柔软、易于铺设。
除以上特点之外,还有光纤的原材料资源丰富,成本低;温度稳定性好、寿命长等特点。
1-3、光纤通信系统由哪几部分组成?简述各部分作用。
参考答案:光纤通信系统最基本由光发送机、光接收机、光纤线路、中继器以及无源器件组成。
其中光发送机负责将信号转变成适合于在光纤上传输的光信号,光纤线路负责传输信号,而光接收机负责接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。
(1)光发送机:由光源、驱动器和调制器组成,实现电/光转换的光端机。
其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。
(2)光接收机:由光检测器和光放大器组成,实现光/电转换的光端机。
其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端机去。
(3)光纤线路:其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。
(4)中继器:由光检测器、光源和判决再生电路组成。
它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲进行整形。
(5)无源器件:包括光纤连接器、耦合器等,完成光纤间的连接、光纤与光端机的连接及耦合。
光放大器的名称和特点光放大器是一种有效的光学系统,是用来放大光信号的,从而提高信号的功率、范围和信噪比。
它被广泛应用于微波通信系统、光学网络、宽带传输系统、机载光学系统以及激光技术应用中。
光放大器有各种各样的类型,如常见的有光纤放大器、半导体放大器、光纤放大器、激光器放大器、光固体放大器等。
每种类型的光放大器都具有独特的特点,需要根据具体应用场景进行选择。
1、光纤放大器光纤放大器是一种将输入光信号放大到给定功率的有效设备。
它可以采用多种类型的光源,如发光二极管(LED)、半导体激光器(SLED)、半导体激光器(SLD)和半导体激光异质结(DHMLED)等。
光纤放大器在光纤传输系统中可以增加光的射程、提高信号质量和稳定性。
2、半导体放大器半导体放大器是一种通过控制半导体材料来放大光信号的放大器。
它采用半导体元件,如发光二极管(LED)、半导体激光器(SLED)、半导体激光器(SLD)和半导体激光异质结(DHMLED),放大光信号的强度和范围,从而满足多种应用场景的需求。
3、光纤放大器光纤放大器是一种基于光纤通信系统的信号放大器,主要应用在LAN、数据传输网络、光纤抗干扰系统等中。
它能够将输入的光信号放大到给定范围内,改善信号质量,提高系统可靠性。
4、激光器放大器激光器放大器是一种用于激光器的信号放大器,采用激光器将输入信号放大,提高激光器的输出功率。
它主要用于激光技术的研究,具有放大准确、放大比高、输出噪声小等特点,是激光器应用最常用的信号放大器。
5、光固体放大器光固体放大器是一种新型的光学放大器,其主要功能是放大输入光信号,提高输出功率,通过控制光纤或其他介质中的光纤放大器。
光固体放大器具有放大比高、输出噪声小、放大系数稳定等特点,在光纤和射频通信系统中都有广泛应用。
通过以上介绍,我们可以得知,光放大器是一种非常有效的光学系统,它可以放大输入的光信号,提高信号的功率、范围和信噪比,满足多种应用场景的需求。