医学图像处理技术
- 格式:doc
- 大小:93.50 KB
- 文档页数:8
图像处理技术在医学中的应用图像处理技术在医学中的应用随着科技的不断发展,图像处理技术在医学领域中的应用越来越广泛。
图像处理技术是利用计算机对图像进行处理和分析的方法,它可以帮助医生更准确地诊断疾病、提高治疗效果,并且可以辅助医学研究和教学。
下面将详细介绍图像处理技术在医学中的几个应用领域。
首先,图像处理技术在医学诊断中发挥着重要的作用。
医学影像,如X射线、CT扫描、MRI和超声波等,是诊断疾病的重要手段。
然而,这些图像往往存在噪声或者其他干扰因素,给医生的判断造成了一定的困难。
图像处理技术可以对这些影像进行滤波和增强,使医生能够更清晰地看到病灶和异常情况,从而提高诊断准确性。
此外,图像处理技术还可以通过图像分割、特征提取等方法,帮助医生定量地评估病变的大小、形状和位置,辅助医生制定合理的治疗方案。
其次,图像处理技术在手术中的应用也非常广泛。
传统的手术通常需要开刀和切割,而这种方式会对患者的身体造成一定的损害和创伤。
而现在,借助图像处理技术,医生可以进行非侵入性手术。
比如,医生可以通过导航系统和实时图像,精确地定位和测量人体内部的器官和血管,选择最佳的进入点和路径。
而且,通过增强和放大图像,医生可以更细致地观察手术区域,减少手术中的风险和并发症。
此外,图像处理技术还可以在手术之前,通过仿真和模拟的方式,帮助医生制定手术方案,增加手术的安全性和成功率。
另外,图像处理技术在医学研究中也发挥着重要的作用。
医学研究需要大量的数据和图像,而这些数据的分析和处理是非常复杂和繁琐的。
图像处理技术可以对这些数据进行自动化处理,提取有用的信息,辅助医学研究人员进行深入的分析和研究。
比如,图像处理技术可以对大规模的医学影像进行分析和分类,快速发现和识别潜在的异常情况和疾病。
此外,图像处理技术还可以辅助医学研究人员进行医学图像的配准和融合,将不同模态的图像进行融合,提供更全面和准确的信息。
最后,图像处理技术在医学教育中也有很大的应用前景。
图像处理技术在医学诊断中的应用案例医学诊断是指通过对患者的症状、体征以及相关检查结果的综合分析,确定疾病的性质与程度,从而制定出合理的治疗方案。
而随着图像处理技术的不断发展和进步,它在医学诊断中的应用变得越来越重要。
本文将介绍几个图像处理技术在医学诊断中的应用案例,以展示它的潜力和优势。
计算机断层扫描(CT)和磁共振成像(MRI)是医学影像领域最常用的图像技术之一。
它们能够提供高分辨率的内部解剖结构信息,并可用于诊断各种疾病。
图像处理技术在这些影像上的应用可以加快图像的获取和处理速度,并改善图像的质量。
例如,通过噪声去除算法可以减少图像中的噪声干扰,从而提高图像的清晰度;通过图像增强方法可以增强图像的对比度,突出病变区域,使医生更容易发现异常情况。
图像分割技术在医学诊断中的应用也非常广泛。
图像分割是将图像划分为不同的区域或物体的过程,它对于医生来说是非常重要的,可以帮助他们更准确地诊断疾病。
例如,在肿瘤诊断中,图像分割可以帮助医生确定肿瘤的形状、位置和大小,从而制定出更精确的治疗方案。
图像分割还可以用于计算器官的容积和表面积,提供更准确的数据供医生参考。
图像配准技术在医学诊断中也有重要的应用。
图像配准是将不同图像或不同时间点的同一患者的图像进行对齐的过程,这对于医生来说是非常有价值的。
例如,在肿瘤治疗过程中,医生通常需要对比术前和术后的图像来评估治疗效果,而图像配准技术可以帮助医生将这两组图像进行对齐,从而更直观地看到病变的变化情况。
另外一个图像处理技术在医学诊断中的应用案例是计算机辅助诊断(CAD)。
CAD系统通过对大量医学图像的分析和处理,提供独立的第二诊断意见,帮助医生更准确地进行诊断。
例如,在乳腺癌诊断中,CAD系统可以自动检测和标记潜在的肿块或异常区域,对诊断和治疗起到重要的辅助作用。
CAD系统还可以自动提取特征,进行图像分类和识别,从而帮助医生快速准确地判断疾病的类型和程度。
综上所述,图像处理技术在医学诊断中的应用案例丰富多样,可以提高诊断的准确性和效率。
医学图像处理技术的发展医学图像处理技术是一种非常重要的技术,可以帮助临床医生快速准确的对病情做出判断,为疾病的治疗提供有效的支持。
近年来,随着计算机技术的不断发展,医学图像处理技术也得到了极大的推广和发展。
本文将探讨医学图像处理技术的发展历程和应用前景。
一、医学图像处理技术的发展历程医学图像处理技术最早起源于20世纪50年代,当时医学影像的发展需要了解更多细节来对疾病进行更好的诊断。
随着计算机技术的发展,图像处理技术开始在医学上被广泛应用。
在70年代,医学图像处理技术开始与数字化相结合,开创了一个崭新的领域。
在80年代,大量的医学数据进行了数字化,更适于计算机运算,同时还有更多的算法被提出来,包括卷积神经网络、数字滤波等等,这为医学图像处理技术的发展奠定了坚实的基础。
在90年代,医学图像处理技术得到了应用的大幅提升。
电脑断层扫描技术(CT)、磁共振成像技术(MRI)和超声波成像技术的发展极大地推动了医学图像处理技术的发展。
同时,医学图像数据库的建立和在线共享也在极大程度上加速了医学图像处理技术的发展。
近年来,人工智能技术的发展助推了医学图像处理技术更快更准确的发展。
二、医学图像处理技术的应用前景医学图像处理技术在医疗领域应用十分广泛。
目前,许多医院都已经采用了这种技术,能够为医生提供更加精确的医学影像诊断和治疗方案。
例如,CT技术可以利用医学图像处理技术对疑难病例进行诊断,磁共振成像技术能够用于对神经系统、心血管系统等多个方面进行精确诊断。
同时,医学图像处理技术也逐渐成为了医疗领域的关键技术,在现代医学研究中得以广泛运用。
比如说,在人脑研究领域,脑部医学图像是基础与核心。
通过医学图像处理技术,医学研究者可对大量脑部图像进行分析,洞悉脑部多个区域的功能与结构之间的关系,为人类认知研究与神经系统相关疾病的诊治提供更深入的基础知识。
此外,医学图像处理技术还可以广泛应用于新药开发、疾病诊断和治疗、医疗设备的优化等多个领域。
医学图像处理技术的使用技巧总结医学图像处理技术是指利用计算机技术对医学图像进行处理和分析的方法和工具。
随着技术的不断发展,医学图像处理在临床诊断、治疗计划、疾病监测等方面起着越来越重要的作用。
本文将总结几种常见的医学图像处理技术的使用技巧,帮助医务人员更好地应用于临床实践中。
第一种技术是图像增强。
图像增强旨在改善图像的质量,突出感兴趣的结构或特征。
在医学图像中,有时可能会受到噪声、干扰或光照条件不佳等因素的影响,使图像信息难以清晰地观察和分析。
通过调整亮度、对比度、锐化等参数,可以使图像的细节更加明确,便于医生进行诊断。
此外,滤波器的应用也是常见的图像增强方法之一,比如使用低通滤波器来减小噪声、使用高通滤波器来增强边缘等。
第二种技术是图像分割。
图像分割是将图像中的目标与背景进行区分,将目标从背景中提取出来。
在医学图像中,图像分割对于骨骼、组织或器官的定位和分析至关重要。
常用的医学图像分割方法包括阈值分割、区域生长、边缘检测等。
阈值分割是基于灰度值的分割方法,通过设定阈值将图像中的目标与背景分离;区域生长则是从一个或多个种子点开始,逐渐生长直至覆盖整个目标区域;边缘检测则是通过检测图像中的边缘特征来进行分割。
在应用图像分割技术时,根据医学图像的特点和需求,选择合适的方法将有助于提高分割的准确性和效率。
第三种技术是三维重建。
三维重建是根据多幅二维医学图像重建出三维物体的过程。
通过将不同角度或层面的二维图像进行配准,可以得到更加准确的三维解剖结构信息。
三维重建对于手术规划、病灶定位和虚拟现实模拟等应用具有重要价值。
在进行三维重建时,需要注意选择合适的图像处理算法和配准方法,以获得高质量的三维模型。
此外,还可以利用虚拟现实技术将三维模型与实时检查相结合,提供更加直观的视觉信息。
第四种技术是医学图像的特征提取与分类。
医学图像中的特征提取与分类是指从图像中提取出有价值的特征,并将其分为不同的类别。
通过特征提取与分类,可以帮助医生做出更准确的诊断和预测结果。
医学影像技术与医学图像处理是近年来发展非常迅速的领域。
医学影像技术是指通过各种方法获取人体内部的图像信息,以便于医生进行诊断和治疗。
医学图像处理则是指对医学影像数据进行数字化处理,以获取更精确的诊断结果。
医学影像技术的发展历程可以追溯到19世纪末。
当时,医生们使用X光机对病人进行检查。
20世纪初,CT和MRI成为了医学影像技术领域的重要里程碑。
这些技术的出现,极大地提高了医学诊断的准确性和效率。
现在,医学影像技术已经非常普遍,它们在医疗领域的作用越来越大。
医学影像技术包括多种方法,如X光成像、计算机断层扫描(CT)、磁共振成像(MRI)、超声成像(MIF)、正电子发射计算机断层扫描(PET-CT)以及单光子发射计算机断层扫描(SPECT)。
这些技术在人体的不同部位和不同疾病的诊断中都有广泛的应用。
医学图像处理则是对医学影像进行数字化处理,以提取和显示有用的信息。
主要的医学图像处理任务包括:去除噪声、增强对比度、分割医学图像、提取和识别特定的区域等。
医学图像处理技术可帮助医生在复杂的图像中识别和定位病变区域,为病人提供更准确的诊断。
医学图像处理主要包括三个方面:图像增强、图像分割和特征提取。
图像增强是一种预处理方法,主要是利用不同的算法或方法来增强图像的亮度、对比度、边缘等特征,以优化图像的质量和效果。
图像分割是将医学图像分割成不同的区域,以更好地研究和处理医学图像。
特征提取是从医学图像中提取出感兴趣的特征,以帮助医生做出诊断决策。
医学图像处理技术的应用广泛,其中最主要的应用是在医学诊断中。
通过医学图像处理,医生可以得到更加准确的诊断结果。
此外,医学图像处理还可应用于手术模拟和规划、组织分析、虚拟现实技术、个性化医疗等领域。
这些技术的使用,使得医生们对于病人的治疗方案可以更为精确和有效,同时可以减少病人的风险和不适。
目前,随着人工智能技术的发展,越来越多的研究者正在努力将技术相结合。
这将使医学影像技术更加智能化和自动化,从而使得医学诊断和治疗的速度和准确性都得到了大幅度提升。
医学图像处理技术的现状和发展趋势随着科技的不断发展,医学图像处理技术成为了医疗领域的一个热门话题。
利用计算机图像处理技术来获取、处理、分析医学图像已经成为临床医学中不可或缺的一部分。
它可以帮助医生更直观地了解患者的病情,从而为患者的诊疗提供更精准、更快捷的帮助。
医学图像处理技术的现状医学图像处理技术实现了从人工观察到计算机自动处理的转变,从而大大提高了医生的工作效率。
医学图像处理技术主要有以下几种类型:一、数字化成像技术数字化成像技术是指利用影像学的方法提取疾病的表现形式,如X线、CT、MRI等,将其转变为数字数据,在计算机中对这些数据进行图像处理和分析,从而获取人体疾病方面的相关信息。
二、立体视觉技术立体视觉技术是指通过记录物体或人体表面上的变化,来实现对它的三维重构和呈现。
常用的立体视觉技术有光栅投影、激光扫描等。
这些技术在医学的应用上,可以实现对人体组织的三维显示、重构,方便医生对疾病的分析和诊疗。
三、生物医学图像处理技术生物医学图像处理技术针对的是一些特殊的人体组织、器官及生命过程的图像处理技术,如肉眼看不出来的神经系统的图像、睡眠脑电波图像等,这些技术的研究和应用,有很好的医学意义。
医学图像处理技术的发展趋势医学图像处理技术不断地被运用到各个领域,有着广阔的发展前景。
未来,医学图像处理技术将发展成以下几个方向:一、人工智能技术的应用人工智能技术可以通过海量医学数据的学习、分析,在辅助医生诊疗的同时,帮助初级医生进行基本的初步诊断分析,从而提高医疗服务的效率和质量。
二、移动医疗技术的发展随着信息技术的发展,移动医疗技术越来越成为医学领域的一个热点。
移动医疗技术的发展,可以实现医生和患者之间的实时交流和医学检查,极大地方便了患者和医生,减少了医疗资源的浪费。
三、医疗影像云的应用医疗影像云是指基于云计算技术的医学影像平台,它将成千上万的医学图像和与之相关的数据整合在一起,形成一个全球性的大型医学数据库。
医学图像处理技术的使用教程及应用医学图像处理技术是现代医学领域的一个重要分支,它利用计算机技术和图像处理算法对医学图像进行分析、重建和增强,从而为医生提供更多的诊断和治疗支持。
本文将介绍医学图像处理技术的基本原理、常用方法及其在医学领域中的应用。
一、医学图像处理技术的基本原理医学图像是通过各种医学影像设备获取的,包括X射线摄影、核磁共振成像、超声成像等。
这些图像数据包含了丰富的信息,可以用于疾病的早期诊断、手术规划和治疗效果评估等。
医学图像处理技术的基本原理是将医学图像数字化,并采用一系列的算法对图像进行处理。
数字化的过程包括采样、量化和编码。
采样将连续的图像转化为离散的样本,量化则确定了每个样本的灰度级别,编码则将量化后的样本编码为数字。
二、医学图像处理技术的常用方法1. 图像增强:医学图像常常受到噪声、低对比度等影响,图像增强技术可以改善图像的质量,使医生更容易进行观察和诊断。
常用的增强方法包括直方图均衡化、滤波和局部对比度增强等。
2. 图像分割:图像分割是将图像分成若干个意义明确的区域,常用于肿瘤分割、组织边界提取等任务。
分割方法有阈值分割、边缘检测和区域生长等。
这些方法可以帮助医生快速准确地对病变区域进行定位和分析。
3. 特征提取:医学图像特征提取是从图像中提取有意义的信息,通常用于疾病的诊断和分型。
特征可以来自图像的形态、纹理、灰度等方面。
常用的特征提取方法有形态学操作、纹理分析和主成分分析等。
4. 三维重建:三维图像重建是将多个二维图像合成一个三维模型,常用于手术导航、病灶定位和治疗计划等任务。
三维重建方法有体素插值、表面重建和体绘制等。
三、医学图像处理技术在医学领域的应用1. 病变检测与诊断:医学图像处理技术可以帮助医生发现病理性病变,并进行相关的诊断。
例如,在肺部CT图像中,医学图像处理技术可以帮助医生检测肺结节,并判断其恶性程度。
2. 手术规划与导航:医学图像处理技术可以根据患者的图像数据生成三维模型,为手术规划提供参考。
医学影像的图像处理技术一、前言医学影像学是一门应用广泛而又不断发展的学科,医学影像的图像处理技术应用十分广泛,它们不仅可以为临床医生诊疗提供重要的辅助手段,而且也可以用于多领域的研究。
在医学影像学的实践中,图像处理技术已经成为一项不可或缺的技术。
二、数字图像处理技术数字图像处理技术是处理数字图像的技术,它将数字图像转换为数字信号,再利用数字信号处理技术对图像进行处理和分析。
数字图像处理技术可分为以下几类:1. 信号处理技术信号处理技术是数字图像处理的基础,主要用于处理图像的亮度、对比度、平滑度等特征。
常用的信号处理技术有空域滤波、频域滤波等。
2. 图像压缩技术图像压缩技术是将数字图像经过压缩算法处理,达到减小文件大小的目的。
常见的图像压缩技术有JPEG、PNG、GIF等。
3. 形态学图像处理技术形态学图像处理技术是用于提取图像的形态学特征的一种处理技术,常用于边缘检测、形态学滤波等。
4. 分割图像处理技术分割图像处理技术是将图像分成不同的部分或区域的处理技术,常用于医学影像中对人体组织、器官的分割。
5. 三维图像处理技术三维图像处理技术是处理医学影像中三维模型的技术,其主要方法包括体绘制、表面绘制、投影法等。
6. 人工智能技术人工智能技术在医学影像处理中也越来越常见,主要包括机器学习、深度学习两种方法。
三、医学影像的处理在医学影像学中,可以应用以上数字图像处理技术,包括形态学处理、直方图均衡化、二值化、边缘检测、基于特征的分析等方法,实现对图像的增强、分割和分析。
以下是介绍几种较为常见的处理方法:1. 直方图均衡化直方图均衡化是医学影像中应用较广泛的一种图像增强技术。
图像直方图是指统计图像中各像素强度的数量分布情况。
通过直方图均衡化,可以增强图像的对比度,使得图像细节更加清晰,更易于观察和分析。
2. 空域滤波空域滤波技术是医学影像处理中最基础的滤波方法之一。
常用的空域滤波方法包括平滑滤波、锐化滤波、边缘检测滤波等。
图像处理技术在医学诊断中的应用医学诊断是一项十分严谨的工作,通过一系列的检测和分析,医生才能做出准确的诊断和治疗方案。
而图像处理技术的应用,能够更快速、准确地帮助医生完成这一工作。
一、图像处理技术的应用范围在医疗领域,图像处理技术的应用范围非常广泛,主要包括以下几个方面:1. 病人图像的采集和储存。
比如说CT、MRI等医学检查设备所拍摄的磁共振图像、放射学图像等,都可以通过图像处理技术进行数据采集、储存和管理,方便医生进行后期的分析和提取。
2. 图像增强和改善。
通过对医学图像进行处理,可以使其更加清晰、鲜明,便于医生更好地分析。
比如说,对于X线图像,可以利用数字图像处理技术对其进行去噪、增强、调整对比度等操作;对于CT、MRI图像,可以采用分割、重构等技术将其三维可视化,以更好地呈现患者的病情。
3. 自动化图像分析。
利用图像处理技术,可以对医学图像进行自动化分析,包括图像分类、目标检测、病变识别等。
这不仅能为医生提供快速、准确的辅助诊断,而且还能极大地提高医疗行业的效率。
二、图像处理技术在疾病诊断中的应用1. 肺癌诊断肺癌早期发现非常重要,因为早期诊断可以提高治疗效果,增加患者的生存率。
利用图像处理技术,医生可以通过CT、MRI等技术对肺部的图像进行分析,以便检测肿瘤的位置、大小等信息。
在肺癌诊断中,病变区域的分割、形态分析、纹理分析等技术非常有用。
2. 脑卒中早期诊断脑卒中病情的发展速度非常快,因此早期诊断非常重要。
利用图像处理技术,可以对患者的CT、MRI等图像进行自动化分析,以快速、准确地检测出脑卒中的病变区域。
同时,还可以对脑部血管结构的图像进行分析,以评估血管的狭窄程度和位置,从而为后期治疗方案提供重要参考。
3. 心脏病诊断利用图像处理技术,医生可以对心脏的CT、MRI等图像进行分析,以评估心脏的结构和功能。
对于心肌梗死等心血管病的诊断,图像分割、特征提取、分类等技术非常有用。
三、图像处理技术的未来发展随着科技的不断进步,图像处理技术在医疗领域的应用将会越来越广泛。
医学图像处理技术的原理和应用案例随着信息技术的高速发展,医学图像处理技术也日益成熟。
这项技术是将医学图像数字化,并通过计算机技术来分析这些图像,从而得出有关人体健康状况的信息。
本文将介绍医学图像处理技术的基本原理,及其在医疗领域的应用案例。
一、医学图像处理技术的原理医学图像处理技术的基本过程包括图像的获取、数字化、存储、处理和分析。
图像的获取是指通过X光、CT、MRI等医学影像设备获取人体内部结构的二维或三维图像。
数字化是将图像转化为数字信号,使其能够传输到计算机中进行分析处理。
存储是将处理后的数字信号保存在计算机等设备中以备后续使用。
处理是指通过计算机软件来对图像进行改善、增强、分割等处理。
分析是将处理后的图像进行量化分析,以便医学专家进行诊断和治疗。
医学图像处理技术的基本原理包括三个方面,分别是医学图像的预处理、图像的特征提取和图像的分类。
医学图像的预处理包括灰度变换、滤波、几何校正和图像标准化等过程。
灰度变换是将原始图像的灰度值进行调整,使其在视觉效果上更好。
滤波是指将图像中的不同频率成分进行过滤,可以有效地去除干扰和噪声。
几何校正是将原始图像进行几何变换,使其在各个方向上的比例和形状都符合常规。
图像标准化是将不同的图像进行标准化处理,使它们在显示时具有相同的亮度、对比度和颜色。
图像的特征提取是指从医学图像中提取出有用的信息,例如病灶、肿块和血管等。
特征提取可以使用不同的算法和分类器来实现,如支持向量机、神经网络和朴素贝叶斯分类器等。
图像的分类是将医学图像进行分类,确定其属于何种病态。
分类可以使用不同的算法和模型来实现,如卷积神经网络、高斯混合模型和随机森林等。
二、医学图像处理技术的应用案例医学图像处理技术在医疗领域的应用案例包括疾病诊断、手术规划、治疗效果评价和虚拟现实技术等。
1. 疾病诊断医学图像处理技术可以帮助医生诊断各种疾病,如肿瘤、心脑血管疾病和骨骼疾病等。
通过处理医学图像,可以对患者进行快速和精准的诊断,制定相应的治疗方案。
医学图像处理技术 摘 要: 随着医学成像和计算机辅助技术的发展,从二维医学图像到三维可视化技术成为研究的热点,本文介绍了医学图像处理技术的发展动态,对图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。在比较各种技术在相关领域中应用的基础上,提出了医学图像处理技术发展所面临的相关问题及其发展方向。关键词:医学图像处理;图像分割;图像配准;图像融合;纹理分析
1.引言 近20 多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对 人体内部病变部位的观察更直接、更清晰,确诊率也更高。20 世纪70 年代初,X-CT 的发明 曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI :Magnetic Resonance
Imaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。 本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。 2.医学图像三维可视化技术 2.1 三维可视化概述
医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$ /&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。
2.2 关键技术:
图像分割是三维重构的基础,分割效果直接影像三维重构的精确度。图像分割是将图像分割成有意义的子区域,由于医学图像的各区域没有清楚的边界,为了解决在医学图像分割中遇到不确定性的问题,引入模糊理论的模糊阀值、模糊边界和模糊聚类等概念。快速准确的分离出解剖结构和定位区域位置和形状,自动或半自动的图像分割方法是非常重要的。在实际应用中有聚类法、统计学模型、弹性模型、区域生长、神经网络等适用于医学图像分割的具体方法。 由于可以对同一部位用不同的成像仪器多次成像,或用同一台仪器多次成像,这样产生了多模态图像。多模态图像提供的信息经常相互覆盖和具有互补性,为了综合使用多种成像模式以提供更全面的信息,需要对各个模态的原始图像进行配准和数据融合,其整个过程称为数据整合。整合的第一步是将多个医学图像的信息转换到一个公共的坐标框架内的研究,使多幅图像在空间域中达到几何位置的完全对应,称为三维医学图像的配准问题。建立配准关系后,将多个图像的数据合成表示的过程,称为融合。在医学应用中,不同模态的图像还提供了不互相覆盖的结构互补信息,比如,当CT提供的是骨信息,MRI提供的关于软组织的信息,所以可以用逻辑运算的方法来实现它们图像的合成。 当分割归类或数据整合结束后,对体数据进行体绘制。体绘制一般分为直接体绘制和间接体绘制,由于三维医学图像数据量很大,采用直接体绘制方法,计算量过重,特别在远程应用和交互操作中,所以一般多采用间接体绘制。在图形工作站上可以进行直接体绘制,近来随着计算机硬件快速发展,新的算法,如三维纹理映射技术,考虑了计算机图形硬件的特定功能及体绘制过程中的各种优化方法,从而大大地提高了直接体绘制的速度。体绘制根据所用的投影算法不同加以分类,分为以对象空间为序的算法(又称为体素投影法)和以图像空间为序的算法!又称为光线投射法",一般来说,体素投影法绘制的速度比光线投射法快。由于三维医学图像的绘制目的在于看见内部组织的细节,真实感并不是最重要的,所以在医学应用中的绘制要突出特定诊断所需要的信息,而忽略无关信息。另外,高度的可交互性是三维医学图像绘制的另一个要求,即要求一些常见操作,如旋转,放大,移动,具有很好的实时性,或至少是在一个可以忍受的响应时间内完成。这意味着在医学图像绘制中,绘制时间短的可视化方法更为实用。 未来的三维可视化技术将与虚拟现实技术相结合,不仅仅是获得体数据的工具,更主要的是能创造一个虚拟环境。 3.医学图像分割 医学图像分割就是一个根据区域间的相似或不同把图像分割成若干区域的过程。目前,主要以各种细胞、组织与器官的图像作为处理的对象,图像分割技术主要基于以下几种理论方法。 3.1 基于统计学的方法 统计方法是近年来比较流行的医学图像分割方法。从统计学出发的图像分割方法把图像中各个像素点的灰度值看作是具有一定概率分布的随机变量,观察到的图像是对实际物体做了某种变换并加入噪声的结果,因而要正确分割图像,从统计学的角度来看,就是要找出以最大的概率得到该图像的物体组合。用吉布斯(Gibbs)分布表示的Markov随机场(MRF)模型,能够简单地通过势能形式表示图像像素之间的相互关系,因此周刚慧等结合人脑MR图像的空间关系定义Markov随机场的能量形式,然后通过最大后验概率(MAP)方法估计Markov随机场的参数,并通过迭代方法求解。层次MRF采用基于直方图的DAEM算法估计标准有限正交混合(SFNM)参数的全局最优值,并基于MRF先验参数的实际意义,采用一种近似的方法来简化这些参数的估计。林亚忠等采用的混合金字塔Gibbs随机场模型,有效地解决了传统最大后验估计计算量庞大和Gibbs 随机场模型参数无监督及估计难等问题,使分割结果更为可靠。 3.2基于模糊集理论的方法 医学图像一般较为复杂,有许多不确定性和不精确性,也即模糊性。所以有人将模糊理论引入到图像处理与分析中,其中包括用模糊理论来解决分割问题。基于模糊理论的图形分割方法包括模糊阈值分割方法、模糊聚类分割方法等。模糊阈值分割技术利用不同的S型隶属函数来定义模糊目标,通过优化过程最后选择一个具有最小不确定性的S函数,用该函数表示目标像素之间的关系。这种方法的难点在于隶属函数的选择。模糊C均值聚类分割方法通过优化表示图像像素点与C各类中心之间的相似性的目标函数来获得局部极大值,从而得到最优聚类。Venkateswarlu等[改进计算过程,提出了一种快速的聚类算法。 3.2.1基于模糊理论的方法 模糊分割技术是在模糊集合理论基础上发展起来的,它可以很好地处理MR图像内在的模糊性和不确定性,而且对噪声不敏感。模糊分割技术主要有模糊阈值、模糊聚类、模糊边缘检测等。 在各种模糊分割技术中,近年来模糊聚类技术,特别是模糊C-均值(FCM)聚类技术的应用最为广泛。FCM是一种非监督模糊聚类后的标定过程,非常适合存在不确定性和模糊性特点的MR图像。然而,FCM算法本质上是一种局部搜索寻优技术,它的迭代过程采用爬山技术来寻找最优解,因此容易陷入局部极小值,而得不到全局最优解。近年来相继出现了许多改进的FCM分割算法,其中快速模糊分割(FFCM)是最近模糊分割的研究热点。FFCM算法对传统FCM算法的初始化进行了改进,用K-均值聚类的结果作为模糊聚类中心的初值,通过减少FCM的迭代次数来提高模糊聚类的速度。它实际上是两次寻优的迭代过程,首先由K-均值聚类得到聚类中心的次最优解,再由FCM进行模糊聚类,最终得到图像的最优模糊分割。 3. 2.2 基于神经网络的方法 按拓扑机构来分,神经网络技术可分为前向神经网络、反馈神经网络和自组织映射神经网络。目前已有各种类型的神经网络应用于医学图像分割,如江宝钏等利用MRI多回波性,采用有指导的BP神经网络作为分类器,对脑部MR图像进行自动分割。而Ahmed和Farag则是用自组织Kohenen网络对CT/MRI脑切片图像进行分割和标注,并将具有几何不变性的图像特征以模式的形式输入到Kohenen网络,进行无指导的体素聚类,以得到感兴趣区域。模糊神经网络(FNN)分割技术越来越多地得到学者们的青睐,黄永锋等提出了一种基于FNN的颅脑MRI半自动分割技术,仅对神经网络处理前和处理后的数据进行模糊化和去模糊化,其分割结果表明FNN分割技术的抗噪和抗模糊能力更强。 3. 2. 3 基于小波分析的分割方法
小波变换是近年来得到广泛应用的一种数学工具,由于它具有良好的时一频局部化特征、尺度变化特征和方向特征,因此在图像处理上得到了广泛的应用。 小波变换和分析作为一种多尺度多通道分析工具,比较适合对图像进行多尺度的边缘检测,典型的有如Mallat小波模极大值边缘检测算法[6
3.3 基于知识的方法 基于知识的分割方法主要包括两方面的内容:(1)知识的获取,即归纳提取相关知识,建立知识库;(2)知识的应用,即有效地利用知识实现图像的自动分割。其知识来源主要有:(1)临床知识,即某种疾病的症状及它们所处的位置;(2)解剖学知识,即某器官的解剖学和形态学信息,及其几何学与拓扑学的关系,这种知识通常用图谱表示;(3)成像知识,这类知识与成像方法和具体设备有关;(4)统计知识,如M I的质子密度(PD)、T1和T2统计数据。Costin等提出了一种基于知识的模糊分割技术,首先对图像进行模糊化处理,然后利用相应的知识对各组织进行模糊边缘检测。而谢逢等则提出了一种基于知识的人脑三维医学图像分割显示的方法。首先,以框架为主要表示方法,建立完整的人脑三维知识模型,包含脑组织几何形态、生理功能、图像灰度三方面的信息;然后,采用“智能光线跟踪”方法,在模型知识指导下直接从体积数据中提取并显示各组织器官的表面。 3.4 基于模型的方法 该方法根据图像的先验知识建立模型,有动态轮廓模型(Active Contour Model,又称Snake)、