KHN滤波器分析与设计
- 格式:docx
- 大小:242.16 KB
- 文档页数:6
现代电路理论设计报告论文题目:用KHN电路实现二阶带通函数学院:研究生学院年级:2013级专业:集成电路工程姓名:学号:指导教师:2013 年 12月 12日摘要提出了一种能同时或能分别实现低通、高通和带通滤波的多功能KHN滤波器,通过调节其电阻比,其电路也能被修改成一个正交振荡器,而且其电路的极点频率和品质因数能够被独立地,精确地调节。
该电路使用了3个集成运放、2个电容和9个电阻,且使用的元件较少,性价比高,计算机仿真证明它正确有效。
带通滤波器是指能够通过某一频率范围内的频率分量,但将其他范围的频率分量衰减到极低水平的滤波器。
在现代电流模式电路中,KHN滤波器已成为滤波器设计的原型。
并已得到了广泛的应用。
鉴于此,笔者对同相型KHN滤波器作了改进,它不仅能实现单输入、三输出的通用滤波,而且也能实现三输入、单输出的通用滤波,并且其电路的极点频率和品质因数能够被独立地和精确地调节,此外,它还能被修改成一个正交振荡器。
该滤波器包含了3个集成运放、2个电容和9个电阻,所使用的元件较少,计算机仿真证明它正确有效。
关键词KHN;二阶带通;滤波器目录摘要 (I)1. 电路原理 (3)2. 数值计算过程 (5)3. 计算机仿真 (6)3.1 高通滤波 (6)3.2 带通滤波 (7)3.3 低通滤波 (7)4. 结论 (9)1. 电路原理二阶滤波器有两个积分器,d 为反馈部分的放大倍数,a 表示前反馈部分的放大倍数。
一般来说,输入信号的拉氏变换用X (s )表示,输出信号的来时变换依次用YLP(s)、YBP (s )和YHP(s)表示,可以求得一下传递函数:2210()()()()LP A B L PLP A A B Y S a H H S X S s d s d D s ωωωωωω===++ 210()(/)()()()BP A B P BP A A B Y S a s H Q sH S X S s d s d D s ωωωωω-===++ 22210()()()()HP H HP A A B Y S H s as H S X S s d s d D s ωωω===++其中:22()(/)P p D s s Q s ωω=++ 20p A B d ωωω=1pA d Qωω=KHN 二阶滤波器见图1,给出了由三运放构成的多功能电压模式二阶电路,其中有1个大反馈环和2个小反馈环。
四运放多功能KHN滤波器的设计通用二阶滤波器有两种形式,一种是TT(Tow-Thomas)滤波器,另一种是KHN(Kerwin-Huelsman-Newcomb)滤波器。
与TT 滤波器相比,KHN 滤波器不仅能直接实现低通和带通滤波,还能实现高通滤波,应用广泛,是现代电流模式滤波器设计的基础。
然而KHN 滤波器属于单输入、三输出的通用滤波器,不能实现三输入、单输出通用滤波。
由于电阻比有限,因此其Q 值不能太高。
三个集成运放中,有一个运放的反相端不满足虚地,则对运放提出较高要求。
鉴于KHN 滤波器在现代电流模式电路中的地位,提出了另一种形式的KHN 滤波器,它不仅能实现单输入、三输出的通用滤波,也能实现三输入、单输出通用滤波,电路的极点频率和品质因数能够被独立、精确的调节,电路也能被修饰成一个正交振荡器。
电路包含4 个通用集成运放、2 个电容和11 个电阻,且所有运放的反相输入端均虚地。
1 电路原理图1 给出了由四运放构成的多功能电压模式二阶电路,其中有1 个大反馈环和2 个小反馈环。
设R1=R2=R,C1=C2=C,R5=R6,使用MASON 公式,可得到三环路的增益和为式(3)表明,通过同步调整R1、R2,可实现极点频率的独立调节,而不影响品质因数。
式(4)表明,通过调整R4、R3 的电阻比,可实现品质因数的独立调节,而不影响极点频率,从而实现二者的正交调节。
值得注意的是,通过调整R4/R3,很容易实现高Q 电路,特别是当R4=R 3,Q=∝,这意味着电路变成了一个正弦振荡器,其频率可由R、C 调节。
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。
滤波器基本原理与设计方法滤波器作为电子领域中常用的电路元件,广泛应用于信号处理、通信系统、音频放大器等领域。
它的作用是通过选择性地通过或抑制特定频率的信号,将所需的频段从混杂的信号中分离出来或者抑制掉不需要的频率成分。
本文将详细介绍滤波器的基本原理和设计方法。
第一部分:滤波器基本原理在介绍滤波器的设计方法之前,我们需要了解一些基本的滤波器原理。
根据频率选择的特性可以将滤波器分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种类型。
1. 低通滤波器低通滤波器能够传递比截止频率低的信号频率,而抑制高于截止频率的信号频率。
在音频放大器中,低通滤波器可以用于去除高于人耳听觉范围的频率。
2. 高通滤波器高通滤波器与低通滤波器相反,能够传递比截止频率高的信号频率,而抑制低于截止频率的信号频率。
在通信系统中,高通滤波器可以用于去除直流偏置信号或者低频噪声。
3. 带通滤波器带通滤波器可以传递一定频率范围内的信号,而抑制其他频率的信号。
在无线通信系统中,带通滤波器常用于选择感兴趣的频率带宽,去除不需要的频率成分。
4. 带阻滤波器带阻滤波器与带通滤波器相反,能够抑制一定频率范围内的信号,而传递其他频率的信号。
在音频系统中,带阻滤波器可以用于去除特定频率的噪声或者干扰。
第二部分:滤波器设计方法滤波器的设计是根据具体的需求和性能指标进行的。
设计一个滤波器需要考虑以下几个方面:1. 频率响应滤波器的频率响应描述了在不同频率下的增益或衰减情况。
根据需求,选择合适的截止频率、通带和阻带范围等参数,设计滤波器的频率响应。
2. 滤波器类型根据具体的应用场景和需要,选择适合的滤波器类型。
例如,如果需要去除高于一定频率的信号,可以选择低通滤波器。
3. 滤波器阶数滤波器的阶数决定了其在截止频率附近的衰减率。
阶数越高,滤波器的性能越好,但相应的电路复杂度也会增加。
4. 滤波器响应特性根据不同的需求,选择所需的滤波器响应特性。
常见的有Butterworth响应、Chebyshev响应和椭圆形响应等。
控制系统中的Kalman滤波器原理与应用控制系统是现代工业发展过程中不可或缺的一部分。
为了使控制系统能够更加准确、可靠地运行,通常需要对传感器采集到的数据进行滤波处理。
而Kalman滤波器就是一种被广泛应用于控制系统中的滤波技术,它的出现大大提高了系统的精度和可靠性。
一、Kalman滤波器的原理Kalman滤波器最初是由R.E. Kalman于1960年提出的,它具有一种比较特殊的滤波思想,主要是通过特定的方式来优化传感器采集的数据,使其更加符合实际情况。
Kalman滤波器主要是用线性数学模型描述采样过程中各种误差的随机漂移规律,根据数据的特点构建出目标模型,使滤波后得到的数据更加接近真实值。
Kalman滤波器的核心思想是基于以下两种数据:1. 系统状态(State):表示被测量的真实值,通常情况下是无法直接测量。
2. 测量值(Measurement):表示传感器给出的测量值,它受到噪声等因素的影响,会存在一定的偏差。
Kalman滤波器认为,通过将测量值与系统状态进行加权平均,可以得到更加准确的结果。
具体来说,它通过建立数学模型,将系统状态与测量值联系起来,然后根据这个联系,在不断的采样、滤波过程中,来逐步优化估计值。
二、Kalman滤波器的应用Kalman滤波器在工业控制系统、航空航天、自动驾驶汽车、智能家居等领域均得到了广泛的应用。
在工业控制系统中,Kalman滤波器主要用于对工业生产线上的重要参数进行处理,以保证生产线的正常运行。
例如,在汽车生产线上,由于传感器采集到的测量值通常存在噪声等干扰,因此需要使用Kalman滤波器来对测量值进行优化,以保证汽车的生产质量。
在航空航天领域中,Kalman滤波器被广泛应用于飞行器的导航和控制系统中。
航空器的飞行需要依赖于精确的定位和航向数据,而通过使用Kalman滤波器来处理采集到的数据,可以提高数据的准确性和可靠性,从而使飞行安全得到保障。
在智能家居领域中,Kalman滤波器可以用于处理家庭生活中的传感器数据,并对物联网设备进行智能化管理。
滤波器设计与实现方法总结滤波器是信号处理中常用的工具,用于降低或排除信号中的噪声或干扰,保留所需的频率成分。
在电子、通信、音频等领域中,滤波器发挥着重要作用。
本文将总结滤波器的设计与实现方法,帮助读者了解滤波器的基本原理和操作。
一、滤波器分类滤波器根据其频率特性可分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
它们分别具有不同的频率传递特性,适用于不同的应用场景。
1. 低通滤波器低通滤波器将高频信号抑制,只通过低于截止频率的信号。
常用的低通滤波器有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器。
设计低通滤波器时,需要确定截止频率、阻带衰减和通带波动等参数。
2. 高通滤波器高通滤波器将低频信号抑制,只通过高于截止频率的信号。
常见的高通滤波器有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器。
设计高通滤波器时,需要考虑截止频率和阻带衰减等参数。
3. 带通滤波器带通滤波器同时允许一定范围内的频率通过,抑制其他频率。
常用的带通滤波器有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器。
设计带通滤波器时,需要确定通带范围、阻带范围和通带波动等参数。
4. 带阻滤波器带阻滤波器拒绝一定范围内的频率信号通过,允许其他频率信号通过。
常见的带阻滤波器有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器。
设计带阻滤波器时,需要确定阻带范围、通带范围和阻带衰减等参数。
二、滤波器设计方法1. 传统方法传统的滤波器设计方法主要基于模拟滤波器的设计原理。
根据滤波器的频率特性和参数要求,可以利用电路理论和网络分析方法进行设计。
传统方法适用于模拟滤波器设计,但对于数字滤波器设计则需要进行模拟到数字的转换。
2. 频率抽样方法频率抽样方法是一种常用的数字滤波器设计方法。
它将连续时间域的信号转换为离散时间域的信号,并利用频域采样和离散时间傅立叶变换进行设计。
频率抽样方法可以实现各种类型的数字滤波器设计,包括有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
Ka l man 滤波器及其应用1.引言Kalman Filter是一个高效的递归滤波器,它可以实现从一系列的噪声测量中,估计动态系统的状态。
广泛应用于包含Radar、计算机视觉在内的等工程应用领域,在控制理论和控制系统工程中也是一个非常重要的课题。
连同线性均方规划,卡尔曼滤波器可以用于解决LQG(Linear-quadratic-Gaussian control)问题。
卡尔曼滤波器,线性均方归化及线性均方高斯控制器,是大部分控制领域基础难题的主要解决途径。
kalman Filter以它的发明者Rudolf.E.Kalman 而命名。
但是在Kanlman之前,Thorvald Nicolai Thiele和Peter Swerling 已经提出了类似的算法。
Stanley Schmidt 首次实现了Kalman 滤波器。
在一次对NASA Ames Research Center访问中,卡尔曼发现他的方法对于解决阿波罗计划的轨迹预测很有用,后来阿波罗飞船导航电脑就使用了这种滤波器。
这个滤波器可以追溯到Swerling(1958),Kalman(1960),Kalman和Bucy(1961)发表的论文。
Kalman Filter有时叫做Stratonovich-Kalman-Bucy滤波器。
因为更为一般的非线性滤波器最初由Ruslan L.Stratonovich发明,而Stratonovich-Kalman-Bucy滤波器只是非线性滤波器的一个特例。
事实上,1960年夏季,Kalman和Stratonovich在一个Moscow召开的会议中相遇,而作为非线性特例的线性滤波方程,早已经由Stratonovich在此以前发表了。
在控制领域,Kalman滤波被称为线性二次型估计,目前,卡尔曼滤波已经有很多不同的实现,有施密特扩展滤波器、信息滤波器以及一系列的Bierman和Thornton 发明的平方根滤波器等,而卡尔曼最初提出的形式现在称为简单卡尔曼滤波器。
Kalman 滤波器的基本原理及仿真摘要:Kalman 滤波是对线性最小均方误差滤波的另一种处理方法,实际是维纳滤波的一种递推算法。
它采用的递推算法利用了前一时刻的估计值和新的观测值,大大提高了处理的实时性,同时也能自动跟踪随机信号统计特性的非平稳变化,对于解决很大部分的问题,他是最优,效率最高甚至是最有用的,因此得到了广泛的应用。
Kalman 滤波的应用包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
关键字:Kalman 滤波 线性最小均方误差滤波 估计值 观测值一、Kalman 滤波器的提出Kalman 滤波器是源于匈牙利数学家Rudolf Emil Kalman 的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems 》(线性滤波与预测问题的新方法)。
在信号处理,通信和现代控制系统中,需要对一个随机动态系统的状态进行估计,由一个测量装置对系统状态进行测量,通过记录的测量值对状态进行最优估计例如:对一个一阶AR 模型()(1)()x n ax n w n =-+ 的输出状态进行估计。
观测方程是 ()()()y n x n v n =+()v n 是测量引入的白噪声,通过各()y n 的值估计()x n 。
这类最优估计问题称为卡尔曼滤波。
二、Kalman 滤波器的基本思想利用观测数据对状态变量的预测估计进行修正,以得到状态变量的最优估计,即 最优估计=预测估计+修正三、Kalman 滤波器的特点(1)算法是递推的,时域内设计滤波器,适用于多维随机过程的估计;(2)用递推法计算,不需要知道全部过去的值。
用状态方程描述状态变量的动态变化规律,因此,信号可以是平稳的,也可以是非平稳的;(3)误差准则仍为均方误差最小准则。
《现代电路理论与设计》课程实验报告
1、KHN滤波器电路组成
图8.1原理图
2.KHN滤波器转移函数及设计方程
图8.1所示电路的方程为
从V1处输出时是一个高通滤波器,从V2处输出时是一个带通滤波器,从V3处输出时是一个低通滤波器,其转移函数分别为
它们的极点频率w0和Q值都相同,分别为
各滤波电路的增益分别为
二、实验目的
(1)定性分析KHN滤波器的参数变化对滤波的影响;
(2)帮助学生理解滤波器的分析设计过程。
三、实验过程
1、理论计算
为了方便分析计算
①取C1=C2=C=10nF,R1=R2=R3=R4=R5=R6=R=100k。
②由计算公式求得,wp=1000rad/s,Q=1,
2、仿真步骤
(1)按照电路图,选好元器件,并按理论计算设定元件值,搭建好仿真电路。
如下图8.2所示:
图8.2仿真电路图
(2)设置仿真参数,如下图8.3所示:
图8.3仿真参数设置
运行仿真,得到如下图8.4所示:
图8.4 V1,V2和V3输出波形图
(3)改变C1值。
采用参数扫描方式,让C1的值从6n到14n,每2n取一次值。
设置参数扫描后的波形如图8.5所示,
图8.5改变参数C1的波形变化
(4)改变C2值。
采用参数扫描方式,让C2的值从6n到14n,每2n取一次值。
设置参数扫描后的波形如图8.6所示
图8.6改变参数C2的波形变化
(5)改变R1值。
采用参数扫描方式,让R1的值60k到140k,每20k取一次值。
设置参数扫描后的波形如图8.7所示
图8.7改变参数R1的波形变化
(6)改变R2值。
采用参数扫描方式,让R2的值从60k到140k,每20k取一次值。
设置参数扫描后的波形如图8.8所示
图8.8改变参数R2的波形变化
(7)改变R3值。
采用参数扫描方式,让R3的值从60k到140k,每20k取一次值设置参数扫描后的波形如下图8.9所示
图8.9改变参数R3的波形变化
(8)改变R4值。
采用参数扫描方式,让R4的值从60k到140k,每20k取一次值设置参数扫描后的波形如下图8.10所示
图8.10改变参数R4的波形变化
(9)改变R5值。
采用参数扫描方式,让R5的值从60k到140k,每20k取一次值设置参数扫描后的波形如下图8.11所示
图8.11改变参数R5的波形变化
(10)改变R6值。
采用参数扫描方式,让R6的值从60k到140k,每20k取一次值设置参数扫描后的波形如下图8.12所示
图8.12改变参数R6的波形变化
四、实验结果分析
由图8.4可看出,KHN滤波器可以实现高通滤波和带通滤波以及低通滤波三种滤波方式,我们可以根据需要,选择不同的输出端口,来实现不同的滤波功能。
由图8.5可看出,随着电容C1的值由小变大,高通功能端口的输出波形,Q值逐渐增大,过度带减小明显;带通功能端口的输出波形,中心频率逐渐减小,通带宽变窄,且高频段变化更为明显;低通功能端口的输出波形,截止频率变化不是很大,Q值逐渐增大,波形的过渡带明显减小。
由图8.6可看出,随着电容C2的值由小变大,高通功能端口的输出波形,Q值逐渐减小,过度带随之增大;带通功能端口的输出波形,中心频率逐渐减小,通带宽变宽,且低频段变化更为明显;低通功能端口的输出波形,截止频率明显减小,Q值也逐渐减小,过渡带也随着增大。
由图8.7可看出,随着电阻R1的值由小变大,高通,带通,低通功能端口的输出波形,变化规律同改变C1相似。
由图8.8可看出,随着电阻R2的值由小变大,高通,带通,低通功能端口的输出波形,变化规律同改变C2相似。
由图8.9可看出,随着电阻R3的值由小变大,高通功能端口的输出波形,Q值逐渐减小,过度带减小,且输出增益也逐渐减小;带通功能端口的输出波形,中心频率基本不变,且输出增益明显下降;低通功能端口的输出波形,截止频率变化不是很大,Q值逐渐减小,波形的过渡带减小,且输出增益也是减小的。
由图8.10可看出,随着电阻R4的值由小变大,各功能端口的变化规律同改变R3是相反的。
由图8.11可看出,随着电阻R5的值由小变大,高通功能端口的输出波形,Q值减小不明显,过度带增大,且输出增益也逐渐减小;带通功能端口的输出波形,中心频率逐渐减小,而且通带宽基本不变;低通功能端口的输出波形,截止频率变化不是很大,Q值逐渐增大,波形的过渡带减小,且输出增益增大。
由图8.12可看出,随着电阻R6的值由小变大,各功能端口的变化规律同改变R5基本相反,除了带通通带大小也基本不变。
综合上述对波形的分析,我们可以将C1或R1和C2或R2分为一组,它们是改变Q值的,改变过度带大小,同时也可改变极点频率或中心频率;将R3或R4和R5或R6分为一组,它们是改变输出增益的。