[旋翼,无人机,任务系统]浅析多旋翼无人机任务系统
- 格式:docx
- 大小:17.31 KB
- 文档页数:3
无人旋翼直升机概述一、引言无人机是一种配备必要的数据处理单元、传感器、自动控制和通信系统的飞机,能够在没有飞行员的情况下执行自主飞行任务。
在过去的几十年里,无人驾驶飞机以其成本相对低廉、体积小、灵活性和机动性强等独特特点受到了人们的广泛关注,并取得了巨大的进展,在军事和民用领域得到了广泛的应用。
例如:使用无人机摧毁战场上的防空设施,以及在危险环境中搜索和救援受害者。
在传感器、制造和通信技术等相关领域的快速发展和推动下,无人机比以往任何时候都增长得更快、更智能,逐渐成为人类不可缺少的助手。
根据外形及几何模型,无人机可以分为固定翼飞行器、旋翼飞行器、扑翼飞行器及混合翼飞行器等。
其中,前两种类型航空器常用于遂行作战、搜救任务和科学研究中,而扑翼型航空器一直在学术界备受关注,近十年来已经取得了一些初步进展,混合翼航空器目前仍处于初始和概念开发阶段。
在本文中,重点研究旋翼无人机,旋翼无人机具有独特的盘旋能力,这使它成为在有限区域内应用的最佳选择。
通过介绍旋翼无人的历史发展,结构组成(即硬件结构、软件集成、空气动力学建模和飞行控制律设计)以及旋翼无人机在军事和民用领域的一些应用实例,并得出相应结论,指出了相关领域未来可能的研究与发展方向。
二、旋翼无人机历史发展自从1941年 Igor Sikorsky建造了第一架全尺寸直升机以来,人们进行了许多尝试,以缩小其尺寸并实现完全自主飞行。
1968年, Dieter Schluter制造了第一架具有足够操纵性的业余直升机。
卡万公司在1974年结合了贝尔和希勒的旋翼设计概念,并在1978年分别安装了偏航速率陀螺,进一步提高了飞机的飞行性能。
这样的配置很快被大多数航空模型制造商采纳为标准,用于大规模生产。
在20世纪80年代早期,成熟的直升机模型已经在世界各地的爱好商店中可以买到。
20世纪80年代,嵌入式系统技术和微电子机械系统(MEMS)技术的进步使建造一种轻型但功能强大的航空电子系统成为可能,该系统集成了所有必要的数据处理单元、传感器和无线通信设备,安装在一架直升机上。
多旋翼无人机的组成1.光流定位系统光流(optic flow),从本质上说,就是我们在三维空间中视觉感应可以感觉到的运动模式,即光线的流动。
例如,当我们坐在车上的时候往窗外观看,可以看到外面的物体,树木,房屋不断的后退运动,这种运动模式是物体表面在一个视角下由视觉感应器(人眼或者摄像头等)感应到的物体与背景之间的相对位移。
光流系统不但可以提供物体相对的位移速度,还可以提供一定的角度信息。
而相对位移的速度信息可以通过积分获得相对位置信息2. 全球卫星导航系统GPS系统是美国从上世纪70年代开始研制并组建的卫星系统,可以利用导航卫星进行目标的测距和测速,具备在全球任何位置进行实时的三维导航定位的能力,是目前应用最广泛的精密导航定位系统北斗系统是中国为了实现区域及全球卫星导航定位系统的自主权与主导地位而建设的一套卫星定位系统,用于航空航天、交通运输、资源勘探、安防监管等导航定位服务。
北斗系统采用5颗静止同步轨道卫星和30颗非同步轨道卫星组成,是中国独立自主研制建设的新一代卫星导航系统。
GLONASS是俄罗斯在前苏联时期建立的卫星定位系统,但由于缺乏资金维护,目前系统的可用卫星从最初的24颗卫星减少到2015年的17颗可用在轨卫星,导致系统的可用性和定位精度逐步的下降。
欧盟的伽利略导航卫星系统是由欧洲自主、独立的民用全球卫星导航系统,不过目前为止该系统还只是计划方案,计划总共包含27颗工作卫星,3颗为候补卫星,此外还包含2个地面控制中心,但由于该计划由欧盟共同经营,同时与内部私企合营,各部分利益难以平衡,计划实施则一再推迟,目前还无法独立使用。
3.高度计由于全球定位系统GNSS的缺陷,它的高度信息极为不准确,通常偏差达几十米甚至更大,无人机系统的高度测量需要额外的设备来辅助测量。
常用的高度传感器主要包含超声波传感器和气压高度传感器,此外还有激光高度计和微波雷达高度计等。
气压高度计的原理是地球上测量的大气压力在一定方位内是与相对海拔高度呈现对应关系的。
多旋翼控制原理多旋翼是一种由多个旋翼组成的飞行器,它可以在垂直方向上进行起飞、降落和悬停,并且可以在水平方向上进行飞行。
多旋翼控制原理是指通过对多旋翼的控制,使得飞行器能够实现所需的飞行任务。
多旋翼控制系统主要由传感器、控制器和执行器三部分组成。
传感器主要用于感知飞行器的姿态、速度和位置等信息,如加速度计、陀螺仪、磁力计和气压计等;控制器采集传感器数据,并进行处理和计算,生成相应的控制指令;执行器根据控制指令调整旋翼转速和角度,控制飞行器的姿态和速度。
多旋翼的姿态控制是指控制飞行器的姿态角,包括横滚角、俯仰角和偏航角。
多旋翼的横滚角是指飞行器沿机身横轴的旋转角度,俯仰角是指沿机身纵轴的旋转角度,偏航角是指沿竖直轴的旋转角度。
姿态控制的目的是使飞行器保持平稳飞行,并能够按照要求改变飞行方向。
多旋翼的姿态控制主要通过调整旋翼的转速和角度来实现。
当飞行器需要向前飞行时,横滚角和俯仰角需要进行调整,此时需要增加前两个旋翼的转速,减小后两个旋翼的转速,并调整旋翼的角度,使得前两个旋翼产生向前的推力,后两个旋翼产生向后的推力。
同样的道理,当飞行器需要向后飞行时,横滚角和俯仰角需要进行调整,此时需要增加后两个旋翼的转速,减小前两个旋翼的转速,并调整旋翼的角度。
多旋翼的姿态控制还需要考虑外部环境的干扰因素,比如风速和风向的变化。
当风速较大时,飞行器的姿态可能会被风吹偏,此时需要通过调整旋翼的转速和角度来进行修正。
如果风向的变化较大,飞行器的偏航角可能会发生变化,此时需要通过调整相应旋翼的转速和角度来进行修正。
多旋翼的高度控制是指控制飞行器的飞行高度。
高度控制主要通过调整旋翼的转速来实现。
当飞行器需要升高时,需要增加所有旋翼的转速,使得飞行器产生向上的升力。
当飞行器需要下降时,需要减小所有旋翼的转速,使得飞行器产生向下的重力。
多旋翼的位置控制是指控制飞行器在空间中的位置。
位置控制主要通过调整旋翼的转速和角度来实现。
无人机,也称无人飞行器,英文Unmannedaerial vehicle(UAV)无人飞行器是一种配置了数据处理系统、传感器、自动控制系统和通讯系统等必要机载设备的飞行器。
无人机技术是一项设计多个技术领域的综合系统,它对通讯技术、传感器技术、人工智能技术、图像处理技术模式识别技术、现代控制理论都有较深的运用和较高的要求。
无人飞行器与它所配套的地面站测控系统、存储、托运、发射、回收、信息处理等维护保障部分一起形成了一套完整的系统,同城无人飞行器系统Unmannedaerial system(UAS)1.1无人机的种类固定翼无人飞行器采用电动或者燃料发动机产生向前拉力或推力,飞行器依靠固定翼的翼形上下边产生的大气动压强差产生的升力维持飞行器的控制。
无人飞艇采用充气囊结构作为飞行器的升力来源,充气囊一般充有比空气目的小的氢气或氦气。
旋翼无人飞行器,其配备有多个朝正上方安装的螺旋桨,由螺旋桨的动力系统产生向下的气流,并对飞行器产生升力。
扑翼无人飞行器是基于仿生学原理,配合活动机翼能否模拟飞鸟的翅膀上下扑动的动作而产生升力和向前的推力。
伞翼无人飞行器采用伞型机翼作为飞行器升力的主要来源。
1.2无人机的分类与管理在中国无人机驾驶航空器体系中,按照无人机的基本起飞重量指标可以分为四个等级1. 微型无人机,空机质量小于等于7千克2. 轻型无人机,空机质量大于7千克,但小于等于116千克,并且全马力飞行中,矫正空速度100公里/小时,升限小鱼3000米3. 小型无人机,空机质量小于等于5700千克,除微型及小型无人机以外的其他无人机4. 大型无人机,空机质量大于5700千克的无人机中国的空域目前归属于军队管理,民用航空领域则由民航总局向军队申请划分空域及航道。
民航总局针对私人飞行器的管理专设“中国航空器拥有者及驾驶员协会AircraftOwners and Pilots Association Of China - AOPA”,中国民航领域对飞行器主要管理分为三个层次等级进行管理。
多旋翼无人机的发展及应用在2010年之前,固定翼模型飞机和模型直升机是航拍和航模运动领域的主力军。
但在近几年,因优良的操控性能,多旋翼飞行器异军突起,迅速成为航拍和航模运动领域的新星,并得到越来越多相关行业的关注。
当前,围绕多旋翼飞行器相关创意、技术、产品、应用和投资的新闻层出不穷,而随着产品的火爆,多旋翼技术的发展更是迅猛,已成为微小型无人机的主流。
多旋翼为何在沉寂数十年之后迅速走红,在未来又有哪些新的发展趋势?本文将针对这些问题进行论述。
早期的多旋翼飞行器人类总是在不断探索中进步。
18世纪后期蒙哥费尔热气球的成功升空,开创了人类飞行的新时代。
1903年世界上第一架重于空气、有动力、可控飞机的诞生,则拉开了人类近代航空发展史的序幕。
1907年,法国Breguet兄弟制造了最早的四旋翼直升机,不过它只飞了几英尺高,且飞行稳定性很差、无法控制。
1922年,美国人Dr.George de Bothezat试验了名叫Flying Octopus的四旋翼飞行器,其最大飞行高度有5米,留空时间2分45秒。
但是该飞行器的稳定性依然不好,未能满足美国军方的要求。
1956年,柯蒂斯-怀特公司为美国陆军设计了VZ-7四旋翼飞行器,并交付给军方两架原型机。
虽然这款飞机的飞行相对稳定,却依然没有达到军方对飞行高度和速度的要求,故该计划没有进一步推进。
此后50年过去了,尽管通过世界各国科学家的不断探索,四旋翼直升机在技术上有了一些进步,但还是不能满足军事方面的要求。
从20世纪初到20世纪中期,直升机的发展进入探索期,包括多旋翼在内的各种试验性机型相继问世。
最终,单旋翼带尾桨式直升机成为至今最流行的形式。
到20世纪后期,传统构型的直升机技术问题基本解决,进入了航空实用期。
其应用领域不断扩展,数量迅速增加。
而多旋翼构型则被慢慢冷落。
此后十几年,有关多旋翼直升机的技术都没有什么进展。
究其原因,主要有3个问题:首先是系统本身不稳定,导致飞行员的负担太重;其次是发动机技术不能满足要求,油门反应速度慢;第三是其运动主要依赖于螺旋桨速度的及时改变,而这种方式不宜推广到大尺寸机型上。
多旋翼无人机的基本飞行动作
多旋翼无人机是一种由多个旋翼通过电机驱动实现飞行的飞行器。
在飞行过程中,多旋翼无人机可以进行多种基本飞行动作,包括起飞、降落、悬停、前进、后退、向左转弯、向右转弯、旋转等。
起飞是多旋翼无人机的基本飞行动作之一,其主要步骤为加速旋翼转速,提升飞行器,并保持平稳升空的姿态。
降落则与起飞相反,需要逐渐减速降落到地面,同时保持稳定的姿态。
悬停是多旋翼无人机的特有飞行动作,其需要通过调整旋翼的转速来控制飞行器保持在特定的位置上,同时保持水平姿态。
在悬停状态下,飞行器可以进行拍摄、观察等操作。
前进、后退、向左转弯、向右转弯都是多旋翼无人机的基本运动方式,其需要通过调整不同旋翼的转速来实现。
旋转则需要通过对旋翼转速的调整来实现飞行器在空中偏移的旋转运动。
以上是多旋翼无人机的基本飞行动作介绍,这些动作在无人机操作中非常常见,是无人机飞行的基础。
- 1 -。
美军多旋翼无人机提升单兵战场感知能力美军作为无人机实战应用的鼻祖,无人系统作战理念和飞行平台作战性能都非常先进,广泛担负侦察、打击和支援类任务。
目前,美军正在将无人机作战从战略、战役级向战术级延伸,研发了“多旋翼无人机”系统,用于保障排、班、火力小组和士兵的地面作战需求。
作战概念先进:地面士兵获得战场态势感知能力美军装备的无人作战平台主要应用在指挥、控制、通信、计算机、情报、监视、目标定位、获取、侦察(C4ISTAR)领域,MQ-9“死神”等无人机也在担负火力打击任务,K-MAX 在电子战、攻击支援、网络通信中继等领域也开始投入实战部署。
但是这些无人作战行动以往大多在战役以上层次进行,美军对此并不满足,专门为战术级作战研发了多旋翼无人机系统。
多旋翼无人机的设计理念非常先进,要求作战平台在全地形全天候条件下提供持续侦察监视能力,增强士兵在地面战斗中对所处战场空间的持续态势感知能力,从而提高作战效能和生存能力。
这种作战概念强调“当前战场空间”,无人机要掌握从每天到几个月的战场态势,所获取战场信息只供普通士兵使用,专门保障战术领域的作战需求,而不是战役、战略等更高层次的C4ISR作战。
在所有地形条件下,“当前战场空间”在某一特定时刻都有某种距离限制,比如,在城市作战环境下,当前战场空间局限在半径15米左右的范围内,而在开放的沙漠环境下,当前战场空间可能在任何方向上都要超过1.6千米。
目前,美军地面部队使用的无人机型号虽然很多(详见表1),但是仍然不具备当前战场空间态势感知能力,比如,海军陆战队小队使用的“扫描鹰”无人机长1.22米,翼展3.05米,全重15千克,续航力15~48小时,最大飞行高度4900米,可以将机翼折叠后放入贮藏箱进行战术部署,但是不能提供真正的稳定图像,不能实现“悬停和对地持续监视”(PaS),也不能在森林和密集街区等狭窄地形发射和降落。
对于地面作战的士兵而言,当前战场空间没有“时间窗口”,情报信息必须通过有协同关系的无人机操作员传递给士兵,由于战场的情报信息时效性非常强,比如有些无线电传送的敌方战术机动的图像信息可能在几秒中内过时,无人机操作员要将这情报传递给地面作战的士兵,就必须进行密切的作战协同。
多旋翼无人机的分类多旋翼无人机是一种受到广泛应用的飞行器,它们通过多个旋翼提供升力和控制力。
根据其设计、用途和性能特点,可以将多旋翼无人机分为几个主要的分类。
1. 根据旋翼数量:-四旋翼无人机:四旋翼无人机是最常见的类型,其具有四个旋翼,每个旋翼可以独立控制,从而实现平稳悬停和各种机动动作。
-六旋翼无人机:六旋翼无人机相比四旋翼无人机具有更强的稳定性和携带能力,适用于一些需要携带较重负载或在复杂环境中操作的任务。
-八旋翼无人机:八旋翼无人机进一步增加了旋翼的数量,具有更高的稳定性和更大的携带能力,适用于需要长时间飞行或在恶劣天气条件下操作的任务。
2. 根据应用领域:-摄影与摄像无人机:这类无人机通常配备高分辨率相机或摄像机,用于航拍、电影制作、媒体报道等领域。
它们通常具有稳定的飞行控制系统和自动化功能,可以拍摄出高质量的照片和视频。
-农业无人机:农业无人机广泛应用于农业领域,用于精准农业管理、植物保护、土壤检测等任务。
它们可以携带各种传感器,如多光谱相机和红外传感器,以便对农田进行监测和分析。
-物流与运输无人机:这类无人机用于物流和运输领域,可以实现货物的快速、高效运送。
它们通常具有较大的载荷能力和较长的飞行续航时间,能够自主完成货物的运输任务。
-救援与搜救无人机:这类无人机在救援和搜救任务中发挥重要作用。
它们可以快速到达事故现场,提供航拍图像和实时视频,为救援人员提供重要的信息,帮助救援工作的进行。
-科研与探索无人机:这类无人机用于科学研究和探索任务,包括地质勘探、环境监测、气象研究等。
它们可以携带各种传感器和科学仪器,收集数据和样本,进一步推动科学研究和探索的进展。
3. 根据性能和功能:-自动驾驶无人机:这类无人机具备自主飞行和导航能力,可以根据预设的航点或任务进行自主飞行。
它们通常配备先进的飞行控制系统、传感器和导航设备,能够实现高度自主化的飞行操作。
-长航时无人机:这类无人机具有较长的续航时间,能够在空中停留更长的时间,执行长期监测、侦察或搜索任务。
简述多旋翼无人机的飞行原理多旋翼无人机是一种利用多个电动螺旋桨产生升力和控制飞行姿态的飞行器。
其飞行原理主要涉及到气动学、动力学和控制理论等方面。
一、气动学原理1. 空气动力学基础空气是一种流体,当物体在空气中运动时,会受到空气的阻力和升力的作用。
升力是垂直于流体运动方向的力,它是由于物体表面上方的流体速度比下方快而产生的。
根据伯努利定律,速度越快的流体压强越低,因此在物体表面上方形成了一个低压区域,从而产生了升力。
2. 旋翼产生升力原理多旋翼无人机利用电动螺旋桨产生升力。
螺旋桨是一种叶片形状呈扁平椭圆形的转子,在转动时会将周围空气向下推送,从而产生反作用力使得无人机获得向上的升力。
同时,螺旋桨还可以通过改变叶片角度来调节升降速度。
3. 旋翼产生的气流对姿态控制的影响旋翼产生的气流会对无人机的姿态控制产生影响。
例如,当无人机向前飞行时,前方螺旋桨产生的气流会使得无人机头部上仰;而后方螺旋桨产生的气流则会使得无人机头部下俯。
因此,通过调节各个螺旋桨的转速和叶片角度来实现姿态控制。
二、动力学原理1. 动力学基础动力学是研究物体运动状态和运动规律的学科。
在多旋翼无人机中,电动螺旋桨提供了推力,从而使得无人机具有向上飞行的能力。
2. 电动螺旋桨推力计算电动螺旋桨推力与其转速和叶片角度有关。
一般来说,推力与转速成正比,与叶片角度成平方关系。
因此,在设计多旋翼无人机时需要根据所需升降速度和搭载重量等因素来确定电动螺旋桨数量、大小和转速等参数。
三、控制理论原理1. 控制理论基础控制理论是研究如何使系统达到期望状态的学科。
在多旋翼无人机中,通过调节各个螺旋桨的转速和叶片角度来实现姿态控制和飞行控制。
2. 姿态控制姿态控制是指调节无人机的姿态,使其保持稳定飞行。
一般来说,可以通过加速度计、陀螺仪和罗盘等传感器来获取无人机的姿态信息,然后通过PID控制器等算法来调节螺旋桨转速和叶片角度。
3. 飞行控制飞行控制是指调节无人机的飞行状态,包括升降、前进、后退、左右平移等动作。
浅析多旋翼无人机任务系统
0前言
随着无人机产品的不断增加,市场之间的竞争力,也逐渐的提升,对此本项目研究出了
更适合于工业控制、自动化装备等领域产品的多旋翼无人机,产品不仅定位合理,同时与其
他产品存在一定的差异,该任务系统,是指先进智能装备数据链的无人多旋翼任务,存在较
高的能量利用效率、载荷运输性能,是其它无人机产品,在技术方面不能相比的;制定合理的
市场规划,会给企业带来一定的经济效益。
1多旋翼无人机定义概述
我们常称无人飞行载具,为无人飞机系统,主要是利用无线电智能遥控设备,以及自带
的控制程序装置,对于不载人的飞机进行操控。其中广义的无人机,包括狭义无人机以及航
模。
多旋翼飞行器,主要由动力系统、主体、控制系统组成,动力系统包括电机、动力、电
子调速器、桨;主体部分包括机架、脚架、云台;控制系统包括由遥控接收器、遥控组成的手
动控制;地面站,以及由主控、GPS、IMU、电子陀螺、LED显示屏组成的飞行控制器。其中四
旋翼,是一种4输入6输出的欠驱动系统;通过PID、,鲁棒、模糊、非线性、自适应神经网
络控制。近年来,对于系统的控制功能的研究趋势,为大荷载、自主飞行、智能传感器技术、
自主控制技术、多机编队协同控制技术、微小型化等方向。其中一些关键技术为,数学模型
的建立、能源供给系统、飞行控制算法、自主导航智能飞行。
2控制系统改进发展阶段
多旋翼无人飞行器的控制系统,最初是由惯性导航系统,借助了微机电系统技术,形成
了EMES惯性导航系统;经过对于EMES去噪声的研究,有效的降低了其传感器数据噪音的问
题,最后经过等速度单片机、非线性系统结构的研究、应用,最终在2005年,制作出了性能
相对稳定的多旋翼无人机自动控制飞行器。对其飞行器的评价,可从安全性、负载、灵活性、
维护、扩展性、稳定性几方面要素进行分析。具有体积小、重量轻、噪音小、隐蔽性强、多
空间平台使用、垂直起降,以及飞行高度不高、机动强、执行任务能力强的特点;在结构方面,
不仅安全性高、易于拆卸维护、螺旋桨小、成本低、灵活控制的特点。
3技术原理
3.1系统组成
无人多旋翼任务系统,总体技术方案框图如图1所示;如图所示,无人多旋翼任务系统,
由无人机、地面工作站构成。无人机,由多旋翼无人机、任务载荷组成;地面工作站,由数据
链通信单元、工业控制电脑、飞行控制摇杆等组成。
3.2系统技术原理
3.2.1多旋翼无人机,通过对于螺旋桨微调的推力,实现稳定的飞行姿态控制、维持。
经过上述,对于多旋翼无人机、常规直升机、固定翼飞机的对比,可以明显的看出,多旋翼
无人机,在任务飞行方面,具有多能量的优势,从而更好的执行完成飞行任务,改善了飞行
姿态维持,消耗大量能量的缺陷,从而更好的保证了其能量利用率,直接产生续航时间、载
荷运输性能的提升;在结构方面,做了大量的简化,省去了传动机构,使其运行噪音、故障概
率、维护成本大大的降低。
3.2.2无人机,与地面工作站之间的通信,通过设备数据链实现连接,起到通信中介的
作用,同好也是无人机、地面工作站之间,实现地空信息交换的重要桥梁环节。以往无人机,
对于地空信息的转换连接,只是普通的点对点通信,收到信号传输距离的影响,性能发挥受
到严重的影响,只能实现一些简单遥控数据信号的传输。
但是本项目,对于无人多旋翼任务系统的研究,是通过数据链协议MAVLink的研究后,
将其合理的嵌入到控制核心、地面数据链的ARM平台中,有效的改善了以往低空信息传输环
节存在的问题,将其遥测、遥信、遥控、遥调、遥视这五遥很好的进行了统一,保证了通信
之间的无障碍,从根本上解决了无人机和地面工作站的数据通信问题。其中涉及到的五遥;其
中遥测,是指对于远方的电压、电流、功率、压力、温度等模拟量进行测量;其中遥信,是指
对于远方的电气开关、设备,以及机械设备的工作、运行等状态进行监视;遥控,是指对于远
方电气设备、电气机械化装置工作状态的控制、保护;遥调,是指对于远方所控设备的工作参
数、标准流程等进行设定、调整;遥视,是指对于远方设备的安全运行状态的监视、记录。
3.2.3传统的无人机,在飞行时需要通过人工对于遥控器的操作,对其飞行姿态进行的
控制,体现出其自动程序的不完善,功能单调等缺陷。但是本项目对于无人机的研究,在地
面工作站,通过飞行任务规划软件的配套,有效的改善了以往功能单一的缺点,直接增加了
其功能性。其中飞行任务规划软件,具备GoogleMap高速API接口,实现对于无人机飞行航
线,在三维地图上的简易规划,同时也能对其航线进行启动,使其实现自动巡航、执行飞行
任务、返航等操作。
4技术关键点及创新点
4.1技术关键点:
4.1.1地空信息的的数据通信。
先进智能装备数据链协议MAVLink的应用,能够对其所有数据进行有效的整合,并全部
归纳在数据链路中,整合五遥操作,有效的降低了多种通信制式、通信模块存在等方面的问
题,提高了通信效率,保证了通讯功能得以有效发挥。
4.1.2解决飞行姿态操控问题
嵌入式操作系统,在ARM处理器平台上的应用,加上陀螺仪等传感器、卡尔曼滤波等先
进算法,从而更好的保证了控制系统的功能增加,除此之外,不仅实现了无人操作飞行,在
飞行操纵方面,也有效的降低了能耗,增加了能量利用率。
4.1.3在工业控制领域应用的扩展
本项目以同一载具+多种载荷的建设、研究思路,针对于型号相同的多旋翼飞行器,设计
一样的数据、电气、机械接口的任务载荷,实现快速更换载荷,使其飞行任务之间,能够良
好、稳定的切换、衔接,保证该系统的实用性,同时也减少了任务执行的成本。
4.1.4增强地面工作站功能
通过C/S架构、C#语言、.net平台、三维GoogleMap、SQL数据库,以及地面任务规划
软件、分析数据分析软件,从而更好的增强地面工作站的功能,以及自动化、智能化的程度,
更好的为用户操作,带来更多的便利。
4.2项目的技术创新性
4.2.1在无人机、地面站,在植入数据链MAVLink的同时,加强整体系统功能的改进,
有效的实现了五遥的综合统一。
4.2.2卡尔曼滤波、四元数算法,加上嵌入式ARM平台,对其飞行姿态实现有效控制。
4.2.3同一载具+多种载荷思路的研究,实现了无人机,对任务执行模式的有效转换。
4.2.4同时地面任务规划软件、分析数据分析软件的应用,提高了系统的控制功能,以
及系统智能化程度。
5总结
综上所述,通过对于无人多旋翼任务系统的分析,发现我国针对于此方面的研究,仍存
在很多不完善的地方,该项目通过C/S架构、C#语言、先进智能装备数据链、分析数据分析
软件等,照比以往的无人机飞行器,在系统功能改进方面,实现了遥测、遥信、遥控、遥调、
遥视的统一;在任务执行模式方面,实现了灵活转换;在飞行姿态方面,实现了智能操控;是在
已有多旋翼飞控技术的基础上,有效的规避了其以往的缺陷,同时自主飞行控制软件编程,
这种飞控任务的提供,有效的实现了飞行中,自主导航智能飞行。