线性代数教案_第一章_行列式
- 格式:doc
- 大小:982.50 KB
- 文档页数:42
第一章 行列式◆ 基础知识概要1.n 阶行列式的定义二阶行列式2112221122211211a a a a a a a a -=.三阶行列式.333231232221131211a a a a a a a a a 112233122331132132112332122133132231a a a a a a a a a a a a a a a a a a =++---.对角线法则:n 阶行列式的定义()1212111212122212,,,121...n nn tnj j nj j j j n n nna a a a a a D aa a a a a ⋅⋅⋅==-∑ ,它是取自不同行不同列的n 个数的乘积1212...n j j nj a a a 的代数和(共!n 项),其中各项的符号为()1t-,t 代表排列12,,,n j j j ⋅⋅⋅的逆序数,简记为()det ij a .n 阶行列式也可定义为()121212,,,1...nnt i i i n i i i D a a a ⋅⋅⋅=-∑,其中t 为行标12,,,n i i i ⋅⋅⋅排列的逆序数.例1.1 计算行列式(1)12n λλλ;(2)12nλλλ.练习:计算下列行列式(1)234134201300400; (2)111212220n nnna a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅(上三角形行列式);(3)11212212n n nna a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅ (下三角形行列式).2. 行列式的性质与计算 2.1行列式的性质(1)行列式与其转置行列式相等;(2)互换行列式的某两行(列)得到新行列式则新行列式应反号;特别地:若行列式中有两行(列)对应元素相等,则行列式等于零; (3)行列式中某一行(列)的所有元素的公因数可以提到行列式的外面; 即以数k 乘以行列式等于用数k 乘以行列式的某一行或某一列; 特别地:若行列式中有一行(列)的元素全为零,则行列式等于零; (4)行列式中如果有某两行(列)对应元素成比例,则行列式的值为零; 特别地:比例系数为1(5)若行列式的某一列(行)的元素是两数之和,例如,第i 列的元素都是两数之和:()()()1112111212222212i i n i i nn n ni ninn a a a a a a a a a a D a a a a a '⋅⋅⋅+⋅⋅⋅'⋅⋅⋅+⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅+⋅⋅⋅,则D 等于如下两个行列式之和:1112111112112122222122221212i n i n i n i n n n ninnn n ninn a a a a a a a a a a a a a a a a D a a a a a a a a '⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.(6)把行列式的某一行(列)的各元素的k 倍加到另一行(列)的对应元素上,行列式的值不变.注:(1)交换行列式的第,i j 两行(或列),记作i i r r ↔(或i j c c ↔); (2)第i 行(列)提出公因子k ,记作i r k ÷(或i c k ÷);(3)以数k 乘第j 行(列)加到第i 行(列)上,记作i j r kr +(或i j c kc +).范德蒙(Vandermonde )行列式()3122222123111111231111nn i j nj i nn n n n nx x x x V x x x x x x x x x x ≤<≤----⋅⋅⋅⋅⋅⋅==-⋅⋅⋅⋅⋅⋅∏注 右边是“大指标减小指标”.例1.2 计算行列式111311212524131122D ---=.(答:332)练习:计算行列式(1)3112513420111533D ---=---;(答:40)(2)3111131111311113D =;(答:48) (3) 1234234134124123D =;(答:160) (4)2324323631063a b c d aa b a b c a b c d D a a b a b c a b c d aa b a b c a b c d++++++=++++++++++++;(答:4a )(5)222111a ab acD ab b bc acbcc +=++;(答:2221a b c +++) (6)1234000000a x a a a x xD x x x x +-=--;(答:431i i x x a =⎛⎫+ ⎪⎝⎭∑) (7)222b c c aa b D ab c a b c +++=; (8)()()()()()()()()()()()()2222222222222222123123123123a a a a b b b b D cc c cd d d d ++++++=++++++.2.2行列式依行(列)展开余子式:ij M ,代数余子式:()1i jij ij A M +=-定理1.1 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即()112211,2,,ni i i i in in ik ik k D a A a A a A a A i n ==++⋅⋅⋅+==⋅⋅⋅∑,或()112211,2,,nj j j j nj nj kj kj k D a A a A a A a A j n ==++⋅⋅⋅+==⋅⋅⋅∑.注:此定理的主要作用是——降阶.推论 行列式的任一行(列)的各元素与另一行(列)对应的代数余子式乘积之和等于零,即()112210ni j i j in jn ik jk k D a A a A a A a A i j ==++⋅⋅⋅+==≠∑,或()112210ni j i j ni nj ki kj k D a A a A a A a A i j ==++⋅⋅⋅+==≠∑.例1.3 用降阶的方法解例1.2.练习:用降阶的方法求解上面练习第(1)题.例1.4 设1121234134124206A --=-,求(1)12223242234A A A A -+-; (2)3132342A A A ++.解 (1)1222324212122122313241422340A A A A a A a A a A a A -+-=+++=. (2)因为ij A 的大小与元素ij a 无关,因此,313234112111214132341410322121401201120142642064206A A A -----++===-=---.练习:(1)设1234511122321462221143156,则(a )313233A A A ++=?(b )3435?A A +=(c )5152535455?A A A A A ++++=(答:0,0,0)(2)设,ij ij M A 分别为行列式3010222202001201D =--中元素ij a 的余子式和代数余子式,试求(a )31323334A A A A +++; (b )41424344M M M M +++; (c )14244432M M M -++.2.3拉普拉斯(Laplace )展开定理定义 在一个n 阶行列式D 中,任意选定k 行(比如第12,,k i i i ⋅⋅⋅行)和k 列比如12,,k j j j ⋅⋅⋅列)(k n ≤).位于这些行和列的交点上的2k 个元素按照原来的位置组成一个k 阶行列式,称为行列式D 的一个k 阶子式,记作1212k k i i i A j j j ⋅⋅⋅⎛⎫⎪⋅⋅⋅⎝⎭,划去12,,k i i i ⋅⋅⋅行和12,,k j j j ⋅⋅⋅列后余下的元素按照原来的位置组成的n k -阶行列式,称为k 阶子式1212k k i i i A j j j ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅⎝⎭的余子式,记作1212k c k i i i A j j j ⋅⋅⋅⎛⎫⎪⋅⋅⋅⎝⎭.在余子式前面加上符号()()()12121k k i i i j j j ++⋅⋅⋅++++⋅⋅⋅+-后被称之为的代数余子式.记作()121212121s t k k c c k k i i i i i i A A j j j j j j +⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=- ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭,这里1212,k k s i i i t j j j =++⋅⋅⋅+=++⋅⋅⋅+.定理1.2 在n 阶行列式D 中,任意选定k 列121k j j j n ≤<<⋅⋅⋅<≤,则12121211212k k k c i i i nk k i i i i i i D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑. 类似地,任意选定k 行121k i i i n ≤<<⋅⋅⋅<≤,则12121211212k k k c j j j nk k i i i i i i D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑.证 (略)注 这是定理1.2的推广,它仍然是一种——降阶的思想.例1.4 在行列式1214012110130131D -=中取定1,2行,得到6个子式1,21211,201A ⎛⎫==- ⎪-⎝⎭, 1,21121,302A ⎛⎫== ⎪⎝⎭, 1,21411,401A ⎛⎫== ⎪⎝⎭, 1,22152,312A ⎛⎫== ⎪-⎝⎭, 1,22462,411A ⎛⎫== ⎪-⎝⎭, 1,21473,421A ⎛⎫==- ⎪⎝⎭. 对应的代数余子式分别是()()()12121,213181,231c A +++⎛⎫=-=- ⎪⎝⎭, ()()()12131,203131,311c A +++⎛⎫=-= ⎪⎝⎭, ()()()12141,201111,413c A +++⎛⎫=-=- ⎪⎝⎭, ()()()12231,213112,301c A +++⎛⎫=-= ⎪⎝⎭, ()()()12241,211132,403c A +++⎛⎫=-=- ⎪⎝⎭, ()()()12341,210113,401c A +++⎛⎫=-= ⎪⎝⎭. 由Laplace 展开定理可知()()()()()1823115163717D =-⨯-+⨯+⨯-+⨯+⨯-+-⨯=-.例1.5 证明111111111111111111110000k k r k kk k r k kk r rrr rkr rra a a ab b a ac c b b a a b b c c b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅. 证 由Laplace 定理展开,选定第1,2,,k ⋅⋅⋅行,得12112121,2,1,2,,k c j j j nk k k k D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑1,2,1,2,,1,2,,1,2,,c k k A A k k ⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭()()()1111111212111k rk k k kk r rra ab b a a b b ++⋅⋅⋅++++⋅⋅⋅+⋅⋅⋅⋅⋅⋅=⋅-⋅⋅⋅⋅⋅⋅11111111k rk kk r rra ab b a a b b ⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅.注 例1.5的结论可以简记为A ABC B=⋅.练习:1.计算(1)123451234512121200000000a a a a ab b b b bc cd de e ; (2)1111111111110000k kk krk kk rr rrc c a a c c a a b b b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.2. 设A 为n 阶方阵,A a =,B 为m 阶方阵,B b =,则23O AB O为( )(A )6ab -, (B )23n mab -, (C )()123mnn m ab -, (D )()123m nn m ab +-.◆ 行列式的计算举例例1.6 计算n 阶行列式n x a a a a x a aD a a x a a a a x=解法1112,3,2,3,(1)(1)(1)000(1)000(1)000i i C C r r ni ni nx n a a a a x n a aa a x n a x a a x a D x n a a x a x a x n a a a x x a+-==+-+-+--==+--+-- []()1(1)n x n a x a -=+--.解法212,3,11111100010000100001i r r n i n nn n a a a a a a a a xaa axaa ax aa x a aa x a a x a D aa x a a a x a x a a a a x aaa xx a -=+++----===----①如果x a =,则1110000100000100001n n a a a a D +--==--②如果x a ≠,则12,3,11100000000(1)()0000C i x anax aC n nanx ai n n a a a a x a x a D x a x a x a --+-=+++--==+--- .综合①、②有:()()11n n D x n a x a -=+--⎡⎤⎣⎦.例1.7 计算行列式1221100001000000001n nn n xx x xa a a a x a ----∆=-+.解 按第一列展开,12321100001000001n n n n x x x x a a a a xa -----∆=-+110001000(1)01000001n n xa x x +--+---()121n n n n n x a x x a a ---=∆+=∆++221n n n x a x a --=∆++== 12121n n n n x a x a x a ---∆++++又111x a x a ∆=+=+,11n n n n x a x a -∴∆=+++ .例1.8 计算2n a ba bab Dcd c dcd=.解法1 依第一行展开12200(1)00000000n n a ba b ab a b D ab cdc dcdcdd c +=+-2112(1)2(1)2(1)(1)()n n n n adD bc D ad bc D -+---=--=-,222(1)2(2)112()()()()().n n n n n n D ad bc D ad bc D a b ad bc D ad bc ad bc cd----=-=-==-=-=-解法2 利用Laplace 展开定理,选定第1行和第2n 行展开,则1221212121,21,2,,c n j j nn n D A A j j j j ≤<≤⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭∑1,21,21,21,2c n n A A n n ⎛⎫⎛⎫=⋅⎪ ⎪⎝⎭⎝⎭ ()()()()1212211n n n a b D c d+++-=⋅-()()21n ad bc D -=-⋅=⋅⋅⋅ 1()n ab ad bc cd-=- ().n ad bc =-练习:计算n 阶行列式(1)122222222232222n D n=;(答:()22!n --)(2)01211111001001n n a a a D a -=,其中110n a a -⋅⋅⋅≠;(答:111011n n i i a a a a --=⎛⎫⋅⋅⋅- ⎪⎝⎭∑)(3)2222212121212naa aa aDaaa a=;(答:()1nn a+)(4)()()()()111111111n nnn nnna a a na a a nDa a a n----⋅⋅⋅--⋅⋅⋅-=-⋅⋅⋅-⋅⋅⋅;(5)1231110000220000011 nn n Dn n⋅⋅⋅--⋅⋅⋅=-⋅⋅⋅⋅⋅⋅--。
线性代数教案第(1)次课授课时间()基本内容备注第一节二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组⎩⎨⎧=+=+22222211212111bxaxabxaxa用消元法,当021122211≠-aaaa时,解得211222111212112211222112121221,aaaababaxaaaababax--=--=令2112221122211211aaaaaaaa-=,称为二阶行列式 ,则如果将D中第一列的元素11a,21a换成常数项1b,2b ,则可得到另一个行列式,用字母1D表示,于是有2221211ababD=按二阶行列式的定义,它等于两项的代数和:212221abab-,这就是公式(2)中1x的表达式的分子。
同理将D中第二列的元素a 12,a 22换成常数项b1,b2 ,可得到另一个行列式,用字母2D表示,于是有2121112babaD=按二阶行列式的定义,它等于两项的代数和:121211baba-,这就是公式(2)中2x的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==DDxDDx2211其中0≠D例1.解线性方程组.1212232121⎪⎩⎪⎨⎧=+=-xxxx同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bxaxaxabxaxaxabxaxaxa时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bxaxaxabxaxaxabxaxaxa用消元法解得定义设有9个数排成3行3列的数表333231232221131211aaaaaaaaa记333231232221131211aaaaaaaaaD=322113312312332211aaaaaaaaa++=332112322311312213aaaaaaaaa---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆:从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2. 计算三阶行列式243122421----=D.(-14)例3. 求解方程094321112=xx(32==xx或)例4. 解线性方程组.5573422⎪⎩⎪⎨⎧=+-=++-=++-zyxzyxzyx解先计算系数行列式573411112--=D069556371210≠-=----+-=再计算321,,DDD第( 2 )次课授课时间()第( 3 )次课授课时间()基本内容备注第5节行列式按行(列)展开定义在n阶行列式中,把元素ija所处的第i行、第j列划去,剩下的元素按原排列构成的1-n阶行列式,称为ij a的余子式,记为ijM;而ijjiijMA+-=)1(称为ij a的代数余子式.引理如果n阶行列式中的第i行除ija外其余元素均为零,即:nnnjnijnjaaaaaaaD11111=.则:ijijAaD=.证先证简单情形:nnnnnaaaaaaaD212222111=再证一般情形:定理行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和,即按行:()jiAaAaAajninjiji≠=+++02211按列:()jiAaAaAanjnijiji≠=+++02211证:(此定理称为行列式按行(列)展开定理)nnnniniinaaaaaaaaaD2121112110+++++++++=nnnninnnnnninnnnninaaaaaaaaaaaaaaaaaaaaa211121121211211211112110+++=).,2,1(2211niAaAaAaininiiii=+++=例1:335111243152113------=D.解:例2:21122112----=nD解: 21122112----=n D 211221100121---=+++nr r1+=n D n .从而解得 1+=n D n .例3.证明范德蒙行列式112112222121111---=n nn n nnn x x x x x x x x x D()1i j n i j x x ≥>≥=-∏.其中,记号“∏”表示全体同类因子的乘积.证 用归纳法因为 =-==1221211x x x x D ()21i j i j x x ≥>≥-∏ 所以,当2=n n=2时,(4)式成立.现设(4)式对1-n 时成立,要证对n 时也成立.为此,设法把nD 降阶;从第n 行开始,后行减去前行的1x 倍,有()()()()()()213112213311222221331111110000n n n n n n n n n x x x x x x x x x x x x x x x D x x x x x x x x x ---------=---(按第一列展开,并提出因子1x x i -)行列式一行(列)的各元素与另一行(列)对应第( 4 )次课授课时间()第(5)次课授课时间()基本内容备注第一节矩阵一、矩阵的定义称m行、n列的数表mnmmnnaaaaaaaaa212222111211为nm⨯矩阵,或简称为矩阵;表示为⎪⎪⎪⎪⎪⎭⎫⎝⎛=mnmmnnaaaaaaaaaA212222111211或简记为nmijaA⨯=)(,或)(ijaA=或n m A⨯;其中ij a表示A中第i行,第j列的元素。
线性代数教案同济版第一章绪论1.1 线性代数的起源和发展介绍线性代数的起源和发展历程,理解线性代数在数学和其他领域的重要性。
1.2 向量空间和线性映射定义向量空间和线性映射,理解它们的基本性质和概念。
1.3 矩阵和行列式介绍矩阵和行列式的概念,理解它们在线性代数中的重要性。
1.4 线性方程组理解线性方程组的定义和性质,学习解线性方程组的方法。
第二章矩阵和行列式2.1 矩阵的概念和运算介绍矩阵的概念和基本运算,如加法、减法、乘法和转置。
2.2 行列式的定义和性质定义行列式并学习其基本性质,如行列式的值与矩阵的行(列)向量之间的关系。
2.3 行列式的计算学习计算行列式的不同方法,如按行(列)展开、代数余子式和行列式的逆。
2.4 矩阵的逆定义矩阵的逆并学习其性质,如矩阵的逆与矩阵的行列式之间的关系。
第三章线性方程组3.1 高斯消元法学习高斯消元法解线性方程组的步骤和应用。
3.2 克莱姆法则理解克莱姆法则的原理,学习如何使用克莱姆法则解线性方程组。
3.3 线性方程组的解的性质学习线性方程组的解的性质,如唯一解、无解和有无限多解。
3.4 线性方程组的应用了解线性方程组在实际问题中的应用,如线性规划、电路分析和物理学中的问题。
第四章向量空间和线性映射4.1 向量空间的概念和性质定义向量空间并学习其基本性质,如向量加法和标量乘法的封闭性。
4.2 子空间和线性相关性理解子空间的概念并学习如何判断向量组线性相关性。
4.3 线性映射的概念和性质定义线性映射并学习其基本性质,如线性映射的矩阵表示和图像。
4.4 特征值和特征向量定义特征值和特征向量,学习如何求解线性映射的特征值和特征向量。
第五章特征值和特征向量5.1 特征值和特征向量的概念定义特征值和特征向量,理解它们在线性代数中的重要性。
5.2 特征值和特征向量的计算学习如何计算线性映射的特征值和特征向量,包括利用特征多项式和行列式。
5.3 特征空间和不变子空间理解特征空间和不变子空间的概念,学习它们的性质和应用。
线性代数教案第(1)次课授课时间()1.教学内容: 二、三阶行列式的定义;全排列及其逆序数;阶行列式的定义2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.基本内容备注第一节 二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组 ⎩⎨⎧=+=+22222211212111b x a x a b x a x a用消元法,当021122211≠-a a a a 时,解得211222111212112211222112121221,a a a a b a b a x a a a a b a b a x --=--=令2112221122211211a a a a a a a a -=,称为二阶行列式 ,则如果将D 中第一列的元素11a ,21a 换成常数项1b ,2b ,则可得到另一个行列式,用字母1D 表示,于是有2221211a b a b D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
同理将 中第二列的元素a 12,a 22 换成常数项b1,b2 ,可得到另一个行列式,用字母 表示,于是有2121112b a b a D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==D D x D D x 2211 其中0≠D例1. 解线性方程组 .1212232121⎪⎩⎪⎨⎧=+=-x x x x 同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a用消元法解得定义 设有9个数排成3行3列的数表333231232221131211a a a a a a a a a 记 333231232221131211a a a a a a a a a D =322113312312332211a a a a a a a a a ++=332112322311312213a a a a a a a a a ---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆: 从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2.计算三阶行列式 .(-14) 例3.求解方程 ( ) 例4.解线性方程组 解 先计算系数行列式573411112--=D 069556371210≠-=----+-= 再计算 321,,D D D515754101121-=--=D ,315534011222=--=D ,55730112123=---=D得 23171==D D x ,69312-==D D y ,6953-==D D z第( 2 )次课授课时间()第( 3 )次课授课时间()1.教学内容: 行列式按行(列)展开;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;教学手段: 黑板讲解与多媒体演示.基本内容备注第5节 行列式按行(列)展开定义 在 阶行列式中, 把元素 所处的第 行、第 列划去, 剩下的元素按原排列构成的 阶行列式, 称为 的余子式, 记为;而 称为 的代数余子式.引理 如果 阶行列式中的第 行除 外其余元素均为零, 即: .则: .证 先证简单情形:再证一般情形:定理 行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和, 即按行: 按列: 证:(此定理称为行列式按行(列)展开定理)nnn n ini i n a a a a a a a a a D212111211000000+++++++++=nnn n in n nnn n i n nn n n i n a a a a a a a a a a a a a a a a a a a a a 21112112121121121111211000000+++=).,2,1(2211n i A a A a A a in in i i i i =+++=例1 : . 解:例2: 21122112----=n D解: 21122112----=n D 211221100121---=+++nr r)()()()()()21331122213311n n n n n n n x x x x x x x x x x x -----, 并提出因子 )()2321111--n n n x x x x x x()1-n 阶范德蒙行列式(1n x x -行列式一行(列)的各元素与另一行(列)对应各元素的代数余子式乘积之和为零第( 4 )次课授课时间()1.教学内容: 克拉默法则;2.时间安排: 2学时;教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.4.教学手段:黑板讲解与多媒体演示.基本内容备注第(5)次课授课时间()1.教学内容: 矩阵;矩阵的运算;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示。
教案教学教案设计(续页)第一 章 行列式 §1。
1 n 阶行列式定义教学目的:使学生了解和掌握n 级排列、逆序逆序数奇排列偶排列n 阶行列式定义及行列式的计算教学重点:n 阶行列式定义及计算 教学难点:n 阶行列式定义一、导入 线性方程组和矩阵在工程技术领域里有着广泛的应用,而行列式就是研究线性方程组的求解理论和矩阵理论的重要工具。
二、新授(一) 二阶、三阶行列式对于二元线性方程组⎩⎨⎧=+=+22221211212111b x a x a b x a x a (1.1) 采用加减消元法从方程组里消去一个未知量来求解,为此: 第一个方程乘以a 22与第二个方程乘以a 12相减得(a 11a 22-a 21a 12)x 1= b 1a 22- b 2a 12第二个方程乘以a 11与第一个方程乘以a 21相减得(a 11a 22-a 21a 12)x 2=a 11b 2—a 21b 1若a 11a 22-a 21a 12≠0,方程组的解为122122111122211a a a a a b a b x --=122122*********a a a a b a b a x --= (1。
2)容易验证(1.2)式是方程组(1.1)的解.称a 11a 22-a 21a 12为二阶行列式,它称为方程组(1.1)的系数行列式,记为D 。
我们若记 2221211a b a b D =2211112b a b a D =方程组的解(1.2)式可写成 D D x 11=DDx 22=对三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a (1.3) 与二元线性方程组类似,用加减消元法可求得它的解: D D x 11=D Dx 22= DD x 33= 111213212223313233112233122331132132112332122133132231a a a Da a a a a a a a a a a a a a a a a a a a a a a a (1。
线性代数课程教案学院、部系、所授课教师课程名称线性代数课程学时45学时实验学时教材名称年月日线性代数 课程教案授课类型 理论课 授课时间 3 节授课题目(教学章节或主题):第一章 行列式§1 二阶与三阶行列式 §2 全排列及其逆序数 §3 n 阶行列式的定义 §4 对换本授课单元教学目标或要求:1. 会用对角线法则计算2阶和3阶行列式。
2. 知道n 阶行列式的定义。
本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等): 基本内容:行列式的定义 1. 计算排列的逆序数的方法设12n p p p L 是1,2,,n L 这n 个自然数的任一排列,并规定由小到大为标准次序。
先看有多少个比1p 大的数排在1p 前面,记为1t ; 再看有多少个比2p 大的数排在2p 前面,记为2t ; ……最后看有多少个比n p 大的数排在n p 前面,记为n t ; 则此排列的逆序数为12n t t t t =+++L 。
2. n 阶行列式1212111212122212()12(1)n n nnt p p np p p p n n nna a a a a a D a a a a a a ==-∑L L L L M M M L其中12n p p p L 为自然数1,2,,n L 的一个排列,t 为这个排列的逆序数,求和符号∑是对所有排列12()n p p p L 求和。
n 阶行列式D 中所含2n 个数叫做D 的元素,位于第i 行第j 列的元素ij a ,叫做D 的(,)i j 元。
3. 对角线法则:只对2阶和3阶行列式适用1112112212212122a a D a a a a a a ==-111213212223112233122331132132313233132231122133112332a a a D a a a a a a a a a a a a a a a a a a a a a a a a ==++---重点和难点:理解行列式的定义行列式的定义中应注意两点:(1) 和式中的任一项是取自D 中不同行、不同列的n 个元素的乘积。
《线性代数》授课教案刘思圆12第一章 行列式本章说明与要求:行列式的理论是人们从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题:(1) 行列式的定义;(2) 行列式的基本性质及计算方法;(3) 利用行列式求解线性方程组(克莱姆法则).本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式.计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法.行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件. 。
本章的重点:行列式性质;行列式的计算。
本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。
§1.1 二阶与三阶行列式行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题.设有二元线性方程组⎩⎨⎧=+=+22221211112111b x a x a b x a x a (1)用加减消元法容易求出未知量x 1,x 2的值,当a 11a 22 – a 12a 21≠0 时,有⎪⎪⎩⎪⎪⎨⎧--=--=211222112112112211222112122211a a a a a b b a x a a a a b a a b x (2)这就是一般二元线性方程组的公式解.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号2112221122211211a a a a a a a a -=为二阶行列式.它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号.3根据定义,容易得知(2) 中的两个分子可分别写成222121212221a b a b b a a b =-,221111211211b a b a a b b a =-,如果记22211211a a a a D =,2221211a b a b D =,2211112b a b a D =则当D ≠0时,方程组(1) 的解(2)可以表示成2221121122212111a a a a a b a b D D x ==, 2221121122111122a a a a b a b a D D x ==, (3) 象这样用行列式来表示解,形式简便整齐,便于记忆.首先(3) 中分母的行列式是从(1) 式中的系数按其原有的相对位置而排成的.分子中的行列式,x 1的分子是把系数行列式中的第1列换成(1)的常数项得到的,而x 2的分子则是把系数行列式的第2列换成常数项而得到的.例1 用二阶行列式解线性方程组⎩⎨⎧=+=+231422121x x x x 解:这时 0214323142≠=⨯-⨯==D ,5243132411-=⨯-⨯==D ,3112221122=⨯-⨯==D ,因此,方程组的解是2511-==D D x ,2322==D D x , 对于三元一次线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a (4)作类似的讨论,我们引入三阶行列式的概念.我们称符号312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++= (5)为三阶行列式,它有三行三列,是六项的代数和.这六项的和也可用对角线法则来记忆:从左上角到右下角三个元素的乘积取正号,从右上角到左下角三个元素的乘积取负号.例2 532134212-41062012242301325)4(123223)4(211532=-+--+==⨯⨯-⨯-⨯-⨯⨯-⨯⨯-+⨯⨯+⨯⨯=令 333231232221131211a a a a a aa a a D = 3332323222131211a a b a a b a a b D =,3333123221131112a b a a b a a b a D =,3323122221112113b a a b a a b a a D =. 当 D ≠0时,(4)的解可简单地表示成D D x 11=,D Dx 22=,DD x 33= (6)它的结构与前面二元一次方程组的解类似.例3 解线性方程组⎪⎩⎪⎨⎧=-+=-+=+-423152302321321321x x x x x x x x x 解:28231523112=---=D , 132345211101=---=D , 472415131022=--=D , 21431123123=-=D . 所以,281311==D D x ,284722==D D x ,43282133===D D x . 例4 已知010100=-a bb a,问a ,b 应满足什么条件?(其中a ,b 均为实数). 解:2210100b a a b b a +=-,若要a 2+b 2=0,则a 与b 须同时等于零.因此,当a =0且b =0时给定行列式等于零.为了得到更为一般的线性方程组的求解公式,我们需要引入n 阶行列式的概念,为此,先介绍排列的有关知识.思考题:当a 、b 为何值时,行列式022==b a b a D .§1.2 排列在n阶行列式的定义中,要用到排列的某些知识,为此先介绍排列的一些基本知识.定义1由数码1,2,…,n组成一个有序数组称为一个n级排列.例如,1234是一个4级排列,3412也是一个4级排列,而52341是一个5级排列.由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3!=6个.数字由小到大的n级排列1234…n 称为自然序排列.定义2在一个n级排列i1i2…i n中,如果有较大的数i t排在较小的数i s的前面(i s<i t),则称i t与i s构成一个逆序,一个n级排列中逆序的总数,称为这个排列的逆序数,记作N (i1i2…i n).例如,在4 级排列3412中,31,32,41,42,各构成一个逆序数,所以,排列3412的逆序数为N(3412)=4.同样可计算排列52341的逆序数为N(52341)=7.容易看出,自然序排列的逆序数为0.定义3 如果排列i1i2…i n的逆序数N(i1i2…i n )是奇数,则称此排列为奇排列,逆序数是偶数的排列则称为偶排列.例如,排列3412是偶排列.排列52341是奇排列.自然排列123…n是偶排列.定义4 在一个n级排列i1…i s…i t…i n中,如果其中某两个数i s与i t对调位置,其余各数位置不变,就得到另一个新的n级排列i1…i t…i s…i n,这样的变换称为一个对换,记作(i s,i t).如在排列3412中,将4与2对换,得到新的排列3214.并且我们看到:偶排列3412经过4与2的对换后,变成了奇排列3214.反之,也可以说奇排列3214经过2与4的对换后,变成了偶排列3412.一般地,有以下定理:定理1 任一排列经过一次对换后,其奇偶性改变.证明:首先讨论对换相邻两个数的情况,该排列为:a1a2…a l i j b1b2…b m c1c2…c n将相邻两个数i与j作一次对换,则排列变为a1a2…a l j i b1b2…b m c1c2…c n显然对数a1,a2,…a l,b1,b2,…,b m和c1c2…c n来说,并不改变它们的逆序数.但当i<j时,经过i与j的对换后,排列的逆序数增加1个;当i>j时,经过i与j的对换后,排列的逆序数减少1个.所以对换相邻两数后,排列改变了奇偶性.再讨论一般情况,设排列为a1a2…a l i b1b2…b m jc1c2…c n将i与j作一次对换,则排列变为a1a2…a l j b1b2…b m i c1 c2…c n这就是对换不相邻的两个数的情况.但它可以看成是先将i与b1对换,再与b2对换,…,最后与b m的对换,即i与它后面的数作m次相邻两数的对换变成排列a1a2…a l b1b2…b m i j c1…c n然后将数j与它前面的数i,b m…,b1作m+1次相邻两数的对换而成.而对换不相邻的数i与j(中间有m个数),相当于作2m+1次相邻两数的对换.由前面的证明知,排列的奇偶性改变了2m+1次,而2m+1为奇数,因此,不相邻的两数i,j经过对换后的排列与原排列的奇偶性不同.56定理2 在所有的n 级排列中(n ≥2),奇排列与偶排列的个数相等,各为2!n 个.证明:设在n !个n 级排列中,奇排列共有p 个,偶排列共有q 个.对这p 个奇排列施以同一个对换,如都对换(1,2),则由定理1知p 个奇排列全部变为偶排列,由于偶排列一共只有q 个,所以p ≤q ;同理将全部的偶排列施以同一对换(1,2),则q 个偶排列全部变为奇排列,于是又有q ≤p ,所以q = p ,即奇排列与偶排列的个数相等.又由于n 级排列共有n !个,所以q + p = n !,2!n p q ==.定理3 任一n 级排列i 1i 2…i n 都可通过一系列对换与n 级自然序排列12…n 互变,且所作对换的次数与这个n 级排列有相同的奇偶性.证明:对排列的级数用数学归纳法证之. 对于2级排列,结论显然成立.假设对n –1级排列,结论成立,现在证明对于n 级排列,结论也成立.若i n =n ,则根据归纳假设i 1i 2…i n –1是n –1级排列,可经过一系列对换变成12…(n –1),于是这一系列对换就把i 1i 2…i n 变成12…n .若i n ≠n ,则先施行i n 与n 的对换,使之变成i 1'i 2'…'i 'n –1n ,这就归结成上面的情形.相仿地,12…n 也可经过一系列对换变成i 1i 2…i n ,因此结论成立.因为12…n 是偶排列,由定理1可知,当i 1i 2…i n 是奇(偶)排列时,必须施行奇(偶)数次对换方能变成偶排列,所以,所施行对换的次数与排列i 1i 2…i n 具有相同的奇偶性.思考题:1.决定i 、j 的值,使 (1) 1245i 6j 97为奇排列; (2) 3972i 15j 4为偶排列.2.排列n (n –1)(n –2)…321经过多少次相邻两数对换变成自然顺序排列?§1.3 n 阶行列式本节我们从观察二阶、三阶行列式的特征入手.引出n 阶行列式的定义. 已知二阶与三阶行列式分别为2112221122211211a a a a a a a a -=312213332112322311322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ---++=其中元素a ij 的第一个下标i 表示这个元素位于第i 行,称为行标,第二个下标j 表示此元素位于第j 列,称为列标.我们可以从中发现以下规律:(1) 二阶行列式是2!项的代数和,三阶行列式是3!项的代数和;(2) 二阶行列式中每一项是两个元素的乘积,它们分别取自不同的行和不同的列,三阶行列式中的每一项是三个元7素的乘积,它们也是取自不同的行和不同的列;(3) 每一项的符号是:当这一项中元素的行标是按自然序排列时,如果元素的列标为偶排列,则取正号;为奇排列,则取负号.作为二、三阶行列式的推广我们给出n 阶行列式的定义.定义1 由排成n 行n 列的n 2个元素a ij (i ,j =1,2,…,n )组成的符号nnn n nn a a a a a a a a a ΛΛΛΛΛΛΛ212222111211称为n 阶行列式.它是n !项的代数和,每一项是取自不同行和不同列的n 个元素的乘积,各项的符号是:每一项中各元素的行标排成自然序排列,如果列标的排列为偶排列时,则取正号;为奇排列,则取负号.于是得nnn n nn a a a a a a a a a ΛΛΛΛΛΛΛ212222111211=∑n j j j Λ21n n nj j j j j j N a a a ΛΛ212121)()1(- (1) 其中∑nj j j Λ21表示对所有的n 级排列j 1j 2…j n 求和.(1)式称为n 阶行列式按行标自然顺序排列的展开式.)(21)1(n j j j N Λ-n nj j j a a a Λ2121称为行列式的一般项.当n =2、3时,这样定义的二阶、三阶行列式与上面§1.1中用对角线法则定义的是一致的.当n =1时,一阶行列为|a 11|= a 11.如当n =4时,4阶行列式44342414434241333231232221131211a a a a a a a a a a a a a a a a 表示4!=24项的代数和,因为取自不同行、不同列4个元素的乘积恰为4!项.根据n 阶行列式的定义,4阶行列式为44342414434241333231232221131211 a a a a a a a a a a a a a a a a ∑-444=j j j j j j j j j j j N a a a a Λ213214321321)()1( 例如a 14a 23a 31a 42行标排列为1234,元素取自不同的行;列标排列为4312,元素取自不同的列,因为N (4312)=5,所以该项取负号,即–a 14a 23a 31a 42是上述行列式中的一项.为了熟悉n 阶行列式的定义,我们来看下面几个问题. 例1 在5阶行列式中,a 12a 23a 35a 41a 54这一项应取什么符号?解:这一项各元素的行标是按自然顺序排列的,而列标的排列为23514. 因 N (23514)=4,故这一项应取正号.8 例2 写出4阶行列式中,带负号且包含因子a 11a 23的项. 解:包含因子a 11a 23项的一般形式为44j j j j N a a a a 34332311)13()1(-按定义,j 3可取2或4,j 4可取4或2,因此包含因子a 11a 23的项只能是a 11a 23a 32a 44或a 11a 23a 34a 42但因 N (1324)=1为奇数N (1342)=2为偶数所以此项只能是 –a 11a 23a 32a 44.例3 计算行列式hgvuf e y x d c b a 0000解 这是一个四阶行列式,按行列式的定义,它应有4!=24项.但只有以下四项adeh ,adfg ,bceh ,bcfg不为零.与这四项相对应得列标的4级排列分别为1234,1243,2134和2143,而N (1234)=0,N (1243)=1,N (2134)=1和N (2143)=2,所以第一项和第四项应取正号,第二项和第三项应取负号,即hgvuf e y x d c b a 0000= adeh –adfg –bceh +bcfg例4 计算上三角形行列式nnnn a a a a a a D ΛΛΛΛΛΛΛ21221211 000=其中a ii ≠0 (i =1, 2,…, n ).解:由n 阶行列式的定义,应有n !项,其一般项为nnj j j a a a Λ2121但由于D 中有许多元素为零,只需求出上述一切项中不为零的项即可.在D 中,第n 行元素除a nn 外,其余均为0.所以j n =n ;在第n –1行中,除a n –1n –1和a n –1n 外,其余元素都是零,因而j n –1只取n –1、n 这两个可能,又由于a nn 、a n –1n 位于同一列,而j n =n .所以只有j n –1 = n –1.这样逐步往上推,不难看出,在展开式中只有a 11a 22…a nn 一项不等于零.而这项的列标所组成的排列的逆序数是N (12…n )=0故取正号.因此,由行列式的定义有9nnnn a a a a a a D ΛΛΛΛΛΛΛ2122121100==a 11a 22…a nn 即上三角形行列式的值等于主对角线上各元素的乘积.同理可求得下三角形行列式nnn n a a a a a a ΛΛΛΛΛΛΛ00021222111=a 11a 22…a nn特别地,对角形行列式nna a a ΛΛΛΛΛΛΛ0002211=a 11a 22…a nn 上(下)三角形行列式及对角形行列式的值,均等于主对角线上元素的乘积.例5 计算行列式0000001121ΛΛΛΛΛΛΛΛn n n a a a - 解 这个行列式除了a 1n a 2n –1…a n 1这一项外,其余项均为零,现在来看这一项的符号,列标的n 级排列为n (n –1)…21,N (n (n –1)…21)= (n –1)+ (n –2)+…+2+1=2)1(-⋅n n ,所以 0000001121ΛΛΛΛΛΛΛΛn n na a a -=11212)1()1(n n n n n a a a Λ--- 同理可计算出000112222111211ΛΛΛΛΛΛΛΛΛn n na a a a a a a -=nnnn n nn na a a a a a 112121000--ΛΛΛΛΛΛΛ=11212)1()1(n n n n n a a a Λ--- 由行列式的定义,行列式中的每一项都是取自不同的行不同的列的n 个元素的乘积,所以可得出:如果行列式有一行(列)的元素全为0,则该行列式等于0.在n 阶行列式中,为了决定每一项的正负号,我们把n 个元素的行标排成自然序排列,即n nj j j a a a Λ2121.事实上,数的乘法是满足交换律的,因而这n 个元素的次序是可以任意写的,一般地,n 阶行列式的项可以写成10 n n j i j i j i a a a Λ2211 (2)其中i 1i 2…i n ,j 1 j 2…j n 是两个n 阶排列,它的符号由下面的定理来决定.定理1 n 阶行列式的一般项可以写成n n n n j i j i j i j j j N i i i N a a a ΛΛΛ22112121)()()1(+- (3)其中i 1i 2…i n ,j 1j 2…j n 都是n 级排列.证明:若根据n 阶行列式的定义来决定(2)的符号,就要把这n 个元素重新排一下,使得它们的行标成自然顺序,也就是排成''2'121n nj j j a a a Λ (4)于是它的符号是)'''(21)1(n j jj N Λ-现在来证明(1)与(3)是一致的.我们知道从(2)变到(4)可经过一系列元素的对换来实现.每作一次对换,元素的行标与列标所组成的排列i 1i 2…i n ,j 1j 2…j n 就同时作一次对换,也就是N (i 1i 2…i n )与N (j 1j 2…j n )同时改变奇偶性,因而它的和N (i 1i 2…i n )+N (j 1j 2…j n )的奇偶性不改变.这就是说,对(2)作一次元素的对换不改变(3)的值,因此在一系列对换之后有)'''()'''()12()()(21212121)1()1()1(n n n n j j j N j j j N n N j j j N i i i N ΛΛΛΛΛ-=--++=这就证明了(1)与(3)是一致的.例如,a 21a 32a 14a 43是4阶行列式中一项,它和符号应为(–1)N (2314)+N (1243)= (–1)2+1= –1.如按行标排成自然顺序,就是a 14a 21a 32a 43,因而它的符号是(–1)N (4123)=(–1)3= –1同样,由数的乘法的交换律,我们也可以把行列式的一般项n nj j j a a a Λ2121中元素的列标排成自然顺序123…n ,而此时相应的行标的n 级排列为i 1i 2…i n ,则行列式定义又可叙述为∑-n n n i i i n i i i i i i N nnn n nna a a a a a a a a a a a ΛΛΛΛΛΛΛΛΛΛ21212121)(212222111211)1(=. 思考题:1.如果n 阶行列式所有元素变号,问行列式的值如何变化? 2.由行列式的定义计算f (x )=xx x x x111123111212-中x 4与x 3的系数,并说明理由.§1.4 行列式的性质当行列式的阶数较高时,直接根据定义计算n 阶行列式的值是困难的,本节将介绍行列式的性质,以便用这些性11质把复杂的行列式转化为较简单的行列式(如上三角形行列式等)来计算.将行列式D 的行列互换后得到的行列式称为行列式D 的转置行列式,记作D T ,即若nnn n n n a a a a a a a a a D ΛΛΛΛΛΛΛ212222111211=, 则nnnn n n Ta a a a a a a a a D ΛΛΛΛΛΛΛ212221212111=. 反之,行列式D 也是行列式D T 的转置行列式,即行列式D 与行列式D T 互为转置行列式.性质1 行列式D 与它的转置行列式D T 的值相等.证:行列式D 中的元素a ij (i , j =1, 2, …,n )在D T 中位于第j 行第i 列上,也就是说它的行标是j , 列标是i ,因此,将行列式D T 按列自然序排列展开,得∑-=nn n j j j nj j j j j j N T a a a D ΛΛΛ21212121)()1(这正是行列式D 按行自然序排列的展开式.所以D =D T .这一性质表明,行列式中的行、列的地位是对称的,即对于“行”成立的性质,对“列”也同样成立,反之亦然. 性质2 交换行列式的两行(列),行列式变号. 证:设行列式)()(21212111211行行s i a a a a a a a a a a a a D nnn n sn s s in i i nΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ= 将第i 行与第s 行(1≤i <s ≤n )互换后,得到行列式)()(212121112111行行s i a a a a a a a a a a a a D nnn n in i i sn s s nΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ= 显然,乘积n s i nj sj ij j a a a a ΛΛΛ11在行列式D 和D 1中,都是取自不同行、不同列的n 个元素的乘积,根据§3 定理1,对于行列式D ,这一项的符号由)()1(1)1(n s i j j j j N n s i N ΛΛΛΛΛΛ+-决定;而对行列式D 1,这一项的符号由)()1(1)1(n s i j j j j N n i s N ΛΛΛΛΛΛ+-12 决定.而排列1…i …s …n 与排列1…s …i …n 的奇偶性相反,所以)()1(1)1(n s i j j j j N n s i N ΛΛΛΛΛΛ+-= –)()1(1)1(n s i j j j j N n i s N ΛΛΛΛΛΛ+-即D 1中的每一项都是D 中的对应项的相反数,所以D = –D 1.例1 计算行列式53704008000051753603924--=D 解:将第一、二行互换,第三、五行互换,得504008053070392417536)1(2---=D 将第一、五列互换,得120!5543215084000753004392067531)1(3-=-=⋅⋅⋅⋅-=---=D 推论 若行列式有两行(列)的对应元素相同,则此行列式的值等于零. 证:将行列式D 中对应元素相同的两行互换,结果仍是D ,但由性质2有D = –D , 所以D =0.性质3 行列式某一行(列)所有元素的公因子可以提到行列式符号的外面.即nnn n in i i n nn n n in i i n a a a a a a a a a k a a a ka ka ka a a a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ211111211211111211= 证:由行列式的定义有 左端=∑-nn i n j j j nj ij j j j j N a ka a ΛΛΛΛ21121)()1(1)( =∑-nn i n j j j nj ij j j j j N a a a kΛΛΛΛ211211)()1(=右端.此性质也可表述为:用数k 乘行列式的某一行(列)的所有元素,等于用数k 乘此行列式.13推论:如果行列式中有两行(列)的对应元素成比例,则此行列式的值等于零. 证:由性质3和性质2的推论即可得到.性质4 如果行列式的某一行 (列)的各元素都是两个数的和,则此行列式等于两个相应的行列式的和,即nnn n in i i n nnn n in i i n nnn n in in i i i i n a a a c c c a a a a a a b b b a a a a a a c b c b c b a a a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ21211121121211121121221111211+=+++ 证:左端=∑+-nn i i n j j j nj ij ij j j j j j N a c b a a ΛΛΛΛ212121)()1(21)(=∑-nn i n j j j nj ij j j j j j N a b a a ΛΛΛΛ21212121)()1(∑-+nn i n j j j nj ij j j j j j N a c a a ΛΛΛΛ21212121)()1(=nnn n in i i n nnn n in i i n a a a c c c a a a a a a b b b a a a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ212111211212111211+ =右端.性质5 把行列式的某一行 (列)的所有元素乘以数k 加到另一行(列)的相应元素上,行列式的值不变.即nnn n sn s s ini i na a a a a a a a a a a a D ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ21212111211=nnn n snin s i s i in i i n a a a a ka a ka a a a a a a a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ2122112111211+++ 证:由性质414 右端=nn n n in i i in i i n a a a ka ka ka a a a a a a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ21212111211+nnn n sn s s ini i na a a a a a a a a a a a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ21212111211=k ⋅0 +nnn n sn s s ini i na a a a a a a a a a a a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ21212111211=左端 作为行列式性质的应用,我们来看下面几个例子.例2 计算行列式3111131111311113=D解:这个行列式的特点是各行4个数的和都是6,我们把第2、3、4各列同时加到第1列,把公因子提出,然后把第1行×(–1)加到第2、3、4行上就成为三角形行列式.具体计算如下:4826200002000020111163111131111311111631161316113611163=⨯====D例3 计算行列式011212120112110-----=D解:13211021102011)112121110011112121011110------=----------=D154)2()2()1(12420021102011)1(220420021102011=-⨯-⨯-⨯-=------=-⨯------=例4 试证明:011=++++=cb adb a dcd a c b d c b aD 11证:把2、3列同时加到第4列上去,则得0111111)(11=+++=++++++++++++=a dd cc b b ad c b a dc b a adb c b a d c d c b a c b d c b a b a D 1111例5 计算n +1阶行列式xa a a a x a a a a x a a a a x D n n n ΛΛΛΛΛΛΛΛΛ321212121= 解:将D 的第2列、第3列、…、第n+1列全加到第1列上,然后从第1列提取公因子∑=+ni iax 1得xa a a x a a a x a a a a x D n n n ni i ΛΛΛΛΛΛΛΛΛ32222111111)(∑=+==nni i a x a a a a a x a a a x a x ------+∑=ΛΛΛΛΛΛΛΛΛ2312212111010010001)( =)())()((211n ni i a x ax a x a x ---+∑=Λ×(–a 1) ×(–a 2) …… ×(–a n )16 例6 解方程0)1(11111)2(111112111111111111=------xn xn x x ΛΛΛΛΛΛΛΛΛΛΛ解法一:=-⨯------)1()1(11111)2(111112111111111111xn xn x x ΛΛΛΛΛΛΛΛΛΛΛ])2][()3[()1)(()2(00)3(000001000000011111x n x n x x xn xn x x------=------ΛΛΛΛΛΛΛΛΛΛΛΛ所以方程的解为x 1=0, x 2=1, …, x n –2=n –3, x n –1=n –2.解法二:根据性质2的推论,若行列式有两行的元素相同,行列式等于零.而所给行列式的第1行的元素全是1,第2行,第3行,…第n 行的元素只有对角线上的元素不是1,其余均为1.因此令对角线上的某个元素为1,则行列式必等于零.于是得到1–x =1 2–x =1 … (n –2)–x =1 (n –1)–x =1有一成立时原行列式的值为零.所以方程的解为x 1=0, x 2,=1,…, x n –2=n –3, x n –1=n –2.例7 计算n 阶行列式),2,1( 321213132n i a x xa a a a x a a a a x a a a a x D i n nn ΛΛΛΛΛΛΛΛΛΛ=≠= 解:将第1行乘以(–1)分别加到第2、3、…、n 行上得17nn a x xa a x xa a x x a a a a x D ------=ΛΛΛΛΛΛΛΛΛ0000001312132 从第一列提出x –a 1,从第二提出x –a 2,…,从第n 列提出x –a n ,便得到1101010011)())((3322121ΛΛΛΛΛΛΛΛΛΛ----------=nn n a x a a x a a x a a x x a x a x a x D 由,1111a x a a x x-+=-并把第2、第3、…、第n 列都加于第1列,有 100010000101)())((3322121ΛΛΛΛΛΛΛΛΛΛnn n i i in a x a a x a a x a a x a a x a x a x D ----+---=∑= )1)(())((121∑=-+---=ni iin a x a a x a x a x Λ 例8 试证明奇数阶反对称行列式000021212112=---=ΛΛΛΛΛΛΛn nnn a a a a a a D 证:D 的转置行列式为00021212112ΛΛΛΛΛΛΛn nnn Ta a a a a a D ---=从D T 中每一行提出一个公因子(–1),于是有D a a a a a a D n n nnnnT)1(000)1(21212112-=----=ΛΛΛΛΛΛΛ,但由性质1知道D T =D ∴ D =(–1)n D18 又由n 为奇数,所以有D = –D , 即 2D =0, 因此 D =0.思考题:1.证明下列各题:222333111)(111c c b b a a c b a c c b b a a ++=. 2.计算下列n 阶行列式:111110000000002211ΛΛΛΛΛΛΛΛΛΛn n a a a a a a ---;§1.5 行列式按一行(列)展开本节我们要研究如何把较高阶的行列式转化为较低阶行列式的问题,从而得到计算行列式的另一种基本方法——降阶法.为此,先介绍代数余子式的概念.定义 在n 阶行列式中,划去元素a ij 所在的第i 行和第j 列后,余下的元素按原来的位置构成一个n –1阶行列式,称为元素a ij 的余子式,记作Mij .元素a ij 的余子式Mij 前面添上符号(–1)i+j 称为元素a ij 的代数余子式,记作A ij .即A ij =(–1)i +j M ij .例如:在四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a D =中a 23的余子式是M 23=444241343231141211a a a a a a a a a 而 A 23=(–1)2+3M 23= –444241343231141211a a a a a a a a a 是a 23的代数余子式. 定理1 n 阶行列式D 等于它的任意一行(列)的元素与其对应的代数余子式的乘积之和,即D =a i 1A i 1+a i 2A i 2+…+a in A in (i =1,2,…,n )或 D =a 1j A 1j +a 2j A 2j +…+a nj A nj (j=1,2,…,n ).证明:只需证明按行展开的情形,按列展开的情形同理可证. 1°先证按第一行展开的情形.根据性质4有19nnn n n nnnn n nn a a a a a a a a a a a a a a a a a a D ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ2122221112112122221112110000000++++++++++==nnn n nn nnn n n nnn n n a a a a a a a a a a a a a a a a a a a a a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ212222112122221122122221110+++=按行列式的定义∑-=nn n j j j nj j j j j j N nnn n na a a a a a a a a a ΛΛΛΛΛΛΛΛΛΛ21212121)(212222111)1(00111111112)(1121221)1(A a M a a a a nn n j j j nj j j j j N ==-=∑ΛΛΛ同理12121212122212212212222112)1(00)1(00A a M a a a a a a a a a a a a a a a nnn n nnnn n n =-=-=ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ… … …n n n n n nn n nnn nnn nnn n n n A a M a a a a a a a a a a a a a a a 1111111122121121222211)1(00)1(00=-=-=----ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ所以 D =a 11A 11+a 12A 12+…+a 1n A 1n .2°再证按第i 行展开的情形将第i 行分别与第i –1行、第i –2行、…、第1行进行交换,把第i 行换到第1行,然后再按1°的情形,即有22121111112111211211)1()1()1()1()1(i i i i i i nnn n nini i i M a M a a a a a a a a a a D +-+----+--=-=ΛΛΛΛΛΛΛ20 inin i i i i in n in i A a A a A a M a +++=--+++-ΛΛ221111)1()1(定理2 n 阶行列式D 中某一行(列)的各元素与另一行(列)对应元素的代数余子式的乘积之和等于零,即:a i 1A s 1+a i 2A s 2+…+a in A sn =0 (i ≠s )或 a 1j A 1t +a 2j A 2t +…+a nj A nt =0 (j ≠t ).证:只证行的情形,列的情形同理可证.考虑辅助行列式)()(212121112111行行s i a a a a a a a a a a a a D nnn n in i i in i i n ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ= 这个行列式的第i 行与第s 列的对应元素相同,它的值应等于零,由定理1将D 1按第s 行展开,有D 1= a i 1A s 1+a i 2A s 2+…+a in A sn =0 (i ≠s ).定理1和定理2可以合并写成a i 1A s 1+a i 2A s 2+…+a in A sn =⎩⎨⎧≠=)(0)(s i s i D或 a 1j A 1t +a 2j A 2t +…+a jn A nt =⎩⎨⎧≠=)(0)(t j t j D定理1表明,n 阶行列式可以用n –1阶行列式来表示,因此该定理又称行列式的降阶展开定理.利用它并结合行列式的性质,可以大大简化行列式的计算.计算行列式时,一般利用性质将某一行(列)化简为仅有一个非零元素,再按定理1展开,变为低一阶行列式,如此继续下去,直到将行列式化为三阶或二阶.这在行列式的计算中是一种常用的方法.例1 计算行列式 511242170131312-----=D解:D 的第四行已有一个元素是零,利用性质5,有( 1 3323111)1(00013321831311112113214-⨯⨯----=----=-=+D218525534)1(25503401111 11-=--=---=+例2 计算n 阶行列式abb a a b a b a D 00000000000000ΛΛΛΛΛΛΛΛΛΛΛ=解:按第一列展开得nn n n n n n b a bb aa bab b a b b ab a a b a a D 1111111)1()1( 000000000)1(00000000)1(+-+-++-+=-+=-+-=ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ例3 计算yy x xD -+-+=1111111111111111,其中 xy ≠0.解:根据定理1,把行列式适当地加一行一列,然后利用性质5,有yy x x yy xx D ------=-⨯-+-+=00100010001000111111)1(111111110111101111011111第2列提出因子x ,第3列提出–x ,第4列提出y ,第5列提出–y ,得11 1 1 1010********0010111111101001001010001111111)()(2222⨯⨯⨯⨯=--=--------=y x y y x x y x y y x x y y x x D例4 试证加到 各 行22 ∏≤<≤-----=ni j j i n nn n n nn a a a a a a a a a a a a a a 111312112232221321)(1111ΛΛΛΛΛΛΛΛΛ (1) 式中左端叫范德蒙行列式.结论说明,n 阶范德蒙行列式之值等于a 1, a 2, …, a n ,这n 个数的所有可能的差a i –a j (1≤j<i ≤n )的乘积.证明:用数学归纳法1°当n=2时,计算2阶范德蒙行列式的值:122111a a a a -=可见n=2时,结论成立.2°假设对于n –1阶范德蒙行列式结论成立,来看n 阶范德蒙行列式:把第n –1行的(–a 1)倍加到第n 行,再把第n –2行的(–a 1)倍加到第n –1行,如此继续作,最后把第1行的(–a 1)倍加到第2行,得到211231132211212312321221131211312112232221223222132100011111111-----------------------=n nn n n n n n nn n n nn n n n n n n n nna a a a a a a a a a a a a a a a a a a a a a a a aaaaa a a a a a a a a a a a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ)()()()()()(1213231222113312211312a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n n ---------=---ΛΛΛΛΛΛΛ223223211312111)())((------=n nn n nn a a a a a a a a a a a a ΛΛΛΛΛΛΛΛ 后面这个行列式是n –1阶范德蒙行列式,由归纳假设得∏≤<≤----=ni j j i n nn n na a a a a a a a 22232232)(111ΛΛΛΛΛΛΛ 于是上述n 阶范德蒙行列式等于∏≤<≤----ni j j in a aa a a a a a 211312)()())((Λ∏≤<≤-ni j j ia a1=)(。
线性代数教学教案行列式21⋅.如果一对数的排列顺序与自然顺序相反,即排在左边的数比排在它右边的数大,i的逆序数记为那么它们就称为一个逆序,一个排列中逆序的总数就称为这个排列的逆序数,排列n )i.n3.定义:逆序数为偶数的排列称为偶排列;逆序数为奇数的排列称为奇排列二.二阶、三阶行列式1.引例:解方程组1,2,3,n )排成123132333123nnn n n n nn a a a a a a a 2323331123(1)n n n n nna a a a a a =-+21222,12123231323,13133312112,1131)+(1)n n n n nn n n n n n n nna a a a a a a a a a a a a a a a a a a --++-+-阶行列式(递归定义).余子式与代数余子式:由行列式D 中划去ij a 所在的第i 行和第j 列后,余下的元素按照原来的顺序构ij M ,称为元素ij a 的余子式,(1)i j ij A M +-称为元素ij a 的代数余子式D 11=n n a A a A =na ∑1,2,3,n )组成的阶行列式定义为 123132333123n nn n n n nna a a a a a a 1212)12=n n nj j j j nj j j j a a a ∑nj ∑表示对所有的列标排列12n j j j 求和.四.例题讲解1.求解二元线性方程组122321221x x x x -=⎧⎨+=.1233300n nn nn a a a a . 11121,121222,111,11,210000n n n n n a a a a a a D a a ----=,112122313233123000000n n n nn a a a a a a a a a a , 1122330000000000nna a a a .授课序号02in jn a A =,n ,i ≠0ni nj a A =,n ,i ≠综合上一节和该推论,对于行列式和代数余子式的关系有如下重要结论:, ,0, .i j i j =≠ , =0, kj D i A ⎧⎨⎩授课序号030000000000x y yx.(Vandermonde)行列式1221231111112311n n n i j nn n n n nx x D x x x x x ≤<≤----==∏31111111n a +12(0)n a a a ≠.3434340a a x x a a a a a ++=的根.0000000003200013.12211000100000001nn n x x x a a a a x a -----+.00000000000000000000000a b a b a b c d c dc d.22231112342344,证明:()0f x '=有且仅有两个实根授课序号041222222n n n n nn n a x a x x a x +=+++=1112121222120n n n n nna a a a a a a a a ≠,122n n D D Dx x D D D==,,,, 列换成常数项所得的n 阶行列式1,111,11212,122,121,1,1j j n j j n n n j nn j nna b a a a b a a a a b a a -+-+-+112222222n n n n nn n na xb a x b x a x b +=+=++=当12,,,n b b b 全为0时,得到11112121122221122n n n n n n nn n a x a a x a x a a x a x a x a x ++⎧⎪++⎪⎨⎪⎪+++⎩335111x x =-=-=211311213313n n n n n n n n n a x a x a x a x x a x ----+=+==+=,n ).互相关联,X 公司持有股份,持有Z 股份,持有Z 公司20%持有Y 公司20%,Z 公司各自的净收入分别为万元,每家公司的联合收入是净收入加上其他公司的股份按比例的提成收入,试求各公司的联合收入及实际收入《市场营销》是商业和经贸专业学生的一门核心课程,商经类学校的所有专业都开设本课程,是一门公共基础课。
授课章节行列式§1.1 n阶行列式目的要求理解二阶与三阶行列式,了解全排列及其逆序数。
重点二阶与三阶行列式计算,行列式的性质,克拉默法则难点n阶行列式的计算,克拉默法则行列式的理论是人们从解线性方程组的需要中建立和发展起来的,是线性代数中的一个基本概念,它在线性代数、其他数学分支以及在自然科学的许多领域中上都有着广泛的应用.在本章里我们主要讨论下面几个问题:(1) 行列式的定义;(2) 行列式的基本性质及计算方法;(3) 利用行列式求解线性方程组(克莱姆法则).本章的重点是行列式的计算,要求在理解n阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n阶行列式.计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法.行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件.§1 n阶行列式一、二元线性方程组与二阶行列式解方程是代数中一个基本的问题,行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的.因此我们首先讨论解方程组的问题.下面考察二元一次方程组(1.1)当时,由消元法知此方程组有唯一解,即(1.2)可见,方程组的解完全可由方程组中的未知数系数以及常数项表示出来,这就是一般二元线性方程组的解公式。
但这个公式很不好记忆,应用时十分不方便。
由此可想而知,多元线性方程组的解公式肯定更为复杂。
因此,我们引进新的符号来表示上述解公式,这就是行列式的起源。
1、二阶行列式:由4个数及双竖线组成的符号称为二阶行列式。
注:(1)构成:二阶行列式含有两行,两列。
横排的数构成行,纵排的数构成列。
行列式中的数()称为行列式的元素。
行列式中的元素用小写英文字母表示,元素的第一个下标称为行标,表明该元素位于第行;第二个下标称为列标,表明该元素位于第列。
相等的行数和列数2称为行列式的阶。
(2)含义:它按规定的方法表示元素的运算结果,即为:由左上至右下的两元素之积,减去右上至左下的两元素之积。
其中每个积中的两个数均来自不同的行和不同的列。
或者说:二阶行列式是这样的两项的代数和,一项是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一项是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号。
即:这就是对角线法则。
【例1】计算下列行列式的值(1)(2)(3)【解】(1)(2)(3)【例2】当为何值时,行列式的值为0?【解】因为,要使,须使或,即知,当或时,行列式的值为0。
如果令,则当时,二元一次方程组(1.1)的唯一解(1.2)可表示为注的分子行列式是将系数行列式中的第1列换成方程组的常数项而得到;的分子行列式则是把系数行列式中的第2列换成方程组的常数项而得到。
这样用行列式来表示方程组的解,就得到简便、整齐,便于记忆与运算的形式(亦称克莱姆法则)。
【例3】求解二元线性方程组【解】由于系数行列式,知该方程组有解,再由于,,即得方程组的解为,似乎这样表示线性方程组的解比原来更为烦琐,但这创造了多元线性方程组的解的公式及其规律性的解法,并为用电脑程序解多元线性方程组打下了良好的基础。
更为下一步学习矩阵知识,为学习高级、大型的管理知识做好了准备。
与二阶行列式相仿,对于三元一次线性方程组作类似的讨论,我们得到三阶行列式:2、三阶行列式:由在双竖线││内,排成三行三列的9个数组成的符号:称为三阶行列式。
注(1)构成:三阶行列式含有三行,三列。
横排的数构成行,纵排的数构成列。
行列式中的数称为行列式的元素,相等的行数和列数3称为行列式的阶。
(2)含义:三阶行列式按规定的方法表示9个元素的运算结果,为6个项的代数和,每个项均为来自不同行不同列的三个元素之积,其符号的确定如下图所示:从图中可见,三阶行列式是这样的六个项的代数和:从左上角到右下角的每条蓝色连线上,来自不同行不同列的三个元素的乘积,取正号;从右上角到左下角的每条红色连线上,来自不同行不同列的三个元素的乘积,取负号。
即运算时,在整体上,应从第一行的起,自左向右计算左上到右下方向上的所有的三元乘积,再从第一行的起,自左向右计算右上到左下的方向上的所有的三元乘积。
对于各项的计算,应按行标的自然数顺序选取相乘的元素。
这样较为不容易产生错漏。
【例4】求行列式的值。
【解】。
【例5】满足什么条件时有。
【解】由于,可见,若要使,必须与同时为0,因此,当时,。
【例6】的充分必要条件是什么?【解】因为,而成立的充分必要条件是,因此可得,的充分必要条件是。
类似于二元线性方程组的行列式求解公式,三元线性方程组也有其系数行列式以及相应未知数的分子行列式,得到如下解法(克莱姆法则):记三元线性方程组的系数行列式为,的分子行列式为,的分子行列式为,的分子行列式为,则当时,方程组的解为,,。
【例7】求解线性方程组。
【解】由于方程组有解,再计算各分子行列式,得,,,即得方程组的解为:,,。
二、排列及其逆序数从上节的例子我们知道,对角线法则只适用于二阶与三阶行列式,对四阶和四阶以上的行列式就不适用了.怎样计算四阶和四阶以上的行列式呢?我们先从二阶与三阶行列式的计算中找一找规律先看二阶行列式(1.3)二阶行列式一共有两项,每一项均由不同行不同列的元素组成。
其组成的规律是如果行标都取自然数1,2;列标只能取1,2或2,1。
所以二阶行列式中有两项,再看三阶行列式三阶行列式一共有6项,每一项均由不同行不同列的元素组成。
其组成的规律是如果行标都取自然数1,2,3;列标只能取1,2,3;2,3,1;3,1,2;3,2,1;2,1,3;1,3,2。
所以三阶行列式中有6项通过上述分析,我们知道了二阶行列式和三阶行列式项的组成方法。
1)行标取自然排列时,列标分别取全排列.2)项的个数就是全排列的个数。
另外,还发现无论二阶行列式还是三阶行列式,均有一些项的前面取“+”,一些项的前面取“-”。
怎样确定那些项的前面取“+”,那些项的前面取“-”呢?我们发现和排列的顺序有关。
1、n级排列 n个正整数1,2,…,n组成的一个有序数组称为一个n级排列,其中自然数为1,2,…,n中的某个数,称作第k个元素,k表示这个数在n级排列中的位置。
n个不同元素共有n!个不同的n级排列。
例如,1234是一个4级排列,3412也是一个4级排列,52341是一个5级排列,而1235,3231不是排列。
由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321,共有3!=6个。
2、逆序数数字由小到大的n级排列1234…n 称为标准次序排列.在一个排列中,较大的数在较小的数前面就产生一个逆序数,所有逆序数的总和称为这个排列的逆序数,记做。
容易看出,标准次序排列的逆序数为0.逆序数的计算方法:以 3 2 4 1 5为例,从第一个数依次查起,分别计算出排列中每个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,这每个元素的逆序数之总和即为所求排列的逆序数.【例8】求排列{3,2,5,1,4}的逆序数【解】在排列{3,2,5,1,4}中3排在首位,逆序数为0;2的前面比2大的数只有一个3,故逆序数为1;5的前面没有比5大的数,其逆序数为01的前面比1大的数有3个,故逆序数为3;4的前面比4大的数有1个,故逆序数为1。
3 2 5 1 40 1 0 3 1于是排列的逆序数为【例9】求362154的逆序数【解】【例10】是一个5级别排列,试确定的值及其逆序数。
【解】由于是5级排列,因此可以取3或5若,则排列为,若,则排列为,3、排列的奇偶性逆序数为奇数的排列称为奇排列,逆序数是偶数的排列则称为偶排列。
可以看出例4是奇排列,例5是偶排列。
自然排列123…n是偶排列。
而三级排列共有3!=6个,其中奇排列有:132,213,321;偶排列有123,231,312;奇、偶排列各占一半。
4、对换将一个排列中的某两个数的位置互换而其余的数不动,这样得到一个新的排列.这种变换称为对排列作一次对换,将相邻的两个数对换称为相邻对换。
例如,对换前,3241是偶排列;对换后,4231是奇排列。
定理1.1 对排列进行一次对换将改变其奇偶性.推论在全体n级排列(n>1)中,奇排列和偶排列各占一半,各有个。
定理1.2任意一个n级排列与12…n都可以经过一系列对换互换,并且所作的对换的个数与这个排列有相同的奇偶性。
三、n阶行列式在给出阶行列式的定义之前,先来看一下二阶和三阶行列式的定义.我们可以从中发现以下规律:(1) 二阶行列式是2!项的代数和,三阶行列式是3!项的代数和;(2) 二阶行列式中每一项是两个元素的乘积,它们分别取自不同的行和不同的列,三阶行列式中的每一项是三个元素的乘积,它们也是取自不同的行和不同的列;(3) 每一项的符号是:当这一项中元素的行标是按自然序排列时,如果元素的列标为偶排列,则取正号;为奇排列,则取负号.通过上述分析,我们找到了构造二阶行列式和三阶行列式有别于对角线法的新的方法。
下面我们将用新的方法定义一般的n价行列式,当然,我们希望用新的方法定义的n价行列式可以原来解一般的n元线性方程组.定义由排成n行n列的n2个元素aij (i,j=1,2,…,n)组成的(1.4)称为n阶行列式。
它是取自不同行和不同列的n个元素的乘积的代数和,其中是的一个排列。
当是偶排列时,(1.4)式带有正号;当是奇排列时,(1.4)式带有负号,也就是可写成(1.5)这里表示对所有级排列求和。
行列式通常可简记为或.注:(1)行列式是一种特定的算式,最终的结果是一个数;(2)阶行列式是项的代数和;(3)阶行列式的每个乘积项都是位于不同行、不同列的个元素的乘积;(4)每一项的符号为;(5)一阶行列式,不要与绝对值的概念相混淆;(6)对角线法则对4阶及4阶以上的高阶行列式不适用。
为了熟悉n阶行列式的定义,我们来看下面几个问题.【例11】在5阶行列式中,a12a23a35a41a54这一项应取什么符号?【解】这一项各元素的行标是按自然顺序排列的,而列标的排列为23514.因,故这一项应取正号。
【例12】写出4阶行列式中,带负号且包含因子a11a23的项。
【解】包含因子a11a23项的一般形式为按定义,j3可取2或4,j4可取4或2,因此包含因子a11a23的项只能是a11a23a32a44或a11a23a34a42但因需要带负号所以此项只能是–a11a23a32a44.【例13】利用行列式的定义证明【证明】由行列式的定义知所以只需找出一切可能的非零项即可。