八年级数学下册第6周周考试卷及答案
- 格式:doc
- 大小:113.50 KB
- 文档页数:5
第6章平行四边形一、单选题1.平行四边形一边的长是12cm,则这个平行四边形的两条对角线长可以是()A.4cm或6cm B.6cm或10cm C.12cm或12cm D.12cm或14cm 2.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD 为平行四边形的是()A.AB∥CD,AD∥BC B.AD∥BC,AB=CDC.OA=OC,OB=OD D.AB=CD,AD=BC3.如图,四边形ABCD沿直线l对折后互相重合,如果AD∥BC,有下列结论:①AB∥CD;②AB=CD;③AB⊥BC;④AO=OC.其中正确的有()A.4个B.3个C.2个D.1个4.如图,点D和点E分别是BC和BA的中点,已知AC=4,则DE为()A.1B.2C.4D.85.如图,在△ABC中,点D在边BC上,过点D作DE∥AC,DF∥AB,分别交AB,AC 于E,F两点.则下列命题是假命题的是()A.四边形AEDF是平行四边形B.若∠B+∠C=90°,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形6.如图,点E为矩形ABCD的边BC上的点,DF⊥AE于点F,且DF=AB,下列结论不正确的是()A.DE平分∠AEC B.△ADE为等腰三角形C.AF=AB D.AE=BE+EF7.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=10,则EF的长为()A.8B.10C.5D.48.如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A →D→E→F,若小敏行走的路程为3100m,则小聪行走的路程为()m.A.3100B.4600C.3000D.36009.如图,在等腰直角△ABC中,AB=BC,点D是△ABC内部一点,DE⊥BC,DF⊥AB,垂足分别为E,F,若CE=3DE,5DF=3AF,DE=2.5,则AF=()A.8B.10C.12.5D.1510.如图,已知在正方形ABCD中,E是BC上一点,将正方形的边CD沿DE折叠到DF,延长EF交AB于点G,连接DG.现有如下4个结论:①AG=GF;②AG与EC一定不相等;③∠GDE=45°;④△BGE的周长是一个定值.其中正确的个数为()A.1B.2C.3D.4二、填空题11.如图,把一张长方形的纸沿对角线折叠,若∠ABC=118°,则∠BAC=.12.如图,平行四边形ABCD中,CE⊥AD于点E,点F为边AB的中点,连接EF,CF,若AD=CD,∠CEF=38°,则∠AFE=.13.如图,直线a过正方形ABCD的顶点A,点B、D到直线a的距离分别为1、3,则正方形的边长为.14.如图,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F.若∠ECB=20°,则∠ACD的度数是.15.如图,正方形ABCD的边长为,O是对角线BD上一动点(点O与端点B,D不重合),OM⊥AD于点M,ON⊥AB于点N,连接MN,则MN长的最小值为.三、解答题16.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:∠E=∠F;(2)连接AF,CE,当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.17.如图所示,沿AE折叠长方形ABCD使点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm.(1)求EC的长;(2)求△AFE的面积.18.如图,在平行四边形ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:(1)△AEF≌△DEC;(2)四边形ACDF是平行四边形.19.如图,在△ABC中,CD是AB边的中线,E是CD的中点,连接AE并延长交BC于点F.求证:BF=2CF.20.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FG=5,GH=12,求菱形ABCD的周长.21.如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D=90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?参考答案与试题解析一、单选题1.平行四边形一边的长是12cm,则这个平行四边形的两条对角线长可以是()A.4cm或6cm B.6cm或10cm C.12cm或12cm D.12cm或14cm 【分析】根据四边形ABCD是平行四边形,可得OA=AC,OB=BD,进行逐一判断即可.【解答】解:∵四边形ABCD是平行四边形,∴OA=AC,OB=BD,A、∵AC=4cm,BD=6cm,∴OA=2cm,OB=3cm,∴OA+OB=5cm<12cm,不能组成三角形,故不符合;B、∵AC=6cm,BD=10cm,∴OA=3cm,OB=5cm,∴OA+OB=8cm<12cm,不能组成三角形,故不符合;C、∵AC=12cm,BD=12cm,∴OA=6cm,OB=6cm,∴OA+OB=12cm=12cm,不能组成三角形,故不符合;D、∵AC=12cm,BD=14cm,∴OA=6cm,OB=7cm,∴OA+OB=13cm>12cm,能组成三角形,故符合;故选:D.2.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD 为平行四边形的是()A.AB∥CD,AD∥BC B.AD∥BC,AB=CDC.OA=OC,OB=OD D.AB=CD,AD=BC【分析】根据平行四边形的判定方法即可判断.【解答】解:A、根据两组对边分别平行的四边形是平行四边形,可以判定;B、无法判定,四边形可能是等腰梯形,也可能是平行四边形;C、根据对角线互相平分的四边形是平行四边形,可以判定;D、根据两组对边分别相等的四边形是平行四边形,可以判定;故选:B.3.如图,四边形ABCD沿直线l对折后互相重合,如果AD∥BC,有下列结论:①AB∥CD;②AB=CD;③AB⊥BC;④AO=OC.其中正确的有()A.4个B.3个C.2个D.1个【分析】此题考点是轴对称的性质1和性质2,还要结合全等三角形和平行四边形的一些性质,多方面考虑,对各项进行逐一分析.【解答】解:∵直线l是四边形ABCD的对称轴,AD∥BC;∴△AOD≌△BOC;∴AD=BC=CD,OC=AO,且四边形ABCD为平行四边形.故②④正确;又∵AD四边形ABCD是平行四边形;∴AB∥CD.故①正确.故选:B.4.如图,点D和点E分别是BC和BA的中点,已知AC=4,则DE为()A.1B.2C.4D.8【分析】根据三角形中位线定理解答即可.【解答】解:∵点D和点E分别是BC和BA的中点,∴DE是△ABC的中位线,∴DE=AC=×4=2,故选:B.5.如图,在△ABC中,点D在边BC上,过点D作DE∥AC,DF∥AB,分别交AB,AC 于E,F两点.则下列命题是假命题的是()A.四边形AEDF是平行四边形B.若∠B+∠C=90°,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形【分析】根据平行四边形、矩形及菱形的判定方法分别判断后即可确定正确的选项.【解答】解:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,故A选项正确;∵四边形AEDF是平行四边形,∠B+∠C=90°,∴∠BAC=90°,∴四边形AEDF是矩形,故B选项正确;∵DE∥AC,∴,∴DE=AC,同理DF=AB,要想四边形AEDF是菱形,只需DE=DF,则需AC=AB显然没有这个条件,故C选项错误;因为AD平分∠BAC,所以AE=DE,又因为四边形AEDF是平行四边形,所以是菱形,故D选项正确;故选:C.6.如图,点E为矩形ABCD的边BC上的点,DF⊥AE于点F,且DF=AB,下列结论不正确的是()A.DE平分∠AEC B.△ADE为等腰三角形C.AF=AB D.AE=BE+EF【分析】证明Rt△DEF≌Rt△DEC得出A正确;在证明△ABE≌△DF A得出B正确;得出EB=AF,得C错误,D正确,即可得出结论.【解答】解:∵四边形ABCD是矩形,∴∠C=∠ABE=90°,AD∥BC,AB=CD,∵DF=AB,∴DF=CD,∵DF⊥AE,∴∠DF A=∠DFE=90°,在Rt△DEF和Rt△DEC中,,∴Rt△DEF≌Rt△DEC(HL),∴∠FED=∠CED,∴DE平分∠AEC;故A正确;∵AD∥BC,∴∠AEB=∠DAF,在△ABE和△AFD中,,∴△ABE≌△DF A(AAS),∴AE=AD,∴△ADE为等腰三角形;故B正确;∵△ABE≌△DF A,∴不存在AF=AB,故C错误;∵△ABE≌△DF A,∴BE=F A,∴AE=AF+EF=BE+EF.故D正确.故选:C.7.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=10,则EF的长为()A.8B.10C.5D.4【分析】根据等腰三角形的三线合一得到CE=ED,根据三角形内角和定理解答即可.【解答】解:∵AD=AC,AE⊥CD,∴CE=ED,∵CE=ED,CF=FB,∴EF=BD=×10=5,故选:C.8.如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A →D→E→F,若小敏行走的路程为3100m,则小聪行走的路程为()m.A.3100B.4600C.3000D.3600【分析】连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE.在矩形GECF中,EF=CG.要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【解答】解:连接GC,∵四边形ABCD为正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,,∴△AGD≌△GDC(SAS)∴AG=CG,在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF﹣BA﹣AG﹣GE,=AD=1500m.∵小敏共走了3100m,∴小聪行走的路程为3100+1500=4600(m),故选:B.9.如图,在等腰直角△ABC中,AB=BC,点D是△ABC内部一点,DE⊥BC,DF⊥AB,垂足分别为E,F,若CE=3DE,5DF=3AF,DE=2.5,则AF=()A.8B.10C.12.5D.15【分析】先证四边形DEBF为矩形,得BF=DE=2.5,DF=EB,设DF=3x,则EB=3x,得AF=5x,AB=5x+2.5,然后由AB=BC得出方程,解方程即可.【解答】解:∵DE⊥BC,DF⊥AB,∴∠DEB=∠DFB=90°,∵△ABC为等腰直角三角形,AB=BC,∴∠ABC=90°,∴四边形DEBF为矩形,∴BF=DE=2.5,DF=EB,设DF=3x,则EB=3x,∵5DF=3AF,∴AF=5x,AB=5x+2.5,∵DE=2.5,∴CE=3DE=7.5,∴CB=7.5+3x,∵AB=CB,∴5x+2.5=7.5+3x,解得x=2.5,∴AF=5x=12.5,故选:C.10.如图,已知在正方形ABCD中,E是BC上一点,将正方形的边CD沿DE折叠到DF,延长EF交AB于点G,连接DG.现有如下4个结论:①AG=GF;②AG与EC一定不相等;③∠GDE=45°;④△BGE的周长是一个定值.其中正确的个数为()A.1B.2C.3D.4【分析】由翻折的性质及全等三角形的性质可判断①;根据正方形的性质及角的和差关系可判断③;根据三角形的周长公式可判断④;不能判断②的正确性.【解答】解:根据折叠的意义,得△DEC≌△DEF,∴EF=EC,DF=DC,∠CDE=∠FDE,∵DA=DF,DG=DG,∴Rt△ADG≌Rt△FDG(HL),∴AG=FG,∠ADG=∠FDG,故①正确;∴∠GDE=∠FDG+∠FDE=(∠ADF+∠CDF)=45°,故③正确;∵△BGE的周长=BG+BE+GE,GE=GF+EF=EC+AG,∴△BGE的周长=BG+BE+EC+AG=AB+AC,是定值,故④正确,∴正确的结论有①③④,故选:C.二、填空题11.如图,把一张长方形的纸沿对角线折叠,若∠ABC=118°,则∠BAC=31°.【分析】根据平行线的性质可得∠BAF=62°,根据折叠的性质可得∠BAC=∠CAF=31°.【解答】解:如图:∵CD∥AF,∴∠ABC+∠BAF=180°,∵∠ABC=118°,∴∠BAF=62°,根据折叠的性质可得∠BAC=∠CAF,∴∠BAC=∠CAF=∠BAF=31°.故答案为:31°.12.如图,平行四边形ABCD中,CE⊥AD于点E,点F为边AB的中点,连接EF,CF,若AD=CD,∠CEF=38°,则∠AFE=24°.【分析】延长CF交DA延长线于点G,∴△AGF≌△BCF,【解答】解:如图,延长CF交DA延长线于点G,∵AG∥BC,∴∠G=∠BCF,∠GAF=∠B,∵AF=FB,∴△AGF≌△BCF(AAS),∴GF=CF,AG=BC,∵CE⊥AD,∴EF=FG=FC,∠GEC=90°,∵∠CEF=38°,∴∠FEG=∠FGE=52°,∠GFE=76°,∵AD=CD,∴BC=BF=AF,∵AG=BC,∴AG=AF,∠G=∠AFG=52°,∠AFE=76°﹣52°=24°.故答案为:24°.13.如图,直线a过正方形ABCD的顶点A,点B、D到直线a的距离分别为1、3,则正方形的边长为.【分析】根据正方形的性质得出AD=AB,利用AAS证明Rt△AFD和Rt△BEA全等,利用全等三角形的性质和勾股定理解答即可.【解答】解:在正方形ABCD中,AD=AB,∵DF⊥AF,BE⊥AE,∴∠AFD=∠AEB=90°,∠ADF+∠DAF=90°,∵∠DAF+∠BAE=90°,∴∠ADF=∠BAE,在Rt△AFD和Rt△BEA中,,∴Rt△AFD≌Rt△BEA(AAS),∴DF=AE=3,AF=BE=1,在Rt△BEA中,由勾股定理得:AB=.故答案为:.14.如图,四边形ABCD是长方形,F是DA延长线上一点,CF交AB于点E,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F.若∠ECB=20°,则∠ACD的度数是30°.【分析】根据矩形的性质得到AD∥BC,∠DCB=90°,根据平行线的性质得到∠F=∠ECB=20°,根据三角形的外角的性质得到∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,于是得到结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∠DCB=90°,∴∠F=∠ECB=20°,∴∠GAF=∠F=20°,∴∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,∴∠ACB=∠ACG+∠ECB=60°,∴∠ACD=90°﹣60°=30°,故答案为:30°.15.如图,正方形ABCD的边长为,O是对角线BD上一动点(点O与端点B,D不重合),OM⊥AD于点M,ON⊥AB于点N,连接MN,则MN长的最小值为1.【分析】连接AO,可证四边形AMON是矩形,可得AO=MN,当AO⊥BD时,AO有最小值,即MN有最小值,由等腰直角三角形的性质可求解.【解答】解:如图,连接AO,∵四边形ABCD是正方形,∴AB=AD=,BD=AB=2,∠DAB=90°,又∵OM⊥AD,ON⊥AB,∴四边形AMON是矩形,∴AO=MN,∵当AO⊥BD时,AO有最小值,∴当AO⊥BD时,MN有最小值,此时AB=AD,∠BAD=90°,AO⊥BD,∴AO=BD=1,∴MN的最小值为1,故答案为:1.三、解答题16.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:∠E=∠F;(2)连接AF,CE,当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.【分析】(1)根据四边形ABCD是平行四边形,可以得到AD=CB,AD∥BC,从而可以得到∠ADE=∠CBF,然后根据SAS即可证明结论成立;(2)根据BD平分∠ABC和平行四边形的性质,可以证明▱ABCD是菱形,从而可以得到AC⊥BD,然后即可得到AC⊥EF,再根据题目中的条件,可以证明四边形AFCE是平行四边形,然后根据AC⊥EF,即可得到四边形AFCE是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADB=∠CBD,∴∠ADE=∠CBF,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠E=∠F;(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:连接AF、CE;∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.17.如图所示,沿AE折叠长方形ABCD使点D恰好落在BC边上的点F处,已知AB=8cm,BC=10cm.(1)求EC的长;(2)求△AFE的面积.【分析】(1)由矩形的性质和折叠的性质得AF=AD=10cm,DE=EF,在Rt△ABF中,由勾股定理得BF的长,在Rt△CEF中,根据勾股定理得问题的答案;(2)根据三角形的面积公式计算可得答案.【解答】解:(1)∵AB=8cm,BC=10cm,∴DC=8cm,AD=10cm,又∵将△ADE折叠使点D恰好落在BC边上的点F,∴AF=AD=10cm,DE=EF,在Rt△ABF中,AB=8cm,AF=10cm,∴BF==6(cm),∴FC=10﹣6=4(cm),设DE=xcm,则EF=xcm,EC=(8﹣x)cm,在Rt△CEF中,EF2=FC2+EC2,即x2=42+(8﹣x)2,解得x=5,即DE的长为5cm,EC=8﹣x=8﹣5=3,即EC的长为3cm;(2)S△AEF=EF×AF=×5×10=25(cm2).故△AFE的面积是25cm2.18.如图,在平行四边形ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:(1)△AEF≌△DEC;(2)四边形ACDF是平行四边形.【分析】(1)△AEF≌△DEC;(2)四边形ACDF是平行四边形.【解答】解:(1)∵在平行四边形ABCD中,AB∥CD,∴∠F AE=∠CDE,∵点E是边AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(ASA);(2)∵△AEF≌△DEC,∴AF=DC,∵AF∥DC,∴四边形ACDF是平行四边形.19.如图,在△ABC中,CD是AB边的中线,E是CD的中点,连接AE并延长交BC于点F.求证:BF=2CF.【分析】取AF的中点M,连接DM.根据三角形的中位线定理可得BF=2DM,DM∥BC,再利用AAS证明△MDE≌△FCE可得DM=CF,进而可证明结论.【解答】证明:取AF的中点M,连接DM,∵CD是AB边的中线,∴D是AB边的中点,∴BF=2DM,DM∥BC,∵E是CD的中点,∴DE=CE,在△MDE和△FCE中,,∴△MDE≌△FCE(AAS).∴DM=CF,∴BF=2CF.20.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FG=5,GH=12,求菱形ABCD的周长.【分析】(1)根据矩形和菱形的性质证明△BGF≌△DEH,即可得结论;(2)连接EG,根据四边形ABGE是平行四边形,可得AB=EG,根据四边形EFGH是矩形和勾股定理即可求出AB=13,进而可得结果.【解答】(1)证明:∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∴∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)解:连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵四边形EFGH是矩形,∴EG=FH,∴AB=FH,∵FG=5,GH=12,∠FGH=90°,∴FH==13,∴AB=13,∴菱形ABCD的周长52.21.如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D=90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?【分析】(1)由题意可得BP=CQ,BE=CP,由“SAS”可证△BPE≌△CQP;(2)由全等三角形的性质可得BP=CP=5,BE=CQ=6,即可求点Q的速度.【解答】解:(1)全等.理由:由题意:BP=CQ=2t当t=2时,BP=CQ=4∵AB=BC=10,AE=4∴BE=CP=10﹣4=6∵BP=CQ,∠B=∠C=90°,BE=CP∴△BPE≌△CQP(SAS)(2)∵P、Q运动速度不相等∴BP≠CQ∵∠B=∠C=90°∴当BP=CP,CQ=BE时,△BPE≌△CPQ,∴BP=CP=BC=5,CQ=BE=6∴当t=5÷2=(秒)时,△BPE≌△CPQ,此时点Q的运动速度为6÷=(cm/s)。
巴州中学八年级数学第六周周练试卷————————《平行四边形的性质与判定》一、填空题(3’×9=27’)1、在平行四边形中,若一个角为其邻角的2倍,则这个平行四边形各内角的度数分别是。
2、设点O ABCD对角线的交点,的面积为20cm2,则△ABC的面积为,△AOB的面积为。
3、若平行四边形的一边长为8cm,一条对角线长为6cm,则另一条对角线长χ(cm)的取值范围为。
4、ABCD的周长为36cm,AB=8cm,则BC= cm;当∠B=60°时,AD、BC间的距离AE= cm,的面积S = cm2。
5、已知平行四边形的面积为144,相邻两边上的高分别为8和9,则它的周长为。
6、已知a、b、c、d为四边形的四边长,a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是四边形。
7、已知,EF ABCD对角线的交点O,交AD于E,交BC于F,若AB=4,BC=5,OE=2,则四边形EFCD的周长为。
8、在ΔABC中,∠C=90°,AC=3,AB=5,若以A、B、C、P四点为顶点组成一个平行四边形,则这个平行四边形的周长为。
G9、如图,P为ABCD的对角线BD上一点,过P作GH∥CD,EF∥BC,写出图中你认为面积相等的平行四边形有(说明:可写成S ABCD=S二、单项选择题(3’×7=21’)10题) (第14题)10、如图在ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=5,则AE:EF:FB为()A、1:2:3B、2:1:3C、3:2:1D、3:1:211、一个四边形的三个内角度数依次如下,那么其中是平行四边形的是()A、88°,108°,88°B、88°,104°,108°C、88°、92°、92°D、88°。
92°,88°12、平行四边形的一边长为10,那么它的两条对角线的长度可以是()A、8和12B、4和20C、20和30D、8和613、A、B、C、D在同一平面内,从:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD这四个条件中任选两个,能使四边形ABCD为平行四边形的选法有()A、3种B、4种C、5种D、6种14、如图,ΔABC是等边三角形,P是形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=()A、18 B、9 3 C、6 D、条件不够,不能确定15、已知线段a=10cm,b=14cm,C=8cm,以其中两条为对角线,另一条为边画平行四边形,可以画出不同形状的平行四边形的个数为()A、0个B、1个C、2个D、3个三、多项选择题(4′×2=8′)16、在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,则一定能判定四边形ABCD 为平行四边形的有()A、如果再加上条件“BC∥AD”,则四边形ABCD一定是平行四边形B、如果再加上条件“∠BAD=∠BCD”,则四边形ABCD一定是平行四边形C、如果再加上条件“OA=OC”,则四边形ABCD一定是平行四边形D、如果再加上条件“∠DBA=∠CBA”,那么四边形ABCD一定是平行四边形17、下列条件中不能判定一定是平行四边形的有()A、一组对角相等,一组邻角互补B、一组对边平行,另一组对边相等C、一组对边相等,一组对角相等D、一组对边平行,且一条对角线平分另一条对角四、解答题18、如图,已知E、F分别为ABCD的对边AD、BC上的点,且DE=BF,EM⊥AC于M,FN⊥AC于N,EF交AC于点O,求证:EF与MN互相平分(7分)。
一、选择题1.如图,在正八边形ABCDEFGH 中,AC 是对角线,则CAB ∠的大小是 ( )A .22.5︒B .21.5︒C .23.5︒D .24.5︒ 2.如图,在ABCD 中,3AB =,4=AD ,60ABC ∠=︒,过BC 的中点E 作EF AB ⊥,垂足为点F ,与DC 的延长线相交于点H ,则DEF 的面积是( )A .63+B .43C .23D .623+ 3.已知ABC 的面积为36,将ABC 沿BC 平移到A B C ''',使B '和C 重合,连接AC '交A C '于D ,则C DC '的面积为( )A .10B .14C .18D .24 4.如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分BAD 交BC 于点E ,且ADC 60∠=,12AB BC =,连接OE .下列结论:①AE CE >;②ABC S AB AC =⋅;③ABE AOE S S =;④14OE BC =;成立的个数有( )A .1个B .2个C .3个D .4个5.如图,在平行四边形ABCD 中,DE 平分∠ADC 交BC 边于点E ,已知BE =4cm ,AB =6cm ,则AD 的长度是( )A .4cmB .6cmC .8cmD .10cm6.在平行四边形ABCD 中,AB ⊥AC ,∠B =60°,AC =23cm ,则平行四边形ABCD 的周长是( )A .10cmB .11cmC .12cmD .13cm7.如图,在ABCD 中,4CD =,60B ︒∠=,:2:1BE EC =,依据尺规作图的痕迹,则ABCD 的面积为( )A .12B .122C .123D .125 8.如图,在平行四边形ABCD 中,E 为CD 上一点,28ABE ∠︒=,且CE BC =,AE DE =,则下列选项正确的为( )A .56BAE ∠=︒B .68AED ∠=︒C .112AEB ∠=︒D .122C ∠=︒9.如图,下面不能判定四边形ABCD 是平行四边形的是( )A .AB //CD,AB CD =B .,AB CD AD BC ==C .B DAB 180,AB CD ︒∠+∠==D .B D,BCA DAC ∠=∠∠=∠10.如图,平行四边形ABCD 的周长为36cm ,若点E 是AB 的中点,则线段OE 与线段AE 的和为( )A .18cmB .12cmC .9cmD .6cm11.如图,已知ABC ∆周长为1,连接ABC ∆三边的中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,依此类推,则第2020个三角形的周长是( )A .201912B .202012 C .12019 D .1202012.已知长方形的长和宽分别为a 和b ,其周长为4,则222a ab b ++的值为( ) A .2 B .4 C .8 D .16二、填空题13.如图,在ABC 中,13AB AC ==,10BC =.M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的动点,且5DE =.连接DN ,EM ,则图中阴影部分的面积和为______.14.如图,在四边形ABCD 中,AB 与CD 不平行,M ,N 分别是AD ,BC 的中点,4AB =,2DC =.对于MN 的长,给出了四种猜测:①4MN =;②3MN =;③2MN =;④1MN =.猜测错误的是(______) A .① B .② C .③ D .④15.如图,在ABCD 中,70A ∠=︒,将ABCD 绕顶点B 顺时针旋转到111A BC D ,当11C D 首次经过顶点C 时,旋转角为_______度.16.如图,线段AB ,BC 的垂直平分线1l ,2l 相交于点O .若135∠=︒,则A C ∠+∠的度数为______.17.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.18.如图,在△ABC 中,D 、E 分别为AB 、AC 边的中点,若DE =2,则BC 边的长为____.19.如图,在▱ABCD 中,AB >AD ,以A 为圆心,小于AD 的长为半径画弧,分别交AB 、CD 于E 、F ;再分别以E 、F 为圆心,大于EF 的一半长为半径画弧,两弧交于点G ,作射线AG 交CD 于点H .若AD =2,则DH =_____.20.如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=6,AB=12,则AE的长为_______.三、解答题21.已知直线l:y=kx+3k+1(k>0)经过定点A.(1)探求定点A的坐标.把函数表达式作如下变形:y=kx+3k+1=k(x+3)+1,当x=﹣3时,可以消去k,求出y=1,则定点A的坐标为.(2)如图1,已知△BCD各顶点的坐标分别为B(0,1),C(﹣4,1),D(0,4),直线l将△BCD的周长分成7:17两部分,求k的值.(3)如图2,设直线l与y轴交于点P,另一条直线y=(k﹣1)x+3k﹣2与y轴交于点Q,交直线l于点E,点F是EQ的中点.当点P从(0,5)沿y轴正方向运动到(0,10)时,求点F运动经过的路径长..22.如图,在平行四边形ABCD中,E、F分别在AB、CD边上,且AE CF求证:四边形BFDE是平行四边形.23.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB 的解析式;(2)若直线y=2x ﹣4与直线AB 相交于点C ,求点C 的坐标,并根据图象,直接写出关于x 的不等式2x ﹣4>kx +b 的解集.(3)动点P 在y 轴上运动,动点Q 在x 轴上运动,是否存在以P 、Q 、A 、C 为顶点,且以AC 为边的平行四边形,若存在请求出P 点的坐标;若不存在,请说明理由.24.已知,在四边形ABCD 中,160A C ︒∠+∠=,BE ,DF 分别为四边形ABCD 的外角CBN ∠,MDC ∠的平分线.(1)如图1,若//BE DF ,求C ∠的度数;(2)如图2,若BE ,DF 交于点G ,且//BE AD ,//DF AB ,求C ∠的度数.25.已知在四边形ABCD 中,A x ∠=,0180()0180C y x y ∠=︒<<︒︒<<︒,.(1) ABC ADC ∠+∠= (用含x y 、的代数式直接填空);(2) 如图1,若90x y ==︒,DE 平分ADC ∠,BF 平分CBM ∠,请写出DE 与BF 的位置关系,并说明理由;(3) 如图2,DFB ∠为四边形ABCD 的ABC ADC ∠∠、相邻的外角平分线所在直线构成的锐角.①若140x y +=︒,20DFB ∠=︒,试求x 、y ;②小明在作图时,发现DFB ∠不一定存在,请直接指出x 、y 满足什么条件时,DFB ∠不存在.26.如图,在平行四边形ABCD 中,AB <BC .(1)利用尺规作图,在BC 边上确定点E ,使点E 到边AB ,AD 的距离相等(不写作法,保留作图痕迹);(2)若BC =8,CD =5,则CE = .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】求出正八边形的内角和,算出每个内角的度数,再根据△ABC 为等腰三角形以及内角和为180°,可求出∠CAB 的大小【详解】解:∵正八边形的内角和为:()8-2180=1080⨯︒︒每个内角的度数为10808=135︒÷︒又∵AB =BC∴△ABC 是等腰三角形∴()1=180-135=22.52CAB ∠︒︒︒ 故选:A【点睛】本题考查多边形内角和与等腰三角形的性质,熟练掌握相关知识点是解决本题的关键 2.C解析:C【分析】根据平行四边形的性质得到AB=CD=3,AD=BC=4,求出BE、BF、EF,根据相似得出CH=1,EH=3,根据三角形的面积公式求△DFH的面积,即可求出答案.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC=4,AB∥CD,AB=CD=3,∵E为BC中点,∴BE=CE=2,∵∠B=60°,EF⊥AB,∴∠FEB=30°,∴BF=1,由勾股定理得:EF=3,∵AB∥CD,∴∠B=∠ECH,在△BFE和△CHE中,B ECHBE CEBEF CEH∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BFE≌△CHE(ASA),∴EF=EH=3,CH=BF=1,∴DH=4,∵S△DHF=12DH•FH=43,∴S△DEF=12S△DHF=23,故选:C.【点睛】本题主要考查对平行四边形的性质,平行线的性质,勾股定理,含30度角的直角三角形,三角形的面积,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.3.C解析:C【分析】连接AA ',根据平移的性质可知,AC ∥A C '' ,AC=A C '',即可解答;【详解】连接AA ',根据平移的性质可知,AC ∥A C '' ,AC=A C '',∴四边形AA CC ''是平行四边形,∴点D 是AC 、A C ' 的中点,∴A D '=CD , ∴1182C DC ABC S S '==故选:C .【点睛】本题利用了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等;4.B解析:B【分析】利用平行四边形的性质可得60ABC ADC ∠=∠=︒,120BAD ∠=︒,利用角平分线的性质证明ABE ∆是等边三角形,然后推出12AE BE BC ==,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.【详解】解:四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BAD ∠=︒,AE ∵平分BAD ∠,60BAE EAD ∴∠=∠=︒ABE ∴∆是等边三角形,AE AB BE ∴==,60AEB ∠=︒,12AB BC =, 12AE BE BC ∴==, AE CE ∴=,故①错误;可得30EAC ACE ∠=∠=︒90BAC ∴∠=︒,ABCD S AB AC ∴=⋅,故②正确;BE EC =,E ∴为BC 中点,ABE ACE S S ∆∆∴=,AO CO =, 1122AOE EOC AEC ABE S S S S ∆∆∆∆∴===, 2ABE AOE S S ∆∆∴=;故③不正确;四边形ABCD 是平行四边形,AC CO ∴=,AE CE =,EO AC ∴⊥,30∠=︒ACE ,12EO EC ∴=, 12EC AB =, 1144OE BC AD ∴==,故④正确; 故正确的个数为2个,故选:B .【点睛】此题主要考查了平行四边形的性质,以及等边三角形的判定与性质.注意证得ABE ∆是等边三角形是关键.5.D解析:D【分析】由已知平行四边形ABCD ,DE 平分∠ADC 可推出△DCE 为等腰三角形,所以得CE=CD=AB=6,那么AD=BC=BE+CE ,从而求出AD .【详解】解:已知平行四边形ABCD ,DE 平分∠ADC ,∴AD ∥BC ,CD=AB=6cm ,∠EDC=∠ADE ,AD=BC ,∴∠DEC=∠ADE ,∴∠DEC=∠CDE ,∴CE=CD=6cm ,∴BC=BE+CE=4+6=10cm ,∴AD=BC=10cm ,故选:D .【点睛】此题考查的知识点是平行四边形的性质及角平分线的性质,关键是由平行四边形的性质及角平分线的性质得等腰三角形通过等量代换求出AD .6.C解析:C【分析】可设AB x =,因为AB AC ⊥,60B ∠=︒,所以30ACB ∠=︒,所以2BC x =,在t R ABC △中,利用勾股定理可求x ,则平行四边形的边AB ,BC 的长度可求,则周长可求.【详解】如图:9060906030AB ACBAC B ACB ⊥∴∠=︒∠=︒∴∠=︒-︒=︒设AB x =,则2BC x =在t R ABC △中,由勾股定理可得: 222BC AB AC -= 23AC =()(222223x x ∴-=2312x ∴= 24222,4x x x x AB BC ∴=∴=±>∴=∴==∴平行四边形ABCD 周长为: ()24212+⨯=故选:C .【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质进行推理计算是解题关键.7.C解析:C【分析】由作图痕迹可得EF 为AB 的中垂线,结合60B ∠=︒判断出△ABE 为等边三角形,从而结合边长求出ABCD 在BC 边上的高为23,再根据比例关系求得BC 的长度,最终计算面积即可.【详解】设尺规作图所得直线与AB 交于F 点,根据题意可得EF 为AB 的中垂线,∴AE=BE ,又∵60B ∠=︒,∴△ABE 为等边三角形,边长AB=CD=4,∴BF=2,BE=4,2223EF BE BF =-=, ∴ABCD 在BC 边上的高为23,又∵:2:1BE EC =,BE=4,∴EC=2,BC=2+4=6,∴ABCD S =23×6=123,故选:C .【点睛】本题考查平行四边形的性质,中垂线的识别与性质,以及等边三角形的判定与性质,准确根据作图痕迹总结出等边三角形是解题关键.8.B解析:B【分析】解根据等腰三角形的性质得出∠EBC =∠BEC ,利用平行四边形的性质解答即可.【详解】∵四边形ABCD 是平行四边形,∴AB ∥DC ,AD ∥BC ,∴∠ABE =∠BEC =28°,∵CE=BC,∴∠EBC=∠BEC=28°,∴∠ABC=56°,∴∠BAD=∠C=124°,∠DAE=56°,∵AB∥DC,∴∠BAE=∠AED,∵AE=ED,∴∠D=∠DAE=56°,∴∠BAE=124°−56°=68°,∴∠AED=180°−56°−56°=68°,∴∠AEB=180°−68°−28°=84°,故选:B.【点睛】此题考查平行四边形的性质,关键是根据等腰三角形的性质得出∠EBC=∠BEC解答.9.C解析:C【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形判断即可.【详解】根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选C.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.10.C解析:C【分析】结合已知证明EO是△ABC的中位线,进而得出答案.【详解】解:∵平行四边形ABCD的周长为36cm,∴AB+BC=18cm,∵四边形ABCD是平行四边形,∴O是AC的中点,又∵点E是AB的中点,∴EO是△ABC的中位线,∴EO =12BC ,AE =12AB , ∴AE+EO =12×18=9(cm ). 故选:C .【点睛】本题考查了平行四边形的性质和中位线定理,熟知“平行四边形的对角线互相平分”和“三角形的中位线平行于第三边,且等于第三边的一半”是解题关键.11.A解析:A【分析】根据三角形的中位线定理建立周长之间的关系,按规律求解.【详解】根据三角形中位线定理可得第二个三角形的各边长都等于最大三角形各边的一半, 那么第二个三角形的周长=△ABC 的周长1111222⨯=⨯=, 第三个三角形的周长=△ABC 的周长2211112222⎛⎫⨯⨯== ⎪⎝⎭, ,第n 个三角形的周长112n -=, ∴第2020个三角形的周长201912=.故选:A .【点睛】 本题考查了三角形的中位线定理,解决本题的关键是利用三角形的中位线定理得到第n 个三角形的周长与第一个三角形的周长的规律.12.B解析:B【分析】由题意可以得到a+b 的值,再利用完全平方公式可以得到答案.【详解】解:由题意可得:2(a+b)=4,∴a+b=2,∴()2222224a ab b a b ++=+==, 故选B .【点睛】本题考查长方形周长与完全平方公式的综合应用,灵活应用有关知识求解是解题关键 .二、填空题13.30【分析】连接MN 根据题意可以得到MN 是三角形ABC 的中位线过点A 作AF 垂直于BC 与点F 进而求解面积即可;【详解】连接MN ∵MN 分别是ABAC 的中点∴MN 为三角形ABC 的中位线∵BC=10∴过点A解析:30【分析】连接MN ,根据题意可以得到MN 是三角形ABC 的中位线,过点A 作AF 垂直于BC 与点F ,进而求解面积即可;【详解】连接MN ,∵ M 、N 分别是AB 、AC 的中点,∴ MN 为三角形ABC 的中位线,∵BC=10,∴ 152MN BC == , 过点A 作AF 垂直于BC 与点F ,∵AB=AC=13,∴点F 为BC 的中点,∴152BF BC ==, ∴22=135=12AF - ,∴阴影部分的高为12,∵MN=DE=5,∴1=512=302S ⨯⨯阴影 , 故答案为:30.【点睛】本题考查了三角形的面积和中位线的性质,掌握数形结合的方法是解题的关键; 14.ABD 【分析】连接BD 取BD 中点G 连接MGNG 根据三角形中位线平行且等于第三边的一半可得:AB =2MGDC =2NG 再根据三角形两边之和大于第三边两边之差小于第三边即可得出MN 的取值范围继而即可求解【解析:ABD【分析】连接BD ,取BD 中点G ,连接MG 、NG ,根据三角形中位线平行且等于第三边的一半可得:AB =2MG ,DC =2NG ,再根据三角形两边之和大于第三边,两边之差小于第三边即可得出MN 的取值范围,继而即可求解.【详解】解:如图,连接BD ,取BD 中点G ,连接MG 、NG ,∵点M 、N 分别是AD 、BC 的中点,∴MG 是△ABD 的中位线,NG 是△BCD 的中位线,∴AB =2MG ,DC =2NG ,∵4AB =,2DC =,∴MG =2,NG =1,由三角形三边关系:MG -NG <MN <MG +NG ,∴1<MN <3,∴③2MN =猜测正确,故答案为:ABD .【点睛】本题考查三角形中位线定理及三角形三边关系,熟练掌握三角形中位线平行且等于第三边的一半,三角形任意两边之和大于第三边,任意两边之差小于第三边,解题的关键是根据不等关系作辅助线构造以MN 为一边的三角形.15.40【分析】由旋转的性质可知:BC=BC1得到∠BCC1=∠C1又因为旋转角∠ABA1=∠CBC1根据等腰三角形的性质计算即可【详解】解:∵▱ABCD 绕顶点B 顺时针旋转到▱A1BC1D1∴BC=BC解析:40【分析】由旋转的性质可知:BC=BC 1,得到∠BCC 1=∠C 1,又因为旋转角∠ABA 1=∠CBC 1,根据等腰三角形的性质计算即可.【详解】解:∵▱ABCD 绕顶点B 顺时针旋转到▱A 1BC 1D 1,∴BC=BC 1,∴∠BCC 1=∠C 1,∵∠A=70°,∴∠BCD=∠A=∠C 1=70°,∴∠BCC 1=∠C 1=70°,∴∠CBC 1=180°-2×70°=40°,∴当C D首次经过顶点C时,旋转角为40°,11故答案为:40.【点睛】本题考查了平行四边形的性质、旋转的性质、等腰三角形的判定和性质以及三角形的内角和定理,解题的关键是证明三角形CBC1是等腰三角形.16.35°【分析】连接OB同理得AO=OB=OC由等腰三角形的性质得∠A=∠ABO∠C=∠CBO进而得到∠A+∠C=∠ABC由等腰三角形三线合一得∠AOD=∠BOD∠BOE=∠COE由平角的定义得∠DO解析:35°【分析】连接OB,同理得AO=OB=OC,由等腰三角形的性质得∠A=∠ABO,∠C=∠CBO,进而得到∠A+∠C=∠ABC,由等腰三角形三线合一得∠AOD=∠BOD,∠BOE=∠COE,由平角的定义得∠DOE=145°,最后由四边形内角和定理可得结论.【详解】解:连接OB,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∠A=∠ABO,∠C=∠CBO,∴∠A+∠C=∠ABC,∵∠DOE+∠1=180°,∠1=35°,∴∠DOE=145°,∴∠ABC=360°-∠DOE-∠BDO-∠BEO=35°;故答案为:35°【点睛】本题主要考查线段的垂直平分线的性质,等腰三角形的性质,四边形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.1800°【分析】根据n边形从一个顶点出发可引出(n-3)条对角线可得n-3=9求出n的值最后根据多边形内角和公式可得结论【详解】解:由题意得:n-3=9解得n=12则该n边形的内角和是:(12-2解析:1800°【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=9,求出n的值,最后根据多边形内角和公式可得结论.【详解】解:由题意得:n-3=9,解得n=12,则该n边形的内角和是:(12-2)×180°=1800°,故答案为:1800°.【点睛】本题考查了多边形的对角线和多边形的内角和公式,掌握n边形从一个顶点出发可引出(n-3)条对角线是解题的关键.18.【分析】根据三角形中位线定理解答即可【详解】解:∵DE分别为ABAC 边的中点∴DE是△ABC的中位线∴BC=2DE=4故答案为:4【点睛】本题考查的是三角形中位线定理掌握三角形的中位线平行于第三边且解析:【分析】根据三角形中位线定理解答即可.【详解】解:∵D、E分别为AB、AC边的中点,∴DE是△ABC的中位线,∴BC=2DE=4.故答案为:4.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.19.2【分析】依据角平分线的定义以及平行四边形的性质即可得到∠DAH=∠DHA进而得到DA=DH【详解】解:由作图可得AH平分∠BAD∴∠BAH=∠DAH∵平行四边形ABCD中CD∥AB∴∠BAH=∠D解析:2【分析】依据角平分线的定义以及平行四边形的性质,即可得到∠DAH=∠DHA,进而得到DA=DH.【详解】解:由作图可得,AH平分∠BAD,∴∠BAH=∠DAH,∵平行四边形ABCD中,CD∥AB,∴∠BAH=∠DHA,∴∠DAH=∠DHA,∴DA=DH,又∵AD=2,∴DH=2,故答案为:2.【点睛】本题考查基本作图以及平行四边形的性质的运用,解题关键是掌握平行四边形的对边平行.20.4【分析】过点C作CG⊥AB的延长线于点G设AE=x由于▱ABCD沿EF对折可得出AE=CE=x再求出∠BCG=30°BG=BC=3由勾股定理得到则EG=EB+BG=12-x+3=15-x在△CEG解析:4.【分析】过点C作CG⊥AB的延长线于点G,设AE=x,由于▱ABCD沿EF对折可得出AE=CE=x, 再求出∠BCG=30°,BG=12BC=3, 由勾股定理得到33CG=,则EG=EB+BG=12-x+3=15-x,在△CEG中,利用勾股定理列出方程即可求出x的值.【详解】解:过点C作CG⊥AB的延长线于点G,∵▱ABCD沿EF对折,∴AE=CE设AE=x,则CE=x,EB=12-x,∵AD=6,∠A=60°,∴BC=6, ∠CBG=60°,∴∠BCG=30°,∴BG=12BC=3,在△BCG中,由勾股定理可得:33CG=∴EG=EB+BG=12-x+3=15-x在△CEG中,由勾股定理可得:222153x x-+=()(3),解得:8.4x=故答案为8.4【点睛】本题考查平行四边形的综合问题,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.三、解答题21.(1) (-3,1);(2)k=1.5;(3)F 1F 2 2.5=.【分析】(1)y =kx +3k +1=k (x +3)+1,当x =﹣3时,可以消去k ,求出y =1,则定点A 的坐标(-3,1);(2)由两点距离可求BC=4,BD=3,在Rt △BCD 中,由勾股定理CD=225BC BD +=,由AC=-3+4=1,由题意CA+CE=7712242⨯=,CE=712-=52,可得CE :CD=52:5=1:2,可得E 为CD 的中点E (-2,2.5)由点E 在直线l 上,可求k=1.5; (3)当直线l :y 31kx k =++过(0,5),43k =,另一直线1y 23x =+,点Q 1(0,2),当直线l :y 31kx k =++过(0,10),3k =,另一直线y 27x =+,点Q 2(0,7),Q 1Q 2=7-2=5,F 1为EQ 1中点,F 2为EQ 2的中点,求出F 1、F 2坐标即可.【详解】解:(1)y =kx +3k +1=k (x +3)+1,当x =﹣3时,可以消去k ,求出y =1,则定点A 的坐标(-3,1);(2)BC=4,BD=3,在Rt △BCD 中,由勾股定理CD=225BC BD +=,∵AC=-3+4=1,∵CA+CE=7712242⨯=,CE=712-=52, ∴CE :CD=52:5=1:2, ∴E 为CD 的中点,40142, 2.522-++=-=,E (-2,2.5), ∵点E 在直线l 上,则2.5=-2k +3k +1,则k=1.5;(3)当直线l :y 31kx k =++过(0,5),则5031k k =⨯++,解得43k =, 另一直线44y 13233x ⎛⎫=-+⨯-⎪⎝⎭, 则1y 23x =+,点Q 1(0,2), 当直线l :y 31kx k =++过(0,10),则10031k k =⨯++,解得3k =,另一直线()y 31332x =-+⨯-,则y 27x =+,点Q 2(0,7),Q 1Q 2=7-2=5,F 1为EQ 1中点,E (-3,1),Q 1(0,2),-3+03=-22,1+23=22F 1(32-,32) F 2为EQ 2的中点,E (-3,1),Q 2(0,7),-3+03=-22,1+7=42F 1F 2=4-32=2.5.【点睛】本题考查一次函数过定点,按比例分三角形周长,线段中点坐标,掌握求一次函数过定点方法,按比例分三角形周长方法,线段中点坐标求法是解题关键.22.证明见解析.【分析】欲证明四边形BFDE 是平行四边形,只要证明BE=DF ,BE ∥DF 即可.【详解】证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB = CD ,∵AE=CF ,∴AB-AE= CD-CF ,即BE=DF ,∴四边形BFDE 是平行四边形.【点睛】本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质. 23.(1)5y x =-+;(2)3x >;(3)存在,(0,2)或(0,2-).【分析】(1)利用待定系数法把点A (5,0),B (1,4)代入y kx b =+可得关于k 、b 得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可求得点C 的坐标;根据C 点坐标可直接得到关于x 的不等式2x ﹣4>kx +b 的解集;(3)分CQ 为对角线和CP 为对角线时两种情况讨论,利用平行四边形的性质求解即可.【详解】(1)∵直线y kx b =+经过点A (5,0),B (1,4),∴504k b k b +=⎧⎨+=⎩, 解得15k b =-⎧⎨=⎩, ∴直线AB 的解析式为:5y x =-+;(2)∵若直线24y x =-与直线AB 相交于点C ,∴524y x y x =-+⎧⎨=-⎩, 解得32x y =⎧⎨=⎩, ∴点C (3,2);根据图象:当3x >时,直线24y x=﹣在直线y kx b =+的上方, ∴不等式2x ﹣4>kx +b 的解集为:3x >;(3)存在,理由如下:当CQ 为对角线时,如图1所示:根据平行四边形的性质得PC ∥AQ ,∴点P 的纵坐标与点C 的纵坐标相等,此时点P 的坐标为(0,2);当CP 为对角线时,如图2所示:根据平行四边形的性质得PC 的中点在x 轴上,设点P 的坐标为(0,n ), 则202n ,解得2n =-,此时点P 的坐标为(0,2-);综上,点P 的坐标为(0,2)或(0,2-).【点睛】本题考查了平行四边形的性质,待定系数法求一次函数解析式,两直线的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息,利用数形结合思想解决问题.24.(1)80C ∠=︒;(2)120C ∠=︒.【分析】(1)如图1,过点C 作CH ∥DF ,根据四边形的内角和为360°,求出∠MDC+∠CBN=160°,利用角平分线的定义可得:∠FDC+∠CBE=80°,最后根据平行线的性质可得结论;(2)如图2,连接GC 并延长,同理得:∠MDC+∠CBN=160°,∠FDC+∠CBE=80°,求出∠DGB=40°,可得结论.【详解】(1)如图1,过点C 作CH ∥DF ,∵BE ∥DF ,∴BE ∥DF ∥CH ,∴∠FDC=∠DCH ,∠BCH=∠EBC ,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC ,∵BE ,DF 分别为四边形ABCD 的外角∠CBN ,∠MDC 的平分线,∴∠FDC=12∠CDM ,∠EBC=12∠CBN , ∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°-160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)如图2,连接GC 并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE ∥AD ,DF ∥AB ,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.【点睛】本题考查了平行线的性质及其判定,多边形的内角和公式,三角形外角的性质,角平分线的定义,利用多边形的内角和公式和平行线的性质是解题关键.25.(1)360x y ︒--;(2)DE BF ⊥;(3)①5090x y ⎧=︒⎨=︒⎩;②x y =【分析】(1)利用四边形内角和定理进行计算,得出答案即可;(2)利用角平分线的性质集合三角形内角和定理的性质得出DE 与BF 的位置关系即可;(3)①利用角平分线的性质以及三角形外角的性质定理,得出1122DFB y x ∠=-,解方程组即可得出x ,y ;②当x=y 时,可得ABC ∠、ADC ∠相邻的外角平分线所在的直线互相平行,此时DFB ∠不存在;【详解】(1)∵360A ABC C ADC ∠+∠+∠+∠=︒,A x ∠=,0180()0180C y x y ∠=︒<<︒︒<<︒,∴360ABC ADC x y ∠+∠=︒--; 故答案是:360x y ︒--.(2)DE BF ⊥.理由:如图,∵DE 平分ADC ∠,BF 平分MBC ∠,∴12CDE ADC ∠=∠,12CBF CBM ∠=∠, 又∵()180180180CBM ABC ADCADC ∠=︒-∠=︒-︒-∠=∠,∴CDE CBF ∠=∠,又∵DGC BGE ∠=∠,∴90BEG C ∠=∠=︒,∴DE BF ⊥.(3)①由(1)得: ()360360CDN CBM x y x y ∠+∠=︒-︒--=+,∵BF 、DF 分别平分CBM ∠、CDN ∠,∴()12CDF CBF x y ∠+∠=+, 如图,连接BD ,则,180CBD CDB y ∠+∠=︒-,∴()111180+180222FBD FDB y x y y x ∠+∠=︒-+=︒-+,∴112022DFBy x ∠=-=︒, 解方程组:140112022x y y x ⎧+=︒⎪⎨-=︒⎪⎩, 解得:5090x y ⎧=︒⎨=︒⎩;②当x y =时,1118018022FBD FDB y x ∠+∠=︒-+=︒, ∴ABC ∠、ADC ∠相邻的外角平分线所在直线互相平行,此时DFB ∠不存在.【点睛】本题主要考查了多边形内角和与外角定理,结合三角形外角性质计算是关键. 26.(1)见解析;(2)3.【分析】根据角平分线上的点到角的两边距离相等知作出∠A 的平分线即可;根据平行四边形的性质可知AB=CD=5,AD ∥BC ,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA ,再根据等腰三角形的性质和线段的和差关系即可求解.【详解】(1)如图所示:E 点即为所求.(2)∵四边形ABCD 是平行四边形,∴AB=CD=5,AD ∥BC ,∴∠DAE=∠AEB ,∵AE 是∠A 的平分线,∴∠DAE=∠BAE ,∴∠BAE=∠BEA ,∴BE=BA=5,∴CE=BC ﹣BE=3.考点:作图—复杂作图;平行四边形的性质。
2024年苏教版八年级数学下册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、如图,等边三角形ABC内接于⊙O,那么∠BOC的度数是()A. 150°B. 120°C. 90°D. 60°2、【题文】PM 2.5是指大气中直径小于或等于0.0000025 m的颗粒物,将0.0000025用科学记数法表示为【】A.B.C.D.3、函数y=kx+b与函数y=kbx在同一坐标系中的大致图象正确的是()A.B.C.D.4、若点A(-2,y1)、B(-1,y2)、C(9,y3)是二次函数y=-x2+3x+图象上的三点,则y1、y2和y3的大小关系是()A. y1<y2<y3B. y1>y2>y3C. y3>y1>y2D. y3<y1<y25、下列命题:①圆周角等于圆心角的一半;②是方程的解;③平行四边形既是中心对称图形又是轴对称图形;④的算术平方根是4。
其中真命题的个数有()A. 1B. 2C. 3D. 46、【题文】如图;某同学不小心把一块三角形的玻璃打碎成了三块,现要到玻璃店去配一块完全一样的玻璃,那么既省事又能达到目的的办法是()A. 带①去B. 带②去C. 带③去D. 带①和②去评卷人得分二、填空题(共7题,共14分)7、一个三角形的三边长分别为1,,2,另一个三角形的两边长分别为和2,要让这两个三角形相似,则另一个三角形的第三边长为____.8、测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是____cm2.9、在△ABC中,D是边AB上一点,∠ACD=∠B,AB=9,AD=4,那么AC的长为____.10、如图,格点图中有2个三角形,若相邻两个格点的横向距离和纵向距离都为1,则AB=____,BC=____,DE=____,EF=____,计算=____,=____,我们会得到AB与DE这两条线段的比值与BC,EF这两条线段的比值____(填相等或不相等),即=那么这四条线段叫做____;简称比例线段.11、(2016秋•三亚校级月考)完成求解过程;并写出括号里的理由:如图;在直角△ABC中,∠C=90°,DE∥BC,BE平分∠ABC,∠ADE=40°,求∠BEC的度数.解:∵DE∥BC(已知)∴____=∠ADE=40°∵BE平分∠ABC(已知)∴∠CBE=∠____=____度。
2024-2025学年华师大新版八年级数学下册阶段测试试卷103考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共5题,共10分)1、函数y=中,自变量x的取值范围是()A. x≠0B. x≥2C. x>2且x≠0D. x≥2且x≠02、如图,在△ABC中,∠BAD=∠DAE=∠EAF=∠FAC,则()是△ABC的角平分线.A. ADB. AEC. AFD. AC3、已知等腰三角形两边长是8cm和4cm,那么它的周长是()A. 12cmB. 16cmC. 16cm或20cmD. 20cm4、下列二次根式中,是最简二次根式的是()A.B.C.D.5、矩形ABCD中,R,P分别是边DC,BC上的点,点E、F分别是AP、RP的中点,当P在BC上由B向C移动而R不动时,EF的长()A. 逐渐增大B. 不改变C. 逐渐减小D. 不能确定评卷人得分二、填空题(共6题,共12分)6、(2014春•锦州月考)如图,在△ABC中,BI、CI分别平分∠ABC、∠ACF,DE过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于.7、如图,矩形ABCD中,AB=10cm,BC=6cm,将该矩形沿AB方向平移后的矩形与原矩形重叠部分的面积为24cm2.8、在直角△ABC中,∠C=90°,如果b:a=3:,那么∠A= .9、如图,已知正方形ABCD以AB为边向外作等边三角形ABECE与DB相交于点F则∠AFD的度数 ______ .10、已知一条3cm长的水平线段AB现将该线段向上平移4cm得到线段CD(点C是点A的对应点)连接ACBD则该四边形ABCD的周长为 ______ .11、用一根长为60米的绳子围成一个矩形,那么这个矩形的面积y(平方米)与一条边长x(米)的函数解析式为,定义域为米.评卷人得分三、判断题(共9题,共18分)12、-4的算术平方根是+2.(判断对错)13、多项式3a2b3-4ab+2是五次三项式,它的二次项是4ab..(判断对错)14、如果a>b,c<0,则ac3>bc3..15、判断:÷===1 ()16、()17、判断对错:关于中心对称的两个图形全等。
一、选择题1.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB=6,BC=10,则EF 长为( )A .1B .1.5C .2D .2.52.如图,在ABCD 中,4CD =,60B ︒∠=,:2:1BE EC =,依据尺规作图的痕迹,则ABCD 的面积为( )A .12B .122C .123D .1253.正多边形的每个外角为60度,则多边形为( )边形. A .4 B .6C .8D .104.如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =4,则AB 的长为( )A .4B .3C .52D .25.如图,设M 是ABCD 边AB 上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定6.如图,平行四边形ABCD 的周长是56cm ,ABC ∆的周长是36m ,则AC 的长为( )A .6cmB .12cmC .4cmD .8cm7.已知在四边形ABCD 中,3AB =,5CD =,M ,N 分别是AD ,BC 的中点,则线段MN的取值范围是( )A .14MN <<B .14MN <≤C .28MN <<D .28MN <≤8.如图,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =100°,则∠DAE 的度数为( )A .20°B .25°C .30°D .35° 9.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( )A .13B .14C .15D .1610.有下列命题:①有一个角为60°的等腰三角形是等边三角形;②345③三角形三边垂直平分线的交点到三角形三个顶点的距离相等;④平行四边形的对角线相等;⑤顺次连结任意四边形各边的中点组成的新四边形是平行四边形.正确的个数有( ) A .4个 B .3个 C .2个 D .1个 11.已知长方形的长和宽分别为a 和b ,其周长为4,则222a ab b ++的值为( ) A .2B .4C .8D .1612.如图,若ABCD 的顶点O ,A ,B 的坐标分别为()0,0,()4,0-,()5,3-,则顶点C 的坐标为( )A .()1,3-B .()3,1-C .()4,1--D .()5,1-二、填空题13.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.14.如图,ABC 的中线AD 与高CE 交于点F ,AE EF =,2FD =,24ACF S =△,则AB 的长为__________.15.如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =4,BC =10,则EF 的长为_____.16.如图,在平行四边形ABCD 中,点M 为边AD 上一点,AM =2MD ,点E ,点F 分别是BM ,CM 中点,若EF =6,则AM 的长为_____.17.如图,在△ABC 中,∠ACB =90°,AB =13 cm ,BC =12 cm ,点D 在边AB 上,AD =AC ,AE ⊥CD ,垂足为E ,点F 是BC 的中点,则EF =______cm .18.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).19.如图,平行四边形ABCD在平面直角坐标系中,已知∠DAB=60°,A(﹣2,0),点P 在AD上,连接PO,当OP⊥AD时,点P到y轴的距离为_____.20.如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=6,AB=12,则AE的长为_______.三、解答题21.已知:如图AB=AC,AB⊥AC,AD=AE,AD⊥AE,点M为CD的中点求证:2AM=BE22.如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE =6,CE=8,AE=10.(1)求AB的长;(2)求平行四边形ABCD的面积;.23.如图,在平行四边形ABCD中,E、F分别在AB、CD边上,且AE CF求证:四边形BFDE是平行四边形.24.已知,在四边形ABCD 中,160A C ︒∠+∠=,BE ,DF 分别为四边形ABCD 的外角CBN ∠,MDC ∠的平分线.(1)如图1,若//BE DF ,求C ∠的度数;(2)如图2,若BE ,DF 交于点G ,且//BE AD ,//DF AB ,求C ∠的度数. 25.如图,已知:AB ∥CD ,BE ⊥AD ,垂足为点E ,CF ⊥AD ,垂足为点F ,并且AE=DF . 求证:四边形BECF 是平行四边形.26.如图,E F 、是平行四边形ABCD 的对角线AC 上的两点,且AE CF =.(1)证明:四边形BFDE 是平行四边形;(2)延长BF 交CD 于G ,若AE EF FC ==,证明:点G 是CD 的中点.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据平行四边形的性质可得AFB FBC ∠=∠,由角平分线可得ABF FBC ∠=∠,所以AFB ABF ∠=∠,所以6AF AB ==,同理可得6DE CD ==,则根据EF AF DF AD =+-即可求解. 【详解】∵四边形ABCD 是平行四边形,∴//AD BC ,10AD BC ==,6DC AB ==, ∴AFB FBC ∠=∠, ∴BF 平分ABC ∠, ∴ABF FBC ∠=∠, ∴AFB ABF ∠=∠, ∴6AF AB ==, 同理可得6DE DC ==,∴66102EF AF DE AD =+-=+-=. 故选:C . 【点睛】本题主要考查了平行四边形的性质、角平分线的定义,解题的关键是依据数学模型“角平分线+平行线=等腰三角形”转化线段.2.C解析:C 【分析】由作图痕迹可得EF 为AB 的中垂线,结合60B ∠=︒判断出△ABE 为等边三角形,从而结合边长求出ABCD 在BC 边上的高为BC 的长度,最终计算面积即可. 【详解】设尺规作图所得直线与AB 交于F 点,根据题意可得EF 为AB 的中垂线, ∴AE=BE , 又∵60B ∠=︒,∴△ABE 为等边三角形,边长AB=CD=4,∴BF=2,BE=4,EF ==∴ABCD 在BC 边上的高为又∵:2:1BE EC =,BE=4, ∴EC=2,BC=2+4=6, ∴ABCDS=故选:C .【点睛】本题考查平行四边形的性质,中垂线的识别与性质,以及等边三角形的判定与性质,准确根据作图痕迹总结出等边三角形是解题关键.3.B解析:B【分析】利用多边形的外角和360除以外角60得到多边形的边数.【详解】=6,多边形的边数为36060故选:B.【点睛】此题考查多边形的外角和定理,正多边形的性质,利用外角和除以外角的度数求正多边形的边数是最简单的题型.4.A解析:A【分析】根据平行四边形性质得出AB=DC,AD//BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【详解】解:∵四边形ABCD是平行四边形,∴AB=DC,AD//BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=4,∴DC=AB=DE=4,故选A.本题考查了平行四边形性质,平行线性质,角平分线的定义,等腰三角形的判定的应用,关键是求出DE=AE=DC .5.A解析:A 【分析】如图(见解析),过点M 作//MN BC ,交CD 于点N ,先根据平行四边形的判定可得四边形AMND 和四边形BMNC 都是平行四边形,再根据平行四边形的性质即可得. 【详解】如图,过点M 作//MN BC ,交CD 于点N , 四边形ABCD 是平行四边形,//,//AB CD AD BC ∴,////AD BC MN ∴,∴四边形AMND 和四边形BMNC 都是平行四边形,12,DMNCMN SS SS ∴==, 12DMNCMNS S SS S ∴=+=+,故选:A .【点睛】本题考查了平行四边形的判定与性质,通过作辅助线,构造平行四边形是解题关键.6.D解析:D 【分析】ABC ∆的周长=AB+BC+AC ,而AB+BC 为平行四边形ABCD 的周长的一半,代入数值求解即可. 【详解】因为四边形ABCD 是平行四边形, ∴AB=DC ,AD=BC ,∵▱ABCD 的周长是56cm , ∴AB+BC=28cm ,∵△ABC 的周长是36cm , ∴AB+BC+AC=36cm , ∴AC=36cm−28cm=8cm. 故选D .本题考查了平行四边形的性质,根据题意列出三角形周长的关系式,结合平行四边形周长的性质求解是本题的关键.7.B解析:B 【分析】利用中位线定理作出辅助线,利用三边关系可得MN 的取值范围. 【详解】连接BD ,过M 作MG ∥AB ,连接NG . ∵M 是边AD 的中点,AB=3,MG ∥AB , ∴MG 是△ABD 的中位线,BG=GD ,1322MG AB ==; ∵N 是BC 的中点,BG=GD ,CD=5, ∴NG 是△BCD 的中位线,1522NG CD ==, 在△MNG 中,由三角形三边关系可知NG-MG <MN <MG+NG ,即53532222MN -<<+, ∴14MN <<,当MN=MG+NG ,即MN=4时,四边形ABCD 是梯形, 故线段MN 长的取值范围是1<MN≤4. 故选B . 【点睛】解答此题的关键是根据题意作出辅助线,利用三角形中位线定理及三角形三边关系解答.8.A解析:A 【分析】由▱ABCD 与▱DCFE 的周长相等,可得到AD =DE 即△ADE 是等腰三角形,再由且∠BAD =60°,∠F =100°,即可求出∠DAE 的度数. 【详解】∵▱ABCD 与▱DCFE 的周长相等,且CD =CD , ∴AD =DE , ∵∠DAE =∠DEA , ∵∠BAD =60°,∠F =100°,∴∠ADC =120°,∠CDE ═∠F =100°, ∴∠ADE =360°﹣120°﹣100°=140°, ∴∠DAE =(180°﹣140°)÷2=20°, 故选A . 【点睛】本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.9.C解析:C 【解析】试题分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解:∵一个正多边形的每个内角都为156°, ∴这个正多边形的每个外角都为:180°﹣156°=24°, ∴这个多边形的边数为:360°÷24°=15, 故选C .考点:多边形内角与外角.10.B解析:B 【分析】根据各图形的性质和判定可以选出正确答案. 【详解】解:①为等边三角形的判定定理,正确;对于②,2227575+==≠,,所以错误;∵线段垂直平分线上点到线段两端点距离相等,所以三角形三边垂直平分线的交点到三角形三个顶点的距离相等,③正确;矩形的对角线相等,一般的平行四边形对角线不一定相等,④错误;顺次连结任意四边形各边的中点组成的新四边形各组对边分别与某一条对角线平行,所以新四边形是平行四边形,⑤正确, 故选B . 【点睛】本题考查三角形与四边形的性质与判定,灵活应用有关定理求证是解题关键 .11.B解析:B 【分析】由题意可以得到a+b 的值,再利用完全平方公式可以得到答案. 【详解】解:由题意可得:2(a+b)=4,∴a+b=2,∴()2222224a ab b a b ++=+==, 故选B .【点睛】本题考查长方形周长与完全平方公式的综合应用,灵活应用有关知识求解是解题关键 . 12.A解析:A【分析】利用平行四边形的性质其对边相等,进而得出C 点的横纵坐标.【详解】解:∵▱OABC 的顶点O ,A ,B 的坐标分别为(0,0),(-4,0),(-5,3), ∴AO=BC=4,C 点纵坐标为:3,B 点横坐标为:-5,∴C 点横坐标为:-1,则点C 的坐标为:(-1,3).故选:A .【点睛】此题主要考查了平行四边形的性质,熟练应用平行四边形的性质是解题关键.二、填空题13.【分析】根据求出根据多边形内角和公式求出五边形的内角和即可得到答案【详解】∵∴∵五边形内角和=∴==故答案为:【点睛】此题考查两直线平行同旁内角互补多边形内角和公式熟记多边形内角和计算公式是解题的关键 解析:360︒【分析】根据//AE BC 求出180A B ∠+∠=︒,根据多边形内角和公式求出五边形ABCDE 的内角和,即可得到答案.【详解】∵//AE BC ,∴180A B ∠+∠=︒,∵五边形内角和=5218540(0)-⨯︒=︒,∴C D E ∠+∠+∠=540180︒-︒=360︒,故答案为:360︒.【点睛】此题考查两直线平行同旁内角互补,多边形内角和公式,熟记多边形内角和计算公式是解题的关键.14.【分析】延长AD 作交于点H 过点D 作根据题意可证明是等腰直角三角形结合中位线的性质证明继而证明是等腰直角三角形由勾股定理解得再根据三角形面积公式解得CH 的值设EF=x 由线段和差关系得到从而解出x 的值即解析:62【分析】延长AD ,作AH CH ⊥交于点H ,过点D 作DQ CF ⊥,根据题意可证明AEF 是等腰直角三角形,结合中位线的性质,证明//DQ BE ,继而证明FDQ 是等腰直角三角形,由勾股定理解得2FQ DQ ==,再根据三角形面积公式解得CH 的值,设EF=x ,由线段和差关系得到EF FQ FC FQ +=-,从而解出x 的值即可.【详解】延长AD ,作AH CH ⊥交于点H ,过点D 作DQ CF ⊥,CE AB ⊥且AE=AF ,AEF ∴是等腰直角三角形,45EAF EFA ∴∠=∠=︒又90DQC BEC ∠=∠=︒,D 为BC 中点,//DQ BE ∴,且Q 为CE 中点EQ CQ ∴= 即:EF+FQ=FC-FQ45AEF ∠=︒ 45QFD ∴∠=︒FDQ ∴是等腰直角三角形,又2FD =2FQ DQ ∴==设EF=x ,在等腰直角三角形AEF 中,AE=EF=x ,2AF x =1242ACF S AF CH ∴=⋅⋅= 242CH x ∴=在等腰直角三角形FHC 中,48CF x∴=EF FQ FC FQ +=-48x x∴=2248480x x ∴=∴+-=x ∴=x =-(舍去)EF AE ∴==1//,2QE BE QE BE =BE ∴=AB ∴==故答案为:【点睛】本题考查等腰直角三角形的判定与性质、中位线的性质、勾股定理等知识,是重要考点,有一定难度,掌握相关知识是解题关键.15.3【分析】先根据三角形中位线定理求得DE 然后再根据直角三角形的性质求出DF 最后运用线段的和差计算即可【详解】解:∵DE 为△ABC 的中位线∴DE =BC =5∵∠AFB =90°D 是AB 的中点∴DF =AB =解析:3【分析】先根据三角形中位线定理求得DE ,然后再根据直角三角形的性质求出DF ,最后运用线段的和差计算即可.【详解】解:∵DE 为△ABC 的中位线,∴DE =12BC =5, ∵∠AFB =90°,D 是AB 的中点,∴DF =12AB =2, ∴EF =DE ﹣DF =3.故答案为3.【点睛】本题主要考查了三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边且等于第三边的一半是解答本题的关键.16.8【分析】利用三角形中位线的性质得到再根据平行四边形的性质求解即可;【详解】∵点E 点F 分别是BMCM 中点∴EF 是△BCM 的中位线∴∵四边形ABCD 是平行四边形∴又∵∴故答案是8【点睛】本题主要考查了 解析:8【分析】利用三角形中位线的性质得到22612BC EF ==⨯=,再根据平行四边形的性质求解即可;【详解】∵点E ,点F 分别是BM ,CM 中点,∴EF 是△BCM 的中位线,∴22612BC EF ==⨯=,∵四边形ABCD 是平行四边形,∴12AD BC ==,又∵2AM MD =, ∴2212833AM AD ==⨯=. 故答案是8.【点睛】 本题主要考查了三角形中位线的性质,平行四边形的性质,准确判定计算是解题的关键. 17.4【分析】根据勾股定理求出AC 得到BD 的长根据等腰三角形的性质得到CE =DE 根据三角形中位线定理解答即可【详解】在△ABC 中∠ACB =90°∴AC ===5∴AD =AC =5∴BD =AB−AD =13−5解析:4【分析】根据勾股定理求出AC ,得到BD 的长,根据等腰三角形的性质得到CE =DE ,根据三角形中位线定理解答即可.【详解】在△ABC 中,∠ACB =90°,∴AC5,∴AD =AC =5,∴BD =AB−AD =13−5=8,∵AC =AD ,AE ⊥CD ,∴CE =DE ,∵CE =DE ,CF =BF ,∴EF 是△CBD 的中位线,∴EF =12BD =4, 故答案为:4.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18.③【分析】根据正多边形的内角度数解答即可【详解】∵正三角形的每个内角都是60度能将360度整除故可以用其镶嵌地面;∵正方形的每个内角都是90度能将360度整除故可以用其镶嵌地面;∵正五边形的每个内角解析:③【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面,故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.19.【分析】首先根据点A的坐标求得OA的长然后求得PO的长从而求得点P 到y轴的距离即可【详解】解:∵A(﹣20)∴OA=2∵∠DAB=60°OP⊥AD∴∠AOP=30°∴AP=1∴OP=作PE⊥y轴∵∠解析:3 2【分析】首先根据点A的坐标求得OA的长,然后求得PO的长,从而求得点P到y轴的距离即可.【详解】解:∵A(﹣2,0),∴OA=2,∵∠DAB=60°,OP⊥AD,∴∠AOP=30°,∴AP=1,∴OP=3,作PE⊥y轴,∵∠POA=30°,∴∠OPE=30°,∴3∴PE=32,∴点P到y轴的距离为32,故答案为32.【点睛】考查了平行四边形的性质,能够将点的坐标转化为线段的长是解答本题的关键,难度不大.20.4【分析】过点C作CG⊥AB的延长线于点G设AE=x由于▱ABCD沿EF对折可得出AE=CE=x再求出∠BCG=30°BG=BC=3由勾股定理得到则EG=EB+BG=12-x+3=15-x在△CEG解析:4.【分析】过点C作CG⊥AB的延长线于点G,设AE=x,由于▱ABCD沿EF对折可得出AE=CE=x, 再求出∠BCG=30°,BG=12BC=3, 由勾股定理得到33CG=,则EG=EB+BG=12-x+3=15-x,在△CEG中,利用勾股定理列出方程即可求出x的值.【详解】解:过点C作CG⊥AB的延长线于点G,∵▱ABCD沿EF对折,∴AE=CE设AE=x,则CE=x,EB=12-x,∵AD=6,∠A=60°,∴BC=6, ∠CBG=60°,∴∠BCG=30°,∴BG=12BC=3,在△BCG中,由勾股定理可得:33CG=∴EG=EB+BG=12-x+3=15-x在△CEG中,由勾股定理可得:222153x x-+=()(3),解得:8.4x=故答案为8.4【点睛】本题考查平行四边形的综合问题,解题的关键是证明△D′CF≌△ECB,然后利用勾股定理列出方程,本题属于中等题型.三、解答题21.详见解析【分析】作CN∥AM,交DA延长线于N,根据AM∥CN,点M是CD的中点,得到AM是△DCN的中位线,推出CN=2AM,AE=AN,根据∠BAC=∠DAE=90︒证出∠CAN=∠BAE,证得△BAE≌△CAN,推出BE=CN,由此得到结论.【详解】如图,作CN∥AM,交DA延长线于N,∵AM∥CN,点M是CD的中点,∴AM是△DCN的中位线,∴CN=2AM,AD=AN,∴AE=AN,∵AD⊥AE,AB⊥AC,∴∠BAC=∠DAE=90︒∴∠EAN=90︒,∴∠CAE+∠EAN=∠BAC+∠CAE,∴∠CAN=∠BAE,∵AB=AC,AE=AN,∴△BAE≌△CAN,∴BE=CN,∴2AM=BE..【点睛】此题考查全等三角形的判定及性质,三角形中位线的性质,题中辅助线的引出是解题的关键,在三角形中,已知一边中点时,通常是利用中点构造全等三角形解决问题.22.(1)10;(2)128.【分析】(1)由平行四边形的性质及角平分线的定义可得出AB=AE,进而再利用题中数据即可求解结论;(2)易证△CED为直角三角形,则CE⊥AD,基础CE为平行四边形的高,利用平行四边形的面积公式计算即可.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠AEB,∴AB=AE=10;(2)∵四边形ABCD是平行四边形.∴CD=AB=10,在△CED中,CD=10,DE=6,CE=8,∴ED2+CE2=CD2,∴∠CED=90°.∴CE⊥AD,∴平行四边形ABCD的面积=AD•CE=(10+6)×8=128.【点睛】本题考查了平行四边形的性质、平行四边形的面积公式运用及角平分线的性质等问题,解题的关键是熟练掌握有关性质.23.证明见解析.【分析】欲证明四边形BFDE 是平行四边形,只要证明BE=DF ,BE ∥DF 即可.【详解】证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB = CD ,∵AE=CF ,∴AB-AE= CD-CF ,即BE=DF ,∴四边形BFDE 是平行四边形.【点睛】本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质. 24.(1)80C ∠=︒;(2)120C ∠=︒.【分析】(1)如图1,过点C 作CH ∥DF ,根据四边形的内角和为360°,求出∠MDC+∠CBN=160°,利用角平分线的定义可得:∠FDC+∠CBE=80°,最后根据平行线的性质可得结论;(2)如图2,连接GC 并延长,同理得:∠MDC+∠CBN=160°,∠FDC+∠CBE=80°,求出∠DGB=40°,可得结论.【详解】(1)如图1,过点C 作CH ∥DF ,∵BE ∥DF ,∴BE ∥DF ∥CH ,∴∠FDC=∠DCH ,∠BCH=∠EBC ,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC ,∵BE ,DF 分别为四边形ABCD 的外角∠CBN ,∠MDC 的平分线,∴∠FDC=12∠CDM ,∠EBC=12∠CBN , ∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°-160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)如图2,连接GC 并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE ∥AD ,DF ∥AB ,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.【点睛】本题考查了平行线的性质及其判定,多边形的内角和公式,三角形外角的性质,角平分线的定义,利用多边形的内角和公式和平行线的性质是解题关键.25.证明见详解.【分析】通过全等三角形(△AEB ≌△DFC )的对应边相等证得BE=CF ,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE ∥CF .则四边形BECF 是平行四边形.【详解】证明:∵BE ⊥AD ,CF ⊥AD ,∴∠AEB=∠DFC=90°,∵AB ∥CD ,∴∠A=∠D ,在△AEB 与△DFC 中,AEB DFC AE DFA D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEB ≌△DFC (ASA ),∴BE=CF .∵BE ⊥AD ,CF ⊥AD ,∴BE ∥CF .∴四边形BECF 是平行四边形.【点睛】本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.26.(1)证明过程见解析;(2)证明过程见解析;【分析】(1)由题意连接BD交AC于点O,由平行四边形的性质得AO=CO,BO=DO,证出EO=FO,即可得出四边形BFDE为平行四边形;(2)根据题意由平行四边形的性质得DE∥BF,即DE∥FG,证出FG是△CDE的中位线,得CG=DG即可.【详解】解:(1)连接BD交AC于点O,∵四边形ABCD为平行四边形,∴AO=CO,BO=DO,又∵AE=CF,∴EO=FO,∴四边形BFDE为平行四边形;(2)由(1)知,四边形BFDE为平行四边形,∴DE//BF,即DE//FG,而AE=EF=FC,所以F为EC的中点,∴FG是△CDE的中位线,∴CG=DG,即G为CD的中点.【点睛】本题考查平行四边形的判定与性质以及三角形中位线定理等知识;熟练掌握平行四边形的判定与性质是解题的关键.。
图6—1—2八年级数学周周清试卷(5)一、填空题(每空2分,合计60分)1、根据图像写出一次函数y=kx+b中,待定系数k和b的取值范围(12分)(1)、k___0 (2)、 k___0 (3)、k___0 (4)、k___0 (5)、k___0 (6)、k___0b___0 b___0 b___0 b___0 b___0 b___02、函数常见的三种表示方法:(6分)(1)____________;(2)___________;(3)代数表达式法,又称___________.3、在如图6—1—2所示的五个图象中,y不是x的函数图象有.(2分)(1)(2)(3)(4)(5)4、已知123=+yx,则y与x的函数关系式为.(2分)5、作函数图象的一般步骤:列表、描点、连线.(6分)。
6、一次函数y=3x+2的图象是一条直线,与x轴的交点为_________,与y轴的交点为________;正比例函数kxy=的图象也是一条直线,它过点)0,0(,),1(k.(6分)7、已知直线kxy=与直线32+-=xy平行,那么k等于_______。
(2分)8、已知直线bkxy+=过点(0,1),(2,3),则k= ,b= .。
(4分)9、直线23+=xy向上平移2个单位,所得直线是.(2分)10、一次函数bkxy+=的图像经过第一、二、四象限,则k__0,b__0(填“>”、“<”)11、一次函数y=2x-0.5的图像交于x轴的_____(正、负)半轴,交于y轴的______(正、负)半轴。
(4分)12一次函数y=5kx-5k-3,当k=______时,图像过原点;当k______时,y随x的增大而增大。
(4分)已知一次函数y=kx+b的图象经过A(0,-2)B(1,0)则b=_____k=____。
(4分)13、如下图,直线l是一次函数的图象,则该直线l的解析式为__________________。
(2分)●●二、作图题(列表、描点、连线各占5分,共15分)14、作出一次函数12+=xy的图象.三、解答题(25分)15、已知2)3(2-+-=-nxmy m是正比例函数,试求m、n的值.分析:由正比例函数定义知(1)x的次数为1;(2)x的系数不等于0;(3)常数项为0.解:由题意,得2312=-≠-=-nmm,∴23=-=nm.。
八年级下数学周考6试题一、选择题(共10小题,每小题4分,共40分)1.使二次根式有意义的a的取值范围是()A.a≥0B.a≠5C.a≥5D.a≤52.下列计算正确的是()A.3﹣=3B.2+=2C.=﹣2D.=23.下列四组数中不是勾股数的是()A.3,4,5B.2,3,4C.5,12,13D.8,4.下列条件中能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,CB=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC5.下列命题的逆命题成立的是()A.全等三角形的面积相等B.相等的两个实数的平方也相等C.等腰三角形的两个底角相等D.直角都相等6.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5 cm B.cm C.cm D.4 cm7.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分△AFC的面积是()A.8 B.10 C.20 D.328.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm 9.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A →B→C→D→A的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A.(1,1)B.(﹣1,﹣1)C.(﹣1,﹣2)D.(1,﹣2)10.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤二、填空题(共4小题,每小题5分,共20分)11.在△ABC中,∠ACB=90°,∠A=30°,BC=4,则斜边AB上的中线长是.12.若一个直角三角形两边的长分别为6和8,则第三边的长为.13.对于两个实数a、b,定义运算@如下:a@b=,例如3@4=.那么15@x2=4,则x等于.14.中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(把所有正确结论的序号都填在横线上)(1)∠DCF=21∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF阜阳十中八年级下数学周考6答题卡班级:姓名: .座位号:一、选择题(本大题共10小题,每小题4分,共40分,)三、解答题(共9小题,共90分)15.(8分)计算:)5.02313()81448(---;16.(8分)如图,四边形ABCD 中,AB =10,BC =13,CD =12,AD =5,AD ⊥CD ,求四边形ABCD 的面积.17.(本小题8分)先化简,再求值)111(1222+-+÷+-x x x x x ,其中12+=x .18.(8分)已知:如图,A 、C 是平行四边形DEBF 的对角线EF 所在直线上的两点,且AE =CF . 求证:四边形ABCD 是平行四边形.19.(本题10分)已知:如图,四边形ABCD 中,∠ABC=90°,∠ADC=90°,点E 为AC 中点,点F 为BD 中点。
一、选择题1.如图,在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 成为平行四边形,则应增加的条件是( )A .AB =CDB .∠BAD =∠DCBC .AC =BD D .∠ABC +∠BAD =180°2.在平面直角坐标系中,已知四边形AMNB 各顶点坐标分别是:(0,2)(2,2),(3,),(3,)A B M a N b -,,且1,MN a b =<,那么四边形AMNB 周长的最小值为( )A .625+B .613+C .34251++D .34131++ 3.一个多边形的内角和是外角和的2倍,则这个多边形的边数为( )A .4B .5C .6D .7 4.如图,在下列条件中,能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB=CDB .∠AOB=∠COD ,∠AOD=∠COBC .OA=OC ,OB=ODD .AB=AD ,CB=CD 5.把边长相等的正五边形ABCDE 和正方形ABFG ,按照如图所示的方式叠合在一起,连结AD ,则∠DAG =( )A .18°B .20°C .28°D .30°6.如图,平行四边形ABCD 的周长是56cm ,ABC ∆的周长是36m ,则AC 的长为( )A .6cmB .12cmC .4cmD .8cm7.如图所示,EF 过▱ABCD 的对角线的交点O ,交AD 于点E ,交BC 于点F ,已知AB =4,BC =5,OE =1.5,那么四边形EFCD 的周长是( )A .10B .11C .12D .138.如图,下列哪组条件不能判定四边形ABCD 是平行四边形( )A .AB ∥CD ,AB =CDB .AB ∥CD ,AD ∥BC C .OA =OC ,OB =OD D .AB ∥CD ,AD =BC9.如图.ABCD 的周长为60,,cm AC BD 相交于点,O EO BD ⊥交AD 于点E ,则ABE ∆的周长为( )A .30cmB .60cmC .40cmD .20cm10.如图,在ABCD 中,点,E F 分别在边BC AD ,上.若从下列条件中只选择一个添加到图中的条件中:①//AE CF ;②AE CF =;③BE DF =;④BAE DCF ∠=∠.那么不能使四边形AECF 是平行四边形的条件相应序号是( )A .①B .②C .③D .④11.如图,平行四边形ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F .若AB =4,BC =5,OE =1.5,那么四边形EFCD 的周长为( )A .16B .14C .10D .1212.如图,在周长为12cm 的▱ABCD 中,AB <AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )A .4cmB .5cmC .6cmD .7cm二、填空题13.如图,点C 在线段AB 上,等腰ADC 的顶角120ADC =∠︒,点M 是矩形CDEF 的对角线DF 的中点,连接MB ,若63AB =,6AC =,则MB 的最小值为为______.14.一个正多边形的内角和为720︒,则这个多边形的外角的度数为______. 15.七边形的外角和为________.16.一个多边形的每一个外角都等于30°,则这个多边形的边数是__.17.如图,在四边形ABDC 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,并且E 、F 、G 、H 四点不共线.当AC =6,BD =8时,四边形EFGH 的周长是_____.18.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).19.如图,在ABCD 中,E 为边BC 延长线上一点,且2CE BC =,连结AE 、DE .若ADE 的面积为1,则ABE △的面积为____.20.如图,已知,,,AB DC AD BC E F ==在DB 上两点,且BF DE =,若30ADB ∠AEB =110︒,∠=︒,则BCF ∠的度数为________.三、解答题21.已知:如图,平行四边形ABCD ,DE 是ADC ∠的角平分线,交BC 于点E ,且BE CE =,80B ∠=︒;求DAE ∠的度数.22.如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED ∥BC ,EF ∥AC .求证:BE=CF .23.如图,ABCD 的对角线AC BD 、相交于点,,,3,5O AB AC AB BC ⊥==,点P 从点A 出发,沿AD 以每秒1个单位的速度向终点D 运动.连接PO 并延长交BC 于点Q .设点P 的运动时间为t 秒.()1求BQ 的长(用含t 的代数式表示);()2问t 取何值时,四边形ABQP 是平行四边形?24.如图,在平行四边形ABCD 中,AC 是对角线,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,连结BF ,DE .(1)求证:四边形BFDE 是平行四边形;(2)连结BD ,若3BE =,5BF =,求BD 的长.25.如图,在ABCD中,点E,F分别在AD,BC边上,且BE∥DF.求证:(1)四边形BFDE是平行四边形;(2)AE=CF.26.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE= .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行四边形的判定方法,以及等腰梯形的性质等知识,对各选项进行判断即可.【详解】A错误,当四边形ABCD是等腰梯形时,也满足条件.AD BC,B正确,∵//∴180∠+∠=,BAD ABC︒∵BAD DCB∠=∠,∴180∠+∠=,DCB ABC︒AB CD,∴//∴四边形ABCD是平行四边形.C 错误,当四边形ABCD 是等腰梯形时,也满足条件.D 错误,∵180ABC BAD ︒∠+∠=,∴//AD BC ,与题目条件重复,无法判断四边形ABCD 是不是平行四边形.故选:B .【点睛】本题考查了平行四边形的判定和性质,平行线的判定,等腰梯形的性质等知识,解题关键是熟练掌握平行四边形的判定方法.2.A解析:A【分析】如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,则此时四边形AMNB 的周长最短,再利用勾股定理可得:AB ==25A B ==,利用AMNB C 四边形2AB MN A B =++从而可得答案.【详解】解:如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,122A N BN A N BN A B ∴+=+=,由111//MN AA MN AA ==,, ∴ 四边形1AMNA 是平行四边形,12,A N AM A N ∴==所以此时:四边形AMNB 的周长最短,()()()2022261A B A --,,,,,,AB ∴==25A B ==,2AMNB C AM AB BN MN A N BN AB MN =+++=+++四边形2AB MN A B =++15 6.=+=故选:.A【点睛】本题考查的是图形与坐标,勾股定理的应用,轴对称的性质,平行四边形的判定与性质,掌握以上知识是解题的关键.3.C解析:C【分析】⨯=︒,设这个多边形是n边形,内角和是多边形的外角和是360︒,则内角和是2360720()-⋅︒,这样就得到一个关于n的方程,从而求出边数n的值.n2180【详解】解:设这个多边形是n边形,根据题意,得()-⨯︒=⨯,n21802360=.解得:n6即这个多边形为六边形.故选:C.【点睛】本题考查了多边形的内角和与外角和,熟记内角和公式和外角和定理并列出方程是解题的关键,根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决. 4.C解析:C【分析】由平行四边形的判定可求解.【详解】A、由AD∥BC,AB=CD不能判定四边形ABCD为平行四边形;B、由∠AOB=∠COD,∠AOD=∠COB不能判定四边形ABCD为平行四边形;C、由OA=OC,OB=OD能判定四边形ABCD为平行四边形;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形;故选:C.【点睛】本题考查了平行四边形的判定定理,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.5.A解析:A【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的度数,进而求得∠BAD的度数,再利用正方形的内角得出∠BAG=90°,进而得出∠DAG的度数.【详解】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=∠BAE=1×540°=108°,5又∵EA=ED,∴∠EAD=1×(180°﹣108°)=36°,2∴∠BAD=∠BAE﹣∠EAD=72°,∵正方形GABF的内角∠BAG=90°,∴∠DAG=90°﹣72°=18°,故选:A.【点睛】本题考查正多边形的内角和,掌握多边形内角和公式是解题的关键.6.D解析:D【分析】的周长=AB+BC+AC,而AB+BC为平行四边形ABCD的周长的一半,代入数值求解ABC即可.【详解】因为四边形ABCD是平行四边形,∴AB=DC,AD=BC,∵▱ABCD的周长是56cm,∴AB+BC=28cm,∵△ABC的周长是36cm,∴AB+BC+AC=36cm,∴AC=36cm−28cm=8cm.故选D.【点睛】本题考查了平行四边形的性质,根据题意列出三角形周长的关系式,结合平行四边形周长的性质求解是本题的关键.7.C解析:C【解析】试题根据平行四边形的性质,得AO=OC,∠EAO=∠FCO,又∠AOE=∠COF,∴△AOE≌△COF,∴OF=OE=1.5,CF=AE,根据平行四边形的对边相等,得CD=AB=4,AD=BC=5,故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=12.故选C.8.D解析:D【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选D.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.9.A解析:A【分析】根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,结合OE⊥BD可说明EO是线段BD的中垂线,中垂线上任意一点到线段两端点的距离相等,则BE=DE,再利用平行四边形ABCD的周长为60cm可得AB+AD=30cm,进而可得△ABE的周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,又∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=DE,∴AE+ED=AE+BE,∵▱ABCD的周长为60cm,∴AB+AD=30cm,∴△ABE的周长=AB+AE+BE=AB+AD=30cm,故选:A.【点睛】此题主要考查了平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形的对边相等,平行四边形的对角线互相平分.10.B解析:B【分析】利用平行四边形的性质,依据平行四边形的判定方法,即可得出不能使四边形AECF是平行四边形的条件.【详解】解:①∵四边形ABCD平行四边形,∴AD//BC,∴AF//EC,∵AE∥CF,∴四边形AECF是平行四边形;②∵AE=CF不能得出四边形AECF是平行四边形,∴条件②符合题意;③∵四边形ABCD平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.④∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠BAE=∠DCF,∴∠AEB=∠CFD.∵AD∥BC,∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE,∴四边形AECF是平行四边形.综上所述,不能使四边形AECF是平行四边形的条件有1个.故选:B.【点睛】本题考查了平行四边形的性质定理和判定定理,以及平行线的判定定理;熟记平行四边形的判定方法是解决问题的关键.11.D解析:D【分析】由题意根据平行四边形的性质可知AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE 和∠COF是对顶角相等,所以△OAE≌△OCF,所以OF=OE=1.5,CF=AE,所以四边形EFCD 的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF,进而计算求出周长即可.【详解】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故选:D.【点睛】本题考查平行四边形的性质和全等三角形的判定与性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.12.C解析:C【分析】根据平行四边形的性质得出OB=OD,进而利用线段垂直平分线得出BE=ED,进而解答即可.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD,∵OE⊥BD,∴OE是线段BD的垂直平分线,∴BE =ED ,∵△ABE 的周长=AB +AE +BE =AB +AE +ED =AB +AD =6cm .故选:C .【点睛】此题考查平行四边形的性质,解题关键是根据平行四边形的性质得出OB =OD ,再结合线段垂直平分线的定义解答.二、填空题13.【分析】过D 作DG ⊥AC 于G 取FC 中点H 连结MHHB 由等腰的顶角可得DG 平分∠ADCAG=CG=可求∠GDC=60°∠DCG=30°在Rt △DGC 中由勾股定理DC2=DG2+GC2即4DG2=DG2解析:9-【分析】过D 作DG ⊥AC 于G ,取FC 中点H ,连结MH ,HB 由等腰ADC 的顶角120ADC =∠︒,可得DG 平分∠ADC ,AG=CG=1AC=32,可求∠GDC=60°,∠DCG=30°,在Rt △DGC 中,由勾股定理DC 2=DG 2+GC 2,即4DG 2=DG 2+9,可求由M ,H 为中点,可得MH=12MB MH+HB ,MH 为定值,HB 最小时,MB 最短,BH ⊥CF ,可求∠HCB=60°,CH=()11BC=22,由勾股定理9=-,BH 最小-【详解】解:过D 作DG ⊥AC 于G ,取FC 中点H ,连结MH ,HB ,∵等腰ADC 的顶角120ADC =∠︒,∴DG 平分∠ADC ,AG=CG=1AC=32, ∴∠GDC=60°,∠DCG=90°-∠GDC=90°-60°=30°,∴CD=2DG ,在Rt △DGC 中,由勾股定理DC 2=DG 2+GC 2,即4DG 2=DG 2+9,∴,∵M ,H 为中点,∴MH=12根据两点之间线段最短,则有MBMH+HB ,MH 为定值, ∴HB 最小时,MB 最短,∴BH ⊥CF ,∠HCB=180°-∠DCA-∠DCF=180°-30°-90°=60°, CH=()11BC=63-6=33-322, BH=()2233333933CB CH CH -==-=-,BH 最小=3+9-33=923-,故答案为:923-.【点睛】本题考查等腰三角形的性质,勾股定理,30°角直角三角形性质,三角形中位线,三角形三边关系,掌握等腰三角形的性质,勾股定理,30°角直角三角形性质,三角形中位线,三角形三边关系是解题关键.14.60°【分析】首先设这个正多边形的边数为n 根据多边形的内角和公式可得180(n-2)=720继而可求得答案【详解】解:设这个正多边形的边数为n ∵一个正多边形的内角和为720°∴180(n-2)=72解析:60°【分析】首先设这个正多边形的边数为n ,根据多边形的内角和公式可得180(n-2)=720,继而可求得答案.【详解】解:设这个正多边形的边数为n ,∵一个正多边形的内角和为720°,∴180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角是:360°÷6=60°.故答案为:60°.【点睛】本题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用,注意熟记公式是关键.15.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键;16.12【分析】多边形的外角和为360°而多边形的每一个外角都等于30°由此做除法得出多边形的边数【详解】∵360°÷30°=12∴这个多边形为十二边形故答案为:12【点睛】本题考查了多边形的内角与外角解析:12【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的内角与外角.关键是明确多边形的外角和为360°.17.14【分析】根据三角形中位线定理得到FG∥EHFG=EH根据平行四边形的判定定理和周长解答即可【详解】∵FG分别为BCCD的中点∴FG=BD=4FG∥BD∵EH分别为ABDA的中点∴EH=BD=4E解析:14【分析】根据三角形中位线定理得到FG∥EH,FG=EH,根据平行四边形的判定定理和周长解答即可.【详解】∵F,G分别为BC,CD的中点,∴FG=1BD=4,FG∥BD,2∵E ,H 分别为AB ,DA 的中点,∴EH =12BD =4,EH ∥BD , ∴FG ∥EH ,FG =EH ,∴四边形EFGH 为平行四边形,∴EF =GH =12AC =3, ∴四边形EFGH 的周长=3+3+4+4=14,故答案为14【点睛】本题考查的是三角形中位线定理,掌握三角形中位线定理和平行四边形的判定定理是解题的关键.18.③【分析】根据正多边形的内角度数解答即可【详解】∵正三角形的每个内角都是60度能将360度整除故可以用其镶嵌地面;∵正方形的每个内角都是90度能将360度整除故可以用其镶嵌地面;∵正五边形的每个内角解析:③【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面, 故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.19.3【分析】首先根据平行四边形的性质可得AD=BC 又由可得BE=3BC=3AD 和的高相等即可得出的面积【详解】解:∵∴AD=BCAD ∥BC ∴和的高相等设其高为又∵∴BE=3BC=3AD 又∵∴故答案为3解析:3【分析】首先根据平行四边形的性质,可得AD=BC ,又由2CE BC ,可得BE=3BC=3AD ,ADE 和ABE △的高相等,即可得出ABE △的面积.【详解】解:∵ABCD , ∴AD=BC ,AD ∥BC , ∴ADE 和ABE △的高相等,设其高为h ,又∵2CE BC =,∴BE=3BC=3AD ,又∵1=12ADE S AD h =△,1=2ABE S BE h △ ∴11=3322ABE S BE h AD h =⨯=△ 故答案为3.【点睛】此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.20.80【分析】先证明四边形ABCD 是平行四边形再通过条件证明最后根据全等三角形的性质及三角形外角性质即可得出答案【详解】∵∴四边形ABCD 是平行四边形∴在△AED 和△CFB 中∴∴∵∴故答案是【点睛】本解析:80【分析】先证明四边形ABCD 是平行四边形,再通过条件证明△△AED CFB ≅,最后根据全等三角形的性质及三角形外角性质即可得出答案.【详解】∵,AB DC AD BC ==,∴四边形ABCD 是平行四边形,∴ADE CBF ∠=∠,在△AED 和△CFB 中,AD CB ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩,∴()△△AED CFB SAS ≅,∴DAE BCF ∠=∠,∵30ADB ∠AEB =110︒,∠=︒,∴1103080BCF DAE AEB ADB ∠=∠=∠-∠=︒-︒=︒,故答案是80︒.【点睛】本题主要考查了平行四边形的性质,结合外角定理计算是解题的关键. 三、解答题21.50°【分析】根据平行四边形的性质求出CD=CE ,得到AB=BE ,所以BAE BEA ∠=∠根据80B ∠=︒,//AD BC 得到DAE ∠的度数【详解】 证明:四边形ABCD 是平行四边形//AD BC ∴13∠∠∴= DE 是ADC ∠的角平分线12∠∠∴=23∴∠=∠CD CE ∴=四边形ABCD 是平行四边形AB CD ∴=BE CE =AB BE ∴=BAE BEA ∴∠=∠80B ∠=︒50AEB ∴∠=︒//AD BC50DAE AEB ∴∠=∠=︒【点睛】本题考查平行四边形的性质,由角平分线得到相等的角,再利用平行四边形的性质和等角对等边的性质求解,得出AB=BE 是解决问题的关键.22.证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF ,再证明EB=ED ,即可解决问题. 试题∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE=CF ,∵BD 平分∠ABC ,∴∠EBD=∠DBC ,∵DE ∥BC ,∴∠EDB=∠DBC ,∴∠EBD=∠EDB ,∴EB=ED ,∴EB=CF . 考点:平行四边形的判定与性质.23.(1)5-t ;(2)52【分析】(1)先证明△APO ≌△CQO ,可得出AP=CQ=t ,则BQ 即可用t 表示;(2)由题意知AP ∥BQ ,根据AP=BQ ,列出方程即可得解;【详解】解:(1)∵四边形ABCD 是平行四边形,∴OA=OC ,AD ∥BC ,∴∠PAO=∠QCO ,∵∠AOP=∠COQ ,∴△APO ≌△CQO (ASA ),∴AP=CQ=t ,∵BC=5,∴BQ=5-t ;(2)∵AP ∥BQ ,当AP=BQ 时,四边形ABQP 是平行四边形,即t=5-t , 52t =, ∴当52t =时,四边形ABQP 是平行四边形. 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.24.(1)见解析 (2)213【分析】(1)根据平行四边形的性质和已知可证得//BE DF ,ABE CDF ≅,由全等三角形的性质可证得BE DF =,利用平行四边形的判定即证得出结论;(2)根据平行四边形的对角线互相平分得OE OF OB OD ==,,再根据勾股定理即可求解.【详解】解:(1)在平行四边形ABCD 中,∵//AB CD ,AB CD =,∴BAE DCF ∠=∠,∵BE AC DF AC ⊥⊥, ,∴90//BEA DFC BE DF ∠=︒=∠,,∴ABE CDF ≅,∴BE DF =,∴四边形BFDE 是平行四边形;(2)连结BD 交AC 于点O ,则OE OF OB OD ==,,∵35BE AC BE BF ⊥==,, ,∴在Rt BEF △中,4EF ==, ∴OE =2,在Rt OBE 中,OB == ∴2BD OB ==【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、勾股定理,是典型的基础题,难度适中,熟练掌握这些知识的综合运用是解答的关键.25.(1)见解析;(2)见解析.【分析】(1)由四边形ABCD 是平行四边形,可得AD ∥BC ,又BE ∥DF ,可证四边形BFDE 是平行四边形;(2)由四边形ABCD 是平行四边形,可得AD=BC ,又ED=BF ,从而AD-ED=BC-BF ,即AE=CF.【详解】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,即DE ∥BF .∵BE ∥DF,∴四边形BFDE 是平行四边形;(2)∵四边形ABCD 是平行四边形,∴AD=BC ,∵四边形BFDE 是平行四边形,∴ED=BF ,∴AD-ED=BC-BF,即AE=CF.【点睛】本题主要考查了平行四边形的判定与性质,熟练掌握两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等是解答本题的关键.26.(1)见解析;(2)3.【分析】根据角平分线上的点到角的两边距离相等知作出∠A 的平分线即可;根据平行四边形的性质可知AB=CD=5,AD ∥BC ,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA ,再根据等腰三角形的性质和线段的和差关系即可求解.【详解】(1)如图所示:E 点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A 的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.考点:作图—复杂作图;平行四边形的性质。
2024年苏教版八年级数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共9题,共18分)1、比-1大的数是()A. -3B. -C. 0D. -12、有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A. 8B.C.D.3、在同一时刻;小明同学测得一高为2米的竹竿的影长为1米,学校旗杆的影长为5米,则旗杆的高度为()A. 5米。
B. 6米。
C. 7米。
D. 10米。
4、如果点P(-3,k)在直线y﹦2x+2上,那么点P到x轴的距离是()A. -4B. 4C. ±4D. 35、如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程是()A. 40cmB. cmC. 20cmD. cm6、十堰市五堰商场为了增加销售额,推出“五月销售大酬宾”活动,其活动内容为:“凡五月份在该商场一次性购物超过50元以上者,超过50元的部分按9折优惠”.在大酬宾活动中,李明到该商场为单位购买单价为30元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式是()A. y=27x(x>2)B. y=27x+5(x>2)C. y=27x+50(x>2)D. y=27x+45(x>2)7、某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的这组数据的平均数与实际平均数的差是()A. 3.5B. 3C. 0.5D. -38、实数-2,0.3, -π中,无理数的个数是()A. 2B. 3C. 4D. 59、【题文】为了调查某小区居民的用水情况;随机抽查了10户家庭的月用水量,结果如下表:。
月用水量(吨) 4 5 6 9户数。
3 4 2 1则关于这10户家庭的月用水量;下列说法错误的是。
八年级数学下册第6周周考试卷
班级姓名学号得分
一、选择题(每小题3分,共30分)
1.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是( )
2.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得CC'∥AB,则∠BAB'=( )
A.30°B.35°C.40°D.50°
3.顺次连接四边形四边中点所组成的四边形是菱形,则原四边形为( ) A.平行四边形B.菱形C.对角线相等的四边形D.直角梯形4.以线段a=16,b=13,c=6为边作梯形,其中a,c为梯形的两底,这样的梯形( ) A.有一个B.有两个C.有三个D.以上都不对5.如图,矩形ABCG(AB<BC)与矩形CDEF全等,点B,C,D在同一条直线上,∠APE的顶点P在线段BD上移动,使∠APE为直角的点P的个数是( )
A.0 B.1 C.2 D.3
6.菱形的周长为202,两邻角的比为1:3,则菱形的面积为( ) A.25 B.16 C.252D.162
7.一个正方形的周长与一个等腰三角形的周长相等,若等腰三角形的两边长为42和102,则这个正方形的对角线长为( )
A.12 B.6C.26D.62
8.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为( )
A.4 B.3 C.2 D.1
9.如图,在三角形ABC中,AB>AC,D、E分别是AB、AC上的点,△ADE沿线段DE翻折,使点A落在边BC上,记为A'.若四边形ADA'E是菱形,则下列说法正确的是( )
A.DE是△ABC的中位线B.AA'是BC边上的中线
C.AA'是BC边上的高D.AA'是△ABC的角平分线
10.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为( )
A.10 B.12 C.14D.16
二、填空题(每小题3分,共24分)
11.在平面内,如果一个图形绕一个定点旋转一定的角度后与自身重合,那么就称这个图形是旋转对称图形,转动的角度称为这个图形的一个旋转角,下列图形中,是旋转对称图形且有一个旋转角为120度的是____________(填序号)
①正三角形;②正方形;③正六边形;④正八边形.
12.如图,三个正方形A、B、C如图放置,且正方形A、C的面积分别是2 cm2和3 cm2,则正方形B的面积等于______cm2.
13.如图:点E、F分别是菱形ABCD的边BC、CD上的点且∠EAF=∠D=60°,∠FAD =45°,则∠CFE=______.
14.矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则长边的长为15.如图,梯形ABCD中,AD∥BC∥EF∥GH,点E、G、F、H分别是AB、CD的三等分点,且AD=18,BC=32,则EF+GH=_______.
16.正方形内有一点A,到各边的距离从小到大依次是1、2、3、4,则正方形的周长是______.17.如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE',连接EE',则EE'的长等于______.
18.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示),把线段AE 绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为______.三、解答题(19、20题各8分,其余每题各10分,共46分)
19.如图,A、B两地被建筑物阻隔,为测量A、B两地的距离,在地面上选一点C,连接CA、CB,分别取CA、CB的中点D、E.
(1)若DE的长度为36米,求A、B两地之间的距离;
(2)如果D、E两点之间还有阻隔,你有什么方法解决?
20.已知:如图,△ABC中,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.
(1)猜想:DF与AE的关系是______.
(2)试说明你猜想的正确性.
21.如图,过四边形ABCD的四个顶点分别作对角线AC,BD的平行线,所围成的四边形EFGH显然是平行四边形.
(1)当四边形ABCD分别是菱形、矩形、等腰梯形时,相应的平行四边形EFGH一定
是“菱形、矩形、正方形”中的哪一种?请将你的结论填入下表:
(2)反之,当用上述方法所围成的平行四边形EFGH分别是矩形、菱形时,相应的原
四边形ABCD必须满足怎样的条件?
22.如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在边BC上,且四边形AEFD是平行四边形.
(1)AD与BC有何等量关系?请说明理由;
(2)当AB=DC时,试说明:□AEFD是矩形.
23.(1)如图①,在正方形ABCD中,点E,F分别在边BC,CD⊥AE,BF交于点O,∠AOF=90°.试说明:BE=CF.
(2)如图②,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA⊥EF,
GH交于点O,∠FOH=90°,EF=4.求GH的长.
(3)已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA⊥EF,GH交于
点O,∠FOH=90°,EF=4.直接写出下列两题的答案:
①如图③,矩形ABCD由2个全等的正方形组成,求GH的长;
②如图④,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).
八年级数学下册第6周周考试卷
参考答案
1.D2.A 3.C 4.D 5.C6.C 7.A8.B 9.D10.D
11.①③12.5 13.45°14.5 15.50 16.20 17.18.1或5
19.(1)72米.(2)使CD′=1
4
AC,CE′=
1
4
BC,则D′E′=
1
2
DE=
1
4
AB
20.(1)DF与AE互相平分(2)略
21.(1)矩形菱形菱形
(2)当四边形ABCD的对角线互相垂直时,四边形EFGH是矩形;当四边形ABCD的
对角线相等时,四边形EFGH是菱形.
22.(1)AD=BC.说明略(2)略
23.(1)略(2)GH=4 (3)①8 ②4n。