九年级数学精选模拟试卷1
- 格式:doc
- 大小:341.00 KB
- 文档页数:8
2022-2023年北师大版九年级上册数学期末模拟试卷 (1) 学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分)1.下列函数是反比例函数的是()A.y=2x -1B.y=21xC.y=13xD.y=11x2.某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表.抛掷次数5010020050010002000300040005000“正面向上”的次数193868168349707106914001747“正面向上”的频率0.38000.38000.34000.33600.34900.35350.35630.35000.3494下面有三个推断:①通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的;①如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动;①在用频率估计概率时,用实验5000次时的频率0.3494一定比用实验4000次时的频率0.3500更准确.其中正确的是()A.①①B.①①C.①①D.①①①3.下列几何体中,主视图是长方形的是()A.B.C.D.4.如图,①DEF和①ABC是位似图形点O是位似中心,点D,E,F,分别是OA,OB,OC 的中点,若①ABC的面积是8,①DEF的面积是()A.2B.4C.6D.85.把抛物线y=x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=(x+3)2+1B.y=(x+1)2+3C.y=(x﹣1)2+4D.y=(x+1)2+46.为了方便行人推车过某天桥,市政府在10m高的天桥一侧修建了40m长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是()A.B.C.D .7.如图,已知:AB 是O 的直径,O 的半径为1,3BD sin C ∠的值等于( )A .12B 3C 3D 2 8.已知关于x 的一元二次方程2(1)410a x x ---=有两个实数根,则a 的取值范围是( ) A .4a ≥- B .3a >- C .3a ≥-且1a ≠ D .3a >-且1a ≠9.已知:如图,菱形ABCD 的周长为20cm ,对角线AC =8cm ,直线l 从点A 出发,以1c m/s 的速度沿AC 向右运动,直到过点C 为止在运动过程中,直线l 始终垂直于AC ,若平移过程中直线l 扫过的面积为S (cm 2),直线l 的运动时间为t (s ),则下列最能反映S 与t 之间函数关系的图象是( )A .B .C .D .10.下列计算错误的是( )A 236=B 236C 1232=D 822=二、填空题(本大题共5个小题,每小题3分,共15分)11.当2x =时,函数21y x =-+的值是______. 12.-1a b a b a b a a a a---=--=( ) 13.已知一个直角三角形的两条直角边的长恰好是方程x 2﹣6x=8(x ﹣6)的两个实数根,那么这个直角三角形的内切圆半径为_____.14.二次函数y=x 2+bx 图象的对称轴为直线x=1,若关于x 的一元二次方程x 2+bx ﹣t=0(t 为实数)在﹣1≤x≤2的范围内有解,则t 的取值范围是_____.15.如图,G 、H 分别是四边形ABCD 的边AD 、A B 上的点,①GCH =45°,CD =CB =2,①D =①DCB =①B =90°,则△AGH 的周长为_______.三、解答题(一)(本大题共3个小题,每小题8分,共24分)16.(本题8分)解下列方程(1)x 2-4x -1=0(配方法)(2)3x (x -1)=2-2x (因式分解法)17.(本题8分)如果四边形ABCD 的四个顶点坐标分别是A(2,1),B(4,3),C(6,2),D(3,-1). 试将此四边形缩小为原来的12 .18.(本题8分)如图,ABC 为等边三角形,BD AC ⊥交AC 于点D ,DE BC ∥交AB 于点E .(1)求证:ADE 是等边三角形.(2)求证:12AE AB =.四、解答题(二)(本大题共3个小题,每小题9分,共27分)19.(本题9分)学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.20.(本题9分)春节期间甲乙两商场搞促销活动.甲商场的方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”、“20元”、“30元”、“50元”,顾客每消费满300元,就可从箱子里不放回地摸出2个球,根据两个小球所标金额之和可获相应价格的礼品.乙商场的方案是:在一个不透明的箱子里放2个完全相同的小球,球上分别标“5元”、“30元”,顾客每消费满100元,就可从箱子里不放回地摸出1个球,根据两个小球所标金额之和可获相应价格的礼品. 某顾客准备消费300元,(1)若该顾客在甲商场消费,至少可得价值_________元的礼品,至多可得价值_________元的礼品;(2)请用画树状图或列表法,说明该顾客去哪个商场消费,获得礼品的总价值不低于50元的概率大.21.(本题9分)y=x+1x 是一种类似于反比例函数的对勾函数,形如y=ax+bx.其函数图像形状酷似双勾,故称“对勾函数”,也称“勾勾函数”、“海鸥函数”.y=x+1x函数图像如下图所示.根据y=x+1x 图像对函数y=|x|+1x的图像和性质进行了探究.(1)绘制函数图像:y=|x|+1 x列表:下表是x与y的几组对应值x………-3-2-1-12-131312123………y (10)35225210310352252103………描点:根据表中各组对应值,在平面直角坐标系中描出各点;连线:用平滑的曲线顺次连接各点,请你在平面直角坐标系中将y=|x|+1x图像补充完整;(2)观察发现:①写出函数y=|x|+1x的一条性质_________①函数图像与直线y=2有_________个交点,所以对应的方程|x|+120x-=有_________个实数根.(3)分析思考:①方程的|x-1|+11x--2=0的解为_________①不等式|x|+1x-52<0,x的取值范围为_________(4)延伸探究:①当x>0时,直线y=kx+3与y=|x|+1x只有一个交点,求k的值?五、解答题(三)(本大题共2个小题,每小题12分,共24分)22.(本题12分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD 重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图①图①图①(一)填一填,做一做:(1)图①中,CMD∠=_______.线段NF=_______.(2)图①中,试判断AND∆的形状,并给出证明.剪一剪、折一折:将图①中的AND∆剪下来,将其沿直线GH折叠,使点A落在点A'处,分别得到图①、图①.(二)填一填图① 图①(3)图①中阴影部分的周长为_______.(4)图①中,若80A GN '∠=︒,则A HD '∠=_______°.(5)图①中的相似三角形(包括全等三角形)共有_______对;(6)如图①点A '落在边ND 上,若A N m A D n '='_______,则AG AH=_______用含m ,n 的代数式表示).23.(本题12分)如图,在Rt①ABC 中,①C=90°,AB=10cm,BC=6cm ,点P 、Q 同时从点C 出发,分别沿C→A 和 C→B 的方向运动,速度分别为2cm/s 和1cm/s.过点P 作PM①AC 交AB 于M ,分别连接PQ 、PM .当点Q 运动到B 时,两点都停止.设运动时间为t 秒.(1)当t= s 时,PQ①QM ?(2)将①PQM 沿PM 翻折,得到①PMQ /.①当t= s 时,点Q /恰好落在AB 上;①设①PMQ /与①ABC 重叠部分的面积为Scm 2,求:S 与t 的函数关系式,并指出t 的取值范围.。
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.下图中①表示的是组合在一起的模块,在②③④⑤四个图形中,是这个模块的俯视图的是()A.②B.③C.④D.⑤2.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB=BC时,四边形ABCD是菱形;②当AC⊥BD时,四边形ABCD是菱形;③当∠ABC=90°时,四边形ABCD是菱形:④当AC=BD时,四边形ABCD是菱形;A.3个B.4个C.1个D.2个3.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1) 4.抛物线y=﹣2(x﹣1)2﹣3与y轴交点的横坐标为()A.﹣3 B.﹣4 C.﹣5 D.05.已知3sinα=,且α是锐角,则α的度数是()A.30°B.45°C.60°D.不确定6.如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B和A→C的路径向点B、C运动,设运动时间为x(单位:s),四边形PBC Q的面积为y(单位:cm2),则y与x(0≤x≤4)之间的函数关系可用图象表示为()A .B .C .D .7.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为()A.50(1+x)2=175 B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)+50(1+x)2=1758.若将半径为6cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.1cm B.2cm C.3cm D.4cm9.已知关于x的分式方程23(3)(6)36mxx x x x+=----无解,关于y的不等式组21(42)44y yy m≥⎧⎪⎨--<⎪⎩的整数解之和恰好为10,则符合条件的所有m的和为()A.92B.72C.52D.3210.如图,直径为10的⊙A山经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为( )A.12B.34C3D.45二、填空题(每小题3分,共24分)11.已知x=2y﹣3,则代数式4x﹣8y+9的值是_____.12.一定质量的二氧化碳,其体积V(m3)是密度ρ(kg/m3)的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式,当V=1.9m3时,ρ=________.13.在平面直角坐标系xOy 中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点1A ,作正方形111A B C C ,延长11C B 交x 轴于点2A ,作正方形2221A B C C ,…按这样的规律进行下去,第n 个正方形的面积为_____________.14.如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形,若开口∠1=60°,半径为6,则这个“吃豆小人”(阴影图形)的面积为_____.15.如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC=6厘米,长CD=16厘米的矩形.当水面触到杯口边缘时,边CD 恰有一半露出水面,那么此时水面高度是______厘米.16.点P (3,﹣4)关于原点对称的点的坐标是_____.17.设m ,n 分别为一元二次方程x 2+2x ﹣2018=0的两个实数根,则m 2+3m+n=______.18.小明练习射击,共射击300次,其中有270次击中靶子,由此可估计,小明射击一次击中靶子的概率约为__________.三、解答题(共66分)19.(10分)如图,P 是平面直角坐标系中第四象限内一点,过点P 作PA ⊥x 轴于点A ,以AP 为斜边在右侧作等腰Rt △APQ ,已知直角顶点Q 的纵坐标为﹣2,连结OQ 交AP 于B ,BQ =2OB .(1)求点P 的坐标;(2)连结OP ,求△OPQ 的面积与△OAQ 的面积之比.20.(6分)小晗家客厅装有一种三位单极开关,分别控制着A (楼梯)、B (客厅)、C (走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.21.(6分)如图,BD 是△ABC 的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项.(1)求证:∠CDE=12∠ABC ; (2)求证:AD•CD=AB•CE .22.(8分)解方程(1)x 2-6x -7=0;(2) (2x -1)2=1.23.(8分)如图,AB 是O 的直径,弦EF AB ⊥于点C ;点D 是AB 延长线上一点,30A ∠=︒,30D ∠=︒.(1)求证:FD 是O 的切线;(2)取BE 的中点AM ,连接MF ,若O 的半径为2,求MF 的长. 24.(8分)如图是由两个长方体组成的几何体,这两个长方体的底面都是正方形,画出图中几何体的主视图、左视图和俯视图.25.(10分)(1)解方程:2510x x -+=(配方法)(2)已知二次函数:21218y mx x =-+与x 轴只有一个交点,求此交点坐标.26.(10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x 元(x 为偶数),每周销售量为y 个. (1)直接写出销售量y 个与降价x 元之间的函数关系式;(2)设商户每周获得的利润为W 元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?参考答案一、选择题(每小题3分,共30分)1、A【详解】②是该几何体的俯视图;③是该几何体的左视图和主视图;④、⑤不是该几何体的三视图.故选A.【点睛】从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.2、D【分析】根据菱形的判定定理判断即可.【详解】解:∵四边形ABCD是平行四边形,∴①当AB=BC时,四边形ABCD是菱形;故符合题意;②当AC⊥BD时,四边形ABCD是菱形;故符合题意;③当∠ABC=90°时,四边形ABCD是矩形;故不符合题意;④当AC=BD时,四边形ABCD是矩形;故不符合题意;故选:D.【点睛】本题考查了菱形的判定定理,熟练掌握菱形的判定定理是解题的关键.3、A【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是13,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是13,∴OD DC OB AB,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.4、D【分析】把x=0代入抛物线y=﹣2(x﹣1)2﹣3,即得抛物线y=﹣2(x﹣1)2﹣3与y轴的交点.【详解】当x=0时,抛物线y=﹣2(x﹣1)2﹣3与y轴相交,把x=0代入y=﹣2(x﹣1)2﹣3,求得y=-5,∴抛物线y=﹣2(x﹣1)2﹣3与y轴的交点坐标为(0,-5).故选:D.【点睛】此题考查了二次函数的性质,二次函数与y轴的交点坐标,解题关键在于掌握当x=0时,即可求得二次函数与y轴的交点.5、C【分析】根据sin60°【详解】解:∵α为锐角,sinα=2,sin60°=2, ∴α=60°.故选:C .【点睛】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.6、C【解析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可.【详解】由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8),故选:C.【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.7、D【分析】增长率问题,一般为:增长后的量=增长前的量×(1+增长率),本题可先用x 表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【详解】解:二月份的产值为:50(1+x ),三月份的产值为:50(1+x )(1+x )=50(1+x )2,故根据题意可列方程为:50+50(1+x )+50(1+x )2=1.故选D .【点睛】本题考查的是一元二次方程的运用,解此类题目时常常要按顺序列出接下来几年的产值,再根据题意列出方程即可. 8、C【分析】根据圆锥的底面圆周长是扇形的弧长列式求解即可.【详解】设圆锥的底面半径是r ,由题意得,12262r ππ=⨯⨯, ∴r = 3cm.故选C.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9、C【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程无解确定出m 的值,不等式组整理后表示出解集,由整数解之和恰好为10确定出m 的范围,进而求出符合条件的所有m 的和即可. 【详解】解:23(3)(6)36mx x x x x +=----, 分式方程去分母得:mx+2x-12=3x-9,移项合并得:(m-1)x=3,当m-1=0,即m=1时,方程无解;当m-1≠0,即m≠1时,解得:x=31m -, 由分式方程无解,得到:331m =-或361m =-, 解得:m=2或m=32, 不等式组整理得:072y y m ≥⎧⎪⎨<+⎪⎩, 即0≤x <72m +, 由整数解之和恰好为10,得到整数解为0,1,2,3,4, 可得4<72m +≤5, 即1322m <≤, 则符合题意m 的值为1和32,之和为52. 故选:C .【点睛】 此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.10、C【分析】连接CD ,由直径所对的圆周角是直角,可得CD 是直径;由同弧所对的圆周角相等可得∠OBC =∠ODC ,在Rt△OCD中,由OC和CD的长可求出sin∠ODC. 【详解】设⊙A交x轴于另一点D,连接CD,∵∠COD=90°,∴CD为直径,∵直径为10,∴CD=10,∵点C(0,5)和点O(0,0),∴OC=5,∴sin∠ODC= OCCD=12,∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°= 3.故选C.【点睛】此题考查了圆周角定理、锐角三角函数的知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题(每小题3分,共24分)11、-1.【分析】根据x=2y﹣1,可得:x﹣2y=﹣1,据此求出代数式4x﹣8y+9的值是多少即可.【详解】∵x=2y﹣1,∴x﹣2y=﹣1,∴4x﹣8y+9=4(x﹣2y)+9=4×(﹣1)+9=﹣12+9=﹣1故答案为:﹣1.【点睛】本题考查的是求代数式的值,解题关键是由x =2y ﹣1得出x ﹣2y =﹣1.12、35/kg m【解析】由图象可得k=9.5,进而得出V=1.9m 1时,ρ的值.【详解】解:设函数关系式为:V=k ρ,由图象可得:V=5,ρ=1.9,代入得: k=5×1.9=9.5,故V=9.5ρ,当V=1.9时,ρ=5kg/m 1.故答案为5kg/m 1.【点睛】本题考查的是反比例函数的应用,正确得出k 的值是解题关键.13、2235()2n -⨯【分析】推出AD=AB ,∠DAB=∠ABC=∠ABA 1=90°=∠DOA ,求出∠ADO=∠BAA 1,证△DOA ∽△ABA 1,得出1012BA A AB OD ,求出AB ,BA 1,求出边长A 1,求出面积即可;求出第2个正方形的边长是,求出面积,再求出第3个正方形的面积;依此类推得出第n 个正方形的边长,求出面积即可.【详解】∵四边形ABCD 是正方形,∴AD=AB ,∠DAB=∠ABC=∠ABA 1=90°=∠DOA , ∴∠ADO+∠DAO=90°,∠DAO+∠BAA 1=90°,∴∠ADO=∠BAA 1,∵∠DOA=∠ABA 1,∴△DOA ∽△ABA 1,∴1012BA A AB OD ,∵=∴BA 1∴第2个正方形A 1B 1C 1C 的边长A 1C=A 153522, 面积是22353522; 同理第3232⎛⎫==⎪⎝⎭面积是22433522⎡⎛⎫⎛⎫=⨯⎢ ⎪ ⎪⎝⎭⎝⎭⎢⎣; 第4个正方形的边长是3352 ,面积是6352…, 第n 个正方形的边长是1352n ,面积是2235()2n -⨯ 故答案为: 2235()2n -⨯【点睛】 本题考查了正方形的性质,相似三角形的性质和判定,勾股定理的应用,解此题的关键是根据计算的结果得出规律,题目比较好,但是一道比较容易出错的题目14、5π【解析】∵∠1=60°, ∴图中扇形的圆心角为300°,,∴S 阴影=23005360ππ⋅=. 故答案为5π.15、485【分析】先由勾股定理求出BE ,再过点B 作BF AF ⊥于F ,由CBE FBA ∆∆∽的比例线段求得结果即可.【详解】解:过点B 作BF AF ⊥于F ,如图所示:∵BC=6厘米,CD=16厘米,1 CE2=CD8∴=CE厘米,90C∠=︒,由勾股定理得:22226810BE BC CE=++=,90BCE FBE∠=∠=︒,EBC ABF∴∠=∠,90BCE BFA∠=∠=︒,CBE FBA∴∆∆∽,BE BCAB BF∴=,即10616BF=,485 BF∴=.故答案为:485.【点睛】此题主要考查了勾股定理的应用以及相似三角形的判定与性质,正确把握相关性质是解题关键.16、(﹣3,4).【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可.【详解】解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故答案为(﹣3,4).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.17、2016【解析】由题意可得,2220180x x +-=,222018x x +=,∵m ,n 为方程的2个根,∴222018m m +=,2m n +=-,∴223(2)()m m n m m m n ++=+++2016=.18、0.9【分析】根据频率=频数÷数据总数计算即可得答案.【详解】∵共射击300次,其中有270次击中靶子, ∴射中靶子的频率为270300=0.9, ∴小明射击一次击中靶子的概率约为0.9,故答案为:0.9【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共66分)19、(1)点P 的坐标(1,﹣4);(2)△OPQ 的面积与△OAQ 的面积之比为1.【分析】(1)过Q 作QC ⊥x 轴于C ,先求得AC =QC =2、AQ =22、AP =4,然后再由AB ∥CQ ,运营平行线等分线段定理求得OA 的长,最后结合AP=4即可解答;(2)先说明△OAB ∽△OCQ ,再根据相似三角形的性质求得AB 和PB 的长,然后再求出△OPQ 和△OAQ 的面积,最后作比即可.【详解】解:(1)过Q 作QC ⊥x 轴于C ,∵△APQ是等腰直角三角形,∴∠PAQ=∠CAQ=41°,∴AC=QC=2,AQ=22,AP=4,∵AB∥CQ,∴12 OA OBAC BQ==,∴OA=12AC=1,∴点P的坐标(1,﹣4);(2)∵AB∥CQ,∴△OAB∽△OCQ,∴13 AB OBCQ OQ==,∴AB=13CQ=23,∴PB=103,∴S△OAQ=12OA•CQ=12×1×2=1,S△OPQ=12PB•OA+12PB•AC=1,∴△OPQ的面积与△OAQ的面积之比=1.【点睛】本题考查了一次函数的图像、相似三角形的判定与性质、平行线等分线段定理以及三角形的面积,掌握相似三角形的判定和性质是解答本题的关键.20、(1)13;(2)13.【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:1 3(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=13.考点:概率的计算.21、 (1)证明见解析;(2)证明见解析;【解析】试题分析:(1)根据BD是AB与BE的比例中项可得BA BDBD BE=, BD是∠ABC的平分线,则∠ABD=∠DBE,可证△ABD∽△DBE,∠A=∠BDE. 又因为∠BDC=∠A+∠ABD,即可证明∠CDE=∠ABD=12∠ABC,(2)先根据∠CDE=∠CBD,∠C=∠C,可判定△CDE∽△CBD,可得CE DECD DB=.又△ABD∽△DBE,所以DE ADDB AB=,CE ADCD AB=,所以AD CD AB CE⋅=⋅.试题解析:(1)∵BD是AB与BE的比例中项,∴BA BD BD BE=,又BD是∠ABC的平分线,则∠ABD=∠DBE, ∴△ABD∽△DBE,∴∠A=∠BDE.又∠BDC=∠A+∠ABD,∴∠CDE=∠ABD=12∠ABC,即证.(2)∵∠CDE=∠CBD,∠C=∠C, ∴△CDE∽△CBD,∴CE DE CD DB=.又△ABD∽△DBE,∴DE AD DB AB=,∴CE AD CD AB=,∴AD CD AB CE⋅=⋅.22、(1)x1=7,x2=-1;(2)x1=2,x2=-1 【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x2-6x+1-1-7=0(x-3) 2=16x-3=±4x1=7,x2=-1(2)2x-1=±32x=1±3x1=2,x2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解.23、(1)见解析(2)7【分析】(1)连接OE,OF,由垂径定理和圆周角定理得到∠DOF=∠DOE.而∠DOE=2∠A,得出∠DOF=2∠A,证出∠OFD=90°.即可得出结论;(2)连接OM,由垂径定理和勾股定理进行计算即可.【详解】(1)连接OE,OF,如图1所示:∵EF⊥AB,AB是⊙O的直径,∴BE BF,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°.∴OF⊥FD.∴FD为⊙O的切线;(2)连接OM.如图2所示:∵O 是AB 中点,M 是BE 中点,∴OM ∥AE .∴∠MOB =∠A =30°.∵OM 过圆心,M 是BE 中点,∴OM ⊥BE .∴MB =12OB =1,OM =22OB MB -=22213-=.∵∠DOF =60°,∴∠MOF =90°.∴MF =()2222327OM OF +=+=.【点睛】本题考查了切线的判定、圆周角定理、勾股定理、直角三角形的性质、垂径定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.24、如图所示见解析.【分析】从正面看,下面一个长方形,上面左边一个长方形;从左面看,下面一个长方形,上面左边一个长方形;从上面看,一个正方形左上角一个小正方形,依此画出图形即可.【详解】如图所示.【点睛】此题考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.25、(1)12521521,22x x +==(2)2m =,交点坐标为(3,0). 【分析】(1)把常数项移到方程的右边,两边加上一次项系数的一半的平方,进行配方,再用直接开平方的方法解方程即可,(2)由二次函数的定义得到:0,m ≠再利用0∆=求解m 的值,最后求解交点的坐标即可.【详解】解:(1) 2510x x -+=,251,x x ∴-=-222555()1(),22x x ∴-+=-+ 2521(),24x ∴-=52x ∴-=1255,22x x +-∴== (2)二次函数:21218y mx x =-+与x 轴只有一个交点, 2040m b ac ≠⎧∴⎨∆=-=⎩2(12)4180,m ∴--⨯=2,m ∴=∴ 22212182(3),y x x x =-+=-∴ 这个交点为抛物线的顶点,顶点坐标为:(3,0).即此交点的坐标为:(3,0).【点睛】本题考查了解一元二次方程的配方法,二次函数与x 轴的交点坐标问题,掌握相关知识是解题的关键.26、(1)10160y x =+;(2)当销售单价定为74元或72元时,每周销售利润最大,最大利润是5280元;【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y 个与降价x 元之间的函数关系式;(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;【详解】解:(1)依题意有:16020101602x y x =+⨯=+ ; (2)依题意有:W=(80-50-x )(10x+160)=2300480010160x x x +--=2101404800x x -++=-10(x-7)2+5290,因为x为偶数,所以当销售单价定为80-6=74元或80-8=72时,每周销售利润最大,最大利润是5280元;【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.。
A BCODy九年级数学模拟试卷一、选择题(共24分,) 1.21-的倒数是 ( )A .21- B .21C .2D .2-2.计算3232a a ⋅的结果是( )A .52a B .62a C .56a D .64a3.不等式组⎩⎨⎧-≤->+x x x 284133的最小整数解是( )A .0B .1C .2D .-14 完成引体向上的个数 7 8 9 10 人 数 1 1 3 5)A .9和10B .9.5和10C .10和9D .10和9.5 5.如图所示几何体的俯视图是( )6、解放军某部接到上级命令,乘车前往四川雅安抗震救灾.前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往.若部队离开驻地的时间为t (小时),离开驻地的距离为S (千米),则能反映S 与t 之间函数关系的大致图象是( )7.如图,在△ABC 中,∠C =90°,AC=BC , AB =22,点O 为AB 的中点,以点O 为圆心作半圆与边AC 相切于点D .则图中阴影部分的面积为( )A .1-14πB .1-18πC .2-34πD .2-14π 8. 如图,在直角坐标系中,矩形OABC 的顶点A 、B 在双曲线y=k x( x >0)上,BC 与x 轴交于点D .若点A 的坐标为(1,2),则点B 的坐标为( )A .(3,32)B .(4,21)C .(29,94)D .(5,52)二、填空题(30分) 9.函数12-+x x 中x 的取值范围是: 。
10.分解因式:=-ab b a 422。
11.若x1+m y 3与x 2y1+n 是同类项,则(m-n )2009= 。
12、过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为13.已知方程组 ky x ky x 322=+-=-的解满足4=+y x ,则k 的值为 .14.甲、乙两位同学参加跳远训练,在相同条件下各跳了6次,统计平均数乙甲x x =,方差22乙甲<S S ,则成绩较稳定的同学是 (填“甲”或“乙”)。
一、选择题1.以坐标原点O 为圆心,1为半径作圆,直线y x b =-+与O 相交,则b 的取值范围是( )A .11b -<<B .22b -<<C .20b -<<D .02b << 2.如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,则PC 的长为( )A .6B .25C .210D .214 3.已知⊙O 的半径是一元二次方程2690x x -+=的解,且点O 到直线AB 的距离为2,则⊙O 与直线AB 的位置关系为( )A .相交B .相切C .相离D .无法确定 4.如图,点A ,B ,C ,D 为O 上的四个点,AC 平分BAD ∠,AC 交BD 于点E ,4CE =,6CD =,则AC 的长为( )A .7B .8C .9D .105.已知二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则m 的取值范围是( )A .18m >B .18mC .18m >-且0m ≠ D .18m 且0m ≠ 6.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象可能是( ) A . B .C .D .7.关于二次函数2241=-+y x x ,下列说法正确的是( )A .图象的对称轴在y 轴左侧B .图象的顶点在x 轴下方C .当0x >时,y 随x 的增大而增大D .y 有最小值是18.如图1,在等腰直角BAC 中,90BAC ∠=︒,AB AC =,点P 为AB 的中点,点M 为BC 边上一动点,作45PMN ∠=︒,射线MN 交AC 边于点N .设BM x =,CN y =,y 与x 的函数图象如图2,其顶点为(),m n ,则m n +的值为( )A .4B .332C .222+D .25+9.如图,AC 垂直于AB ,P 为线段AC 上的动点,F 为PD 的中点, 2.8m =AC ,2.4m =PD , 1.2m =CF ,15∠=︒DPE .若90PEB ∠=︒,65∠=︒EBA ,则AP 的长约为( )(参考数据:sin650.91︒≈,cos650.42,sin500.77,cos500.64︒≈︒≈︒≈)A .1.2B .1.3mC .1.5mD .2.0m10.在Rt △ABC 中,∠C =90°,AB =3BC ,则sin B 的值为( )A .12B .22C 3D 22 11.在正方形网格中,∠AOB 如图所示放置,则sin ∠AOB 的值为( )A .12B .55C .255D .851012.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则tanA 的值是( )A .5B .10C .2D .819二、填空题13.如图,从点P 引⊙O 的切线PA ,PB ,切点分别为A ,B ,DE 切⊙O 于C ,交PA ,PB 于D ,E .若△PDE 的周长为20cm ,则PA =______cm .14.圆锥的母线长为5,圆锥高为3,则该圆锥的侧面积为____.(结果保留π) 15.如图,在平面直角坐标系中,抛物线()2230y ax ax a =-+>与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于点M ,P 为抛物线的顶点,若直线OP 交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为____________.16.已知抛物线为21()y a x m k =++与()22()0y a x m k m =---≠关于原点对称,我们称1y 为与2y 互为“和谐抛物线”,请写出抛物线2467y x x =-++的“和谐抛物线”________.17.已知y 是x 的二次函数,y 与x 的部分对应值如表:该二次函数图象向左平移____________个单位,图象经过原点. x… ﹣2 ﹣1 0 1 2 … y … 0 4 6 6 4 …18.如图是我国古代数学家赵爽在注解《周牌算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形与二个正方形拼成的.如果大正方形的面积是125,小正方形面积是25,则cos θ的值为______.19.如图,在Rt ABC 中,C 90∠=︒,25AC =,2cos 3B =,则AB =______.20.如图是高铁站自动检票口的双翼闸机,检票后双翼收起,通过闸机的物体的最大宽度为70cm ,检票前双翼展开呈扇形CAP 和扇形DBQ ,若AC =BD =55cm ,∠PCA =∠BDQ =30°,则A 、B 之间的距离为_____cm .21.如图,ABC 的顶点都是正方形网格中的格点,则tan ACB ∠等于________.22.已知等腰ABC ,AB AC =,BH 为腰AC 上的高,3BH =,3tan ABH ∠=,则CH 的长为______. 三、解答题23.如图,O 的直径4AB cm =,AM 和BN 是它的两条切线,DE 与O 相切于点E ,并与AM ,BN 分别相交于D ,C 两点,设AD x =,BC y =,求y 关于x 的函数表达式,并在坐标系中画出它的图像.24.如图,AB 是⊙O 的直径,AC 、DC 为弦,∠ACD =60°,P 为AB 延长线上的点,∠APD =30°.(1)求证:DP 是⊙O 的切线;(2)若⊙O 的半径为5,求图中阴影部分的面积.25.在平面直角坐标系xOy 中,二次函数y =ax 2+2x ﹣3a (a ≠0)交x 轴于A 、B 两点(点A 在点B 的左侧),且抛物线的对称轴为直线x =﹣1.(1)求此抛物线的解析式及A 、B 两点坐标;(2)若抛物线交y 轴于点C ,顶点为D ,求四边形ABCD 的面积.26.如图,抛物线与x 轴相交于点A (﹣3,0)点B (1,0),与y 轴交于点C (0,3);(1)求这条抛物线的解析式;(2)点P 为抛物线一点,若S △PAB =10,求出此时点P 的坐标;(3)求∠ACB 的正切值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】求出直线y x b =-+与圆相切时,函数经过一、二、四象限和当直线y x b =-+与圆相切时,函数经过二、三、四象限b 的值,则b 的值在相交时与相切时两个b 之间;【详解】当直线y x b =-+与圆相切时,函数经过一、二、四象限,如图所示:在y x b =-+中,令x=0,y=b ,则与y 轴的交点为B(0,b),令x=b ,y=0,则与x 轴的交点为A(b ,0),则OA=OB ,即△AOB 是等腰直角三角形,连接圆心O 与切点C ,则OC=1,∴ △BOC 也是等腰直角三角形,∴ BC=OC=1,∴ 22112BO =+= ,同理当直线y x b =-+与圆相切时且函数经过二、三、四象限,b=2-,∴ 当直线y x b =-+与圆相交时,b 的取值范围是22b -<< ;故选:B .【点睛】本题主要考查了直线与圆的关系的综合,解题的关键是根据题意找到直线与圆相切时b 的值.2.D解析:D【分析】延长AO 交⊙O 于B ,连接AC ,证明△PAC ∽△PCB ,进而得到PC 2=PA•PB 即可求出PC 的长.【详解】解:如下图所示:连接OC ,延长AO 交⊙O 于B ,连接AC ,BC ,∵AB 为直径,∴∠1+∠2=90°,∵OC=OA ,∴∠1=∠3,∵PC 为圆的切线,∴∠3+∠4=90°,∴∠2=∠4,又∠P=∠P ,∴△PCA ∽△PBC ,∴=PC PA PB PC,即24(104)56=⨯=⨯+=PC PA PB , ∴214=PC故选:D .【点睛】本题考查了相似三角形的性质和判定,圆的切线及圆周角定理等,熟练掌握圆的性质及相似三角形的性质和判定是解决本题的关键.3.A解析:A【分析】解方程确定圆的半径为3,圆心距d=2,比较半径与圆心距的大小,根据法则判断即可.【详解】∵2690x x-+=,∴123x x==,∴圆的半径为3,∵点O到直线AB的距离为2,即d=2,∴d<R,∴直线与圆相交,故选A.【点睛】本题考查了用半径、圆心距判定直线和圆的位置关系,熟练解方程,熟记d,R法则是解题的关键.4.C解析:C【分析】首先连接BC,由AC平分∠BAD,易证得∠BDC=∠CAD,继而证得△CDE∽△CAD,然后由相似三角形的对应边成比例求得AE的长,进而求出AC的长.【详解】解:∵AC平分∠BAD,∴∠BAC=∠CAD∴=BC CD,∴∠BDC=∠CAD,∵∠ACD=∠DCE,∴△CDE∽△CAD,∴CD:AC=CE:CD,∴CD2=AC•CE,∴62=4(4+AE),∴AE=5,∴AC=AE+CE=9,故选:C.【点睛】此题考查了圆周角定理以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5.C解析:C【分析】根据二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,可得△=221410m m m -⨯->(+)()且0m ≠求解后即可得出结论.【详解】解:∵原函数是二次函数,∴0m ≠,∵二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则△=240b ac ->,即221410m m m -⨯->(+)(), 解得18m >-. ∴m 的取值范围是18m >-且0m ≠. 故选:C .【点睛】本题考查了抛物线与x 轴的交点问题,掌握抛物线与x 轴的交点问题与一元二次方程根之间的关系是解题的关键.6.B解析:B【分析】先由一次函数y ax b =+的图象得到a 、b 的正负,再与二次函数2y ax bx c =++的图象的开口方向、对称轴位置相比较即可做出判断.【详解】解:A 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a >0,b >0,故本选项错误;B 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a <0,b <0,故本选项正确;C 、由抛物线可知,a >0,x =﹣2b a >0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,x =﹣2b a<0,得b <0,由直线可知,a <0,b >0,故本选项错误.故选:B .【点睛】本题主要考查一次函数的图象、二次函数2y ax bx c =++的图象与性质,熟练掌握两函数图象与解析式的系数的关系是解答的关键. 7.B解析:B【分析】首先把一般式写成顶点式y=2(x-1)2-1,从而可得对称轴x=1,顶点坐标为(1,-1),再利用二次函数的性质进行分析即可.【详解】解:y=2x 2-4x+1=2(x 2-2x )+1=2(x 2-2x+1)-1=2(x-1)2-1,A 、图象的对称轴为x=1,在y 轴的右侧,故说法错误;B 、顶点点坐标为(1,-1),顶点在x 轴下方,故说法正确;C 、当x >1时,y 的值随x 值的增大而增大,故说法错误;D 、y 的最小值为-1,故说法错误;故选:B .【点睛】此题主要考查了二次函数的性质,关键是掌握配方法把二次函数解析式写成顶点式,掌握二次函数性质.8.C解析:C【分析】首先由函数图象可直接得出4BC =,然后当M 运动至BC 中点时,y 的值最大,此时即为AC 的长,从而在等腰直角三角形中分别计算即可.【详解】根据函数图象知,当4x =时,0y =,即:4BC =,当M 运动至BC 中点时,y 的值最大,此时y 的值即为AC 的长,∵△ABC 为等腰直角三角形,M 为BC 的中点,∴△AMC 为等腰直角三角形,且122AM MC BC ===, ∴AC ==,即:函数图象中,2,m n ==, ∴2m n +=+故选:C .【点睛】本题考查二次函数的实际应用之动态几何问题,理解二次函数的基本性质以及等腰直角三角形的性质是解题关键.9.B解析:B【分析】过点F作FG⊥AC于点G,根据题意,∠BEP=90°,根据四边形内角和定理可得∠CPF的度数,再根据锐角三角函数即可求出CP的长,进而可得AP的长.【详解】解:如图,过点F作FG⊥AC于点G,根据题意可知:∠BEP=90°,∠B=65°,∵AC⊥AB∴∠A=90°,∴∠EPA=360°-90°-90°-65°=115°,∵∠DPE=15°,∴∠APD=130°,∴∠CPF=50°,∵F为PD的中点,∴DF=PF=1PD=1.2,2∴CF=PF=1.2,∴CP=2PG=2×PF•cos50°≈2×1.2×0.64≈1.54,∴AP=AC-PC=2.8-1.54≈1.3(m).故选:B.【点睛】本题考查了解直角三角形的应用,借助辅助线构造直角三角形,并结合图形利用三角函数解直角三角形是关键.10.D解析:D【分析】设BC=a ,则AB=3a ,根据勾股定理求出AC ,再根据正弦的定义求sin B .【详解】解:设BC=a ,则AB=3a , 2222922AC AB BC a a a =-=-=,sin B =2222AC a AB ==, 故选:D .【点睛】本题考查了三角函数,勾股定理,解题关键是明确三角函数的意义,通过设参数,求出需要的边长.11.C解析:C【分析】根据图形找出角的两边经过的格点以及点O 组成的直角三角形,利用勾股定理求出OA ,再根据锐角的正弦值等于对边比斜边求解.【详解】如图:AE ⊥OB ,在Rt △AOE 中,AE=4,OE=2,∴2225OA AE OE =+=,∴sin ∠AOB=25525AE OA ==, 故选:C .【点睛】此题考查求网格中角的三角函数值,熟记角的三角函数值的计算公式,并正确确定角所在的直角三角形是解题的关键.12.D解析:D【分析】过点B作BD AC⊥,利用面积法求出BD的长,再由勾股定理求出AD的长,即可求出tanA的值.【详解】解:如图,过点B作BD AC⊥,2BC=,17AB5AC=,根据面积法,24855 BD⨯==,根据勾股定理,226419 17255AD AB BD=-=-=,∴885tan19195BDAAD===.故选:D.【点睛】本题考查锐角三角函数,解题的关键是掌握构造直角三角形求锐角三角函数的方法.二、填空题13.10【分析】由于PAPBDE都是⊙O的切线可根据切线长定理将△PDE的周长转化为切线PAPB长的和【详解】解:∵PAPBDE分别切⊙O于ABC∴PA=PBDA=DCEC=EB;∴C△PDE=PD+D解析:10【分析】由于PA、PB、DE都是⊙O的切线,可根据切线长定理将△PDE的周长转化为切线PA、PB 长的和.【详解】解:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=20;∴PA=PB=10,故答案为10.【点睛】此题主要考查的是切线长定理,能够发现△PDE的周长和切线PA、PB长的关系是解答此题的关键.14.20【分析】先利用勾股定理计算出圆锥的底面圆的半径为4然后利用扇形的面积公式计算该圆锥的侧面积【详解】解:圆锥的底面圆的半径为=4所以该圆锥的侧面积=×2×4×5=20故答案为20【点睛】本题考查了解析:20π【分析】先利用勾股定理计算出圆锥的底面圆的半径为4,然后利用扇形的面积公式计算该圆锥的侧面积.【详解】4,所以该圆锥的侧面积=12×2π×4×5=20π.故答案为20π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.【分析】求出A点坐标和对称轴根据对称性求出M点坐标利用中点求出B 点坐标进而求出P点坐标代入求a即可【详解】解:由题意得:对称轴为直线P点横坐标为1当x=0时y=3∴A点坐标为:根据对称性可知M点坐标解析:9 4【分析】求出A点坐标和对称轴,根据对称性求出M点坐标,利用中点,求出B点坐标,进而求出P点坐标,代入求 a即可.【详解】解:由题意得:对称轴为直线212axa-=-=,P点横坐标为1,当x=0时,y=3,∴A点坐标为:()0,3,根据对称性可知,M点坐标为()2,3,∵M为AB中点,∴B点坐标为:()4,3设OB解析式为y=kx,把B()4,3代入得,3=4k解得,k=34, ∴直线OB 解析式为34y x =, 把1x =代入34y x =得,34y =, ∴P 点坐标为31,4⎛⎫ ⎪⎝⎭, 代入抛物线得:3234a a -+=, 解得,94a =, 故答案为:94. 【点睛】本题考查了一次函数和二次函数的综合,解题关键是根据二次函数的性质求出B 点坐标,求出一次函数解析式.16.【分析】先将抛物线进行配方后根据和谐抛物线定义写出已知函数的和谐抛物线并整理成一般式【详解】解:∵∴抛物线的和谐抛物线为:即故答案为:【点睛】本题考查了新定义函数问题配方法熟练配方并准确理解新定义是 解析:2467y x x =+-.【分析】先将抛物线进行配方,后根据 “和谐抛物线”定义写出已知函数的“和谐抛物线”,并整理成一般式.【详解】解:∵223374674()44y x x x =-++=--+, ∴抛物线2467y x x =-++的“和谐抛物线”为:23374()44y x =+- 即2467y x x =+-,故答案为:2467y x x =+-.【点睛】本题考查了新定义函数问题,配方法,熟练配方,并准确理解新定义是解题的关键. 17.3【分析】利用表格中的对称性得:抛物线与x 轴另一个交点为(30)可得结论【详解】解:由表格得:二次函数的对称轴是直线x ==∵抛物线与x 轴一个交点为(−20)∴抛物线与x 轴另一个交点为(30)∴该二次解析:3【分析】利用表格中的对称性得:抛物线与x 轴另一个交点为(3,0),可得结论.【详解】解:由表格得:二次函数的对称轴是直线x =012+=12, ∵抛物线与x 轴一个交点为(−2,0),∴抛物线与x 轴另一个交点为(3,0),∴该二次函数图象向左平移3个单位,图象经过原点;或该二次函数图象向右平移2个单位,图象经过原点.故答案为:3.【点睛】本题考查了二次函数图象与几何变换−平移,根据平移的原则:左加右减进行平移;也可以利用数形结合的思想画图解决. 18.【分析】根据正方形的面积公式可得大正方形的边长为小正方形的边长为5再根据直角三角形的边角关系列式即可求解;【详解】∵大正方形的面积是125小正方形的面积为25∴大正方形的边长为小正方形的边长为5设直【分析】根据正方形的面积公式可得大正方形的边长为 ,小正方形的边长为5 ,再根据直角三角形的边角关系列式即可求解;【详解】∵ 大正方形的面积是125,小正方形的面积为25,∴ 大正方形的边长为,小正方形的边长为5 ,设直角三角形中θ所对的直角边为x ,则()(2225x x ++= , 解得:x 1=5,x 2=-10(舍去),∴ sin θ,∴ cos θ ,. 【点睛】本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中. 19.6【分析】设BC=2x 根据余弦的定义用x 表示出AB 根据勾股定理列式计算得到答案【详解】解:设BC=2x 在Rt △ABC 中∠C=90°∴∴AB=3x 由勾股定理得AC2+BC2=AB2即(2)2+(2x )解析:6【分析】设BC=2x ,根据余弦的定义用x 表示出AB ,根据勾股定理列式计算,得到答案.【详解】解:设BC=2x ,在Rt △ABC 中,∠C=90°,2cos 3B =, ∴23BC AB =, ∴AB=3x , 由勾股定理得,AC 2+BC 2=AB 2,即(25)2+(2x )2=(3x )2,解得,x=2,∴AB=3x=6,故答案为:6.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦是解题的关键.20.15【分析】如图连接ABCD 过点A 作AE ⊥CD 于E 过点B 作BF ⊥CD 于F 求出CEDF 即可解决问题【详解】解:如图连接ABCD 过点A 作AE ⊥CD 于E 过点B 作BF ⊥CD 于F ∵AB ∥EFAE ∥BF ∴四边形解析:15【分析】如图,连接AB ,CD ,过点A 作AE ⊥CD 于E ,过点B 作BF ⊥CD 于F .求出CE , DF 即可解决问题.【详解】解:如图,连接AB ,CD ,过点A 作AE ⊥CD 于E ,过点B 作BF ⊥CD 于F .∵AB ∥EF ,AE ∥BF ,∴四边形ABFE 是平行四边形,∵∠AEF=90°,∴四边形AEFB 是矩形,∴EF=AB∵AE ∥PC ,∴∠PCA=∠CAE=30°,∴CE=AC•sin30°=27.5(cm ),同法可得DF=27.5(cm ),∴EF= CD-CE-DF=70-27.5-27.5=15(cm ),∴AB=15(cm ),故答案为15.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.21.3【分析】根据勾股定理以及网格结构可以求得ACABBCCD 的长然后根据等积法求得AE 的长再根据勾股定理可得到CE 的长然后根据正切函数的定义即可得到的值【详解】解:如图作CD ⊥AB 于点D 作AE ⊥BC 于解析:3【分析】根据勾股定理以及网格结构,可以求得AC 、AB 、BC 、CD 的长,然后根据等积法求得AE 的长,再根据勾股定理可得到CE 的长,然后根据正切函数的定义即可得到tan ACB ∠的值.【详解】解:如图,作CD ⊥AB 于点D ,作AE ⊥BC 于点E ,由已知可得,AC=223+1=10,AB=5,BC=223+4=5,CD=3,∵S △ABC =12AB•CD=12BC•AE , ∴AE=5335AB CD BC ⨯== ∴CE=2222(10)31AC AE -=-=∴tan ∠ACB=3AE CE=, 故答案为:3.【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答. 22.或【分析】如图所示分两种情况利用特殊角的三角函数值求出的度数利用勾股定理求出所求即可【详解】当为钝角时如图所示在中根据勾股定理得:即;当为锐角时如图所示在中设则有根据勾股定理得:解得:则故答案为或【 解析:33或3 【分析】如图所示,分两种情况,利用特殊角的三角函数值求出ABH ∠的度数,利用勾股定理求出所求即可.【详解】当BAC ∠为钝角时,如图所示,在Rt ABH 中,3tan AH ABH BH ∠==,3BH =, 3AH ∴=,根据勾股定理得:22(3)323AB =+=,即23AC =,23333CH CA AH ∴=+=+=;当BAC ∠为锐角时,如图所示,在Rt ABH 中,3tan 3ABH ∠=, 30ABH ∴∠=,1122AH AB AC ∴==, 设AH x =,则有2AB AC x ==, 根据勾股定理得:222(2)3x x =+,解得:3x =则3HC AC AH =-=故答案为333【点睛】此题属于解直角三角形题型,涉及的知识有:等腰三角形的性质,勾股定理,以及特殊角的三角函数值,熟练掌握直角三角形的性质及分类的求解的数学思想是解本题的关键.三、解答题23.4y x=(x >0);作图见解析; 【分析】 做辅助线构造直角三角形,运用勾股定理及切线的性质定理可求出y 关于x 的函数解析式,再运用描点法做出函数图像即可;【详解】如图,过点D 作DF BC ⊥,∵AD 、BC 分别是圆O 的切线,∴90OAD OBF ∠=∠=︒,又∵DF BC ⊥,∴四边形ABFD 是矩形,∴4DF AB cm ==,BF AD =,∵AD 、BC 、DC 分别是圆O 的切线,∴DE DA x ==,CE CB y ==,CF y x =-,∴DC x y =+,由勾股定理得:222DC DF CF =+,即()()2224x y y x +=-+,整理得:4xy =,∴4y x =,∴y 关于x 的函数解析式为4y x =(x >0);如图,做图像:当1x =时,4y =;2x =时,2y =;4x =时,1y =; 过点()1,4,()2,2,()4,1,在平面直角坐标系内连线可得函数图像,【点睛】本题主要考查了切线的性质和反比例函数的解析式求解和作图,准确分析判断是解题的关键.24.(1)见解析;(2)253256π-.【分析】(1)连接OD,由圆周角定理可得∠AOD=120°,所以∠DOP=60°,再根据∠APD=30°可得OD⊥DP,从而根据切线的判定可得解答;(2)由⊙O的半径为5可以算得△ODP与扇形DOB的面积,求出两者之差即可得到解答.【详解】(1)证明:连接OD,∵∠ACD=60°,∴∠AOD=2∠ACD=120°,∴∠DOP=180°﹣120°=60°,∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°∴OD⊥DP,∵OD为半径,∴DP是⊙O切线;(2)解:∵∠P=30°,∠ODP=90°,OD=5∴OP=10由勾股定理得:222210553DP OP OD=-=-=∴S阴=S△ODP﹣S扇形DOB=2 1605 5532360π⨯⨯⨯=2532526π-.【点睛】本题考查圆的综合应用,熟练掌握圆周角定理、切线的判定定理、勾股定理的应用及扇形面积的计算是解题关键.25.(1)y=x2+2x﹣3,A(﹣3,0),B(1,0);(2)四边形ABCD的面积是9【分析】(1)根据抛物线对称轴方程x=b2a求得a的值,继而确定函数解析式;将二次函数解析式转换为交点式,直接写出A、B两点坐标;(2)由抛物线解析式求得点C、D的坐标,然后利用分割法求得四边形ABCD的面积.【详解】解:(1)根据题意知,抛物线的对称轴为x=﹣22a=﹣1,则a=1.故该抛物线解析式是:y=x2+2x﹣3.因为y=x2+2x﹣3=(x+3)(x﹣1),所以A(﹣3,0),B(1,0);(2)如图:由(1)知,A(﹣3,0),B(1,0),由抛物线y=x2+2x﹣3知,C(0,﹣3).∵y=x2+2x﹣3=(x+1)2﹣4,∴D(﹣1,﹣4),E(﹣1,0).∴AE=2,OC=3,OE=1,OB=1,ED=4,∴S四边形ABCD=S△BOC+S梯形OEDC+S△DAE=12×1×3+12(3+4)×1+12×2×4=9.即四边形ABCD的面积是9.【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,得出各点的坐标是解答本题的突破口,另外注意将不规则图形的面积转化为几个规则图形的面积和进行求解.26.(1)y=-x2-2x+3;(2)点P的坐标为(2,-5)或(-4,-5);(3)∠ACB的正切值为2.【分析】(1)设抛物线解析式()()31y a x x =+-,由抛物线与y 轴交于点C (0,3),-3=3,a a =-1即可;(2)设P 点的纵坐标为h ,由S △PAB =10,可得5h =,当h=5时,点P 为抛物线一点,2+220x x +=,=4-80∆<无解,当h=-5时, 2+280x x -=,=4+32=360∆>,解方程可求点P 的坐标为(2,-5)或(-4,-5);(3)过B 作BD ⊥AC 于D ,在Rt △BOC 中OB=1,OC=3,由勾股定理,AC=S △ABC =11AB OC=AC BD 22⋅⋅即1143=22⨯⨯⨯,可求tan ∠ACB=BD =CD 计算即可. 【详解】解:(1)∵抛物线与x 轴相交于点A (﹣3,0)、点B (1,0),设抛物线解析式为()()31y a x x =+-,∵抛物线与y 轴交于点C (0,3),∴-3=3,a a =-1,∴y=-x 2-2x+3;(2)设P 点的纵坐标为h ,∵AB=1+3=4, S △PAB =10, ∵ABP 1S =AB 2102h h ∆⋅==, ∴5h =,当h=5时,点P 为抛物线一点,∴2235x x --+=,∴2+220x x +=,=4-80∆<无解,当h=-5时,∴2235x x --+=-,∵2+280x x -=,=4+32=360∆>,∴()()240x x -+=,∴122,4x x ==-,∴点P 的坐标为(2,-5)或(-4,-5);(3)过B 作BD ⊥AC 于D ,在Rt △BOC 中OB=1,OC=3,∴22OB +OC =1+9=10在Rt △AOC 中,AO=3,∴22OA +OC =9+9=32∵S △ABC =11AB OC=AC BD 22⋅⋅即1143=32BD 22⨯⨯⨯, ∴BD=22在Rt △BDC 中,由勾股定理22DC=BC BD =2-∴由正切定义tan ∠ACB=BD 22=CD 2, ∴∠ACB 的正切值为2.【点睛】本题考查抛物线的解析式,三角形面积求法,三角函数等知识,掌握抛物线的解析式,三角形面积求法,三角函数等知识是解题关键.。
2023年广东省深圳市南山区九年级下学期第一次模拟考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.2023-的相反数是()A .2023B .2023-C .12023D .12023-2.下列图形不是中心对称图形的是()A .B .C .D .3.疫情以后,为了保证大家的健康,学校对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.5,36.3,36.7,36.3.这组数据的中位数是()A .36.3B .36.5C .36.7D .36.84.今年1月,深圳召开全市高质量发展大会,同时举行首批266个重大项目开工活动,预计本年度计划投资约535.6亿元,以高质量投资助力高质量发展.535.6亿用科学计数法表示()A .25.35610⨯B .85.35610⨯C .95.35610⨯D .105.35610⨯5.如图,往一个密封的正方体容器持续注入一些水,注水的过程中,可将容器任意放置,水平面形状不可能是()A .三角形B .正方形C .六边形D .七边形6.下列运算正确的是()A .2a a a -=B .236a a a ⋅=C .236()a a =D .933a a a ÷=7.一副三角形板如图放置,DE BC ∥,90C DBE ∠=∠=︒,45E ∠=︒,30A ∠=︒,则ABD ∠的度数为()A .5B .15C .20D .258.如图,已知150AOB ∠=︒.现按如下步骤作图:①以O 为圆心,以任意长为半径画弧,分别交OA OB ,于C ,D ;②分别以C ,D 为圆心,以大于12CD 长为半径画弧,两弧交于点E ,连接EO 交 CD于F ;③以E 为圆心,OD 长为半径画弧,交OE 于点G ;④以G 为圆心,DF 长为半径画弧,交前弧于点H ;⑤作射线EH 交OA 于点I .若测得6OI =,则点E 到OB 的距离为()AB .3C .D .9.华罗庚说过:“数形结合百般好,隔裂分家万事非.”请运用这句话中提到的思想方法判断方程2124x x x+=-+的根的情况是()A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根10.如图,在边长为4正方形ABCD 中,点E 在以B 为圆心的弧AC 上,射线DE 交AB 于F ,连接CE ,若CE DF ⊥,则DE =()A .2B C D二、填空题11.按照下图所示的操作步骤,若输入x 的值为-2,则输出的值为____________.12.一个二次二项式分解后其中的一个因式为3x -,请写出一个满足条件的二次二项式______.13.如图,AC 经过⊙O 的圆心O ,AB 与⊙O 相切于点B ,若∠A =50°,则∠C =_____度.14.如图,直角坐标系原点为Rt ABC △斜边的中点,90ACB ∠=︒,A 点坐标为()5,0-,且1tan 3A =,反比例函数()0k y k x=≠经过点C ,则k 的值为______.15.如图,等边三角形ABC 边长为2,点D 在BC 边上,且BD CD <,点E 在AB 边上且AE BD =,连接AD ,CE 交于点F ,在线段FC 上截取FG FA =,连接BG ,则线段BG 的最小值是______.三、解答题16.解不等式组21141x x -<⎧⎨-≥⎩,并把解集在数轴上表示出来.17.(1)直接写出结果计算:()()12x x +-=.(2)利用(1)中的结论化简322322121x x x x x x x x ----÷++.18.为调查某校关于国家规定“中小学生每天在校体育活动时间不低于1h ”的落实情况,某部门就“每天在校体育活动时间”随机调查了该校部分学生,根据调查结果绘制成如下不完整的统计图表.每天在校体育活动时间扇形统计图:每天在校体育活动时间频数分布表:组别每天在校体育活动时间t /h 人数At <0.5h 20B0.5h ≤t <1h 40C1h ≤t <1.5h a D t ≥1.5h 20请根据以上图表信息,解答下列问题:(1)本次调查的学生共有_________人,a =__________,C 组所在扇形的圆心角的大小是___________;(2)若该校约有1500名学生,请估计其中达到国家规定体育活动时间的学生人数.19.“双减政策”要求学校更注重“减负增效”,学校为了保护学生的视力,倡导学生购买护眼灯.某商场为了保证供应充足,购进两种不同类型的护眼灯,若用3120元购进A 型护眼灯的数量和用4200元购进B 型护眼灯的数量相同,其中每台A 型护眼灯比B 型护眼灯便宜9元.(1)求该商场购进每台A 型和B 型护眼灯的成本价.(2)该商场经过调查发现,A 型护眼灯售价为36元时,可以卖出100台.每涨价1元,则每天少售出2台.求每台A 型护眼灯升价多少元时,销售利润最大?20.(1)如图1,纸片ABCD Y 中,10AD =,=60ABCD S ,过点A 作AE BC ⊥,垂足为E ,沿AE 剪下ABE ,将它平移至DCE ' 的位置,拼成四边形AEE D ',则四边形AEE D '的形状为.(从以下选项中选取)A .正方形B .菱形C .矩形(2)如图2,在(1)中的四边形纸片AEE D '中,在EE '上取一点F ,使8EF =,剪下AEF △,将它平移至DE F ''△的位置,拼成四边形AFF D '.①求证:四边形AFF D '是菱形;②连接DF ,求sin ADF ∠的值.21.如图,抛物线2y x bx c =-++与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C .图1备用图(1)求抛物线的解析式;(2)如图1,D 是BC 上方抛物线上一点,连接AD 交线段BC 于点E ,若2AE DE =,求点D 的坐标;(3)抛物线上是否存在点P 使得PAB ABC ∠=∠,如果存在,请求出点P 的坐标,如果不存在,请说明理由.22.在正方形ABCD 中,点E 是对角线AC 上的动点(与点A ,C 不重合),连接BE .(1)将射线BE 绕点B 顺时针旋转45︒,交直线AC 于点F .①依题意补全图1;②小深通过观察、实验,发现线段AE FC EF ,,存在以下数量关系:AE FC 与的平方和等于EF 的平方.小深把这个猜想与同学们进行交流,通过讨论,形成证明该猜想的几种想法:想法1:将线段BF 绕点B 逆时针旋转90︒,得到线段BM ,要证AE FC EF ,,的关系,只需证AE AM EM ,,的关系.想法2:将ABE 沿BE 翻折,得到NBE ,要证AE FC EF ,,的关系,只需证EN FN EF ,,的关系.…请你参考上面的想法,用等式表示线段AE FC EF ,,的数量关系并证明;(一种方法即可)(2)如图2,若将直线BE 绕点B 顺时针旋转135︒,交直线AC 于点F .若正方形边长为2,:2:3AE EC =,求AF 的长.参考答案:1.A【分析】根据相反数定义:只有符号不同的两个数叫做互为相反数,直接得出答案.【详解】根据相反数定义,2023-的相反数是2023,故选:A .【点睛】本题考查相反数定义,熟记符号不同的两个数互为相反数是解决问题的关键.2.A【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】A 、不是中心对称图形,故本选项符合题意;B 、是中心对称图形,故本选项不符合题意;C 、是中心对称图形,故本选项不符合题意;D 、是中心对称图形,故本选项不符合题意.故选:A .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图形重合.3.B【分析】将这组数据从小到大重新排列,再根据中位数的定义求解即可.【详解】将这组数据从小到大重新排列为36.3,36.3,36.3,36.5,36.5,36.7,36.8∴这组数据的中位数为36.5,故选:B .【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.D【分析】用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中1||10a ≤<,n 为整数.【详解】解:535.6亿10=53560000000 5.35610=⨯.故选:D .【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.5.D【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,因此截面的形状可能是:三角形、四边形、五边形、六边形,即可得到答案;【详解】解:∵正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴截面的形状可能是:三角形、四边形、五边形、六边形,故选D .【点睛】本题考查了正方体的截面,解题的关键是熟练掌握面面相交等到线.6.C【分析】根据合并同类项,同底数幂的乘除,幂的乘方计算,再进行判断即可.【详解】解:A.2a 与a 不是同类项不能合并,该选项不符合题意;B.235a a a ⋅=,故该选项不正确,不符合题意;C.236()a a =,故该选项正确,符合题意;D.936a a a ÷=,故该选项不正确,不符合题意;故选:C .【点睛】本题考查了合并同类项,同底数幂的乘除,幂的乘方,熟练掌握运算法则是解题的关键.7.B【分析】根据90C DBE ∠=∠=︒,45E ∠=︒,30A ∠=︒可得45EDB ∠=︒,60ABC ∠=︒,结合DE BC ∥,即可得到45EDB DBC ∠=∠=︒,即可得到答案;【详解】解:∵90C DBE ∠=∠=︒,45E ∠=︒,30A ∠=︒,∴45EDB ∠=︒,60ABC ∠=︒,∵DE BC ∥,∴45EDB DBC ∠=∠=︒,∴604515ABD ABC DBC ∠=∠-∠=︒-︒=︒,故选B .【点睛】本题考查平行线性质,直角三角形两锐角互余,解题的关键是根据直角三角板得到相应的角度.8.B【分析】如图所示,过点I 作IM OB ⊥交BO 的延长线于点M ,根据作图得出IEO EOB ∠=∠,则IE OB ∥,进而根据含30度角的直角三角形的性质得出132IM IO ==,根据平行线间的距离处处相等,即可求解.【详解】根据作图可知OE 为AOB ∠的角平分线,IEO EOB ∠=∠,∴IE OB∥如图所示,过点I 作IM OB ⊥交BO 的延长线于点M ,∵150AOB ∠=︒,∴30IOM ∠=︒,∵6OI =,∴132IM IO ==,∵IE OB∥∴点E 到OB 的距离为3故选:B .【点睛】本题考查了基本作图,作角平分线,作一个角等于已知角,平行线的判定,平行线之间的距离,含30度角的直角三角形的性质,证明IE OB ∥是解题的关键.9.A 【分析】根据题意可知,方程的根的情况是函数1y x=与242y x x =-+-的交点情况,画出函数图象草图即可求解.【详解】解:依题意,函数1y x =与242y x x =-+-的函数图象如图所示,根据函数图象可知图象共有3个交点,即方程有3个根,故选:A .【点睛】本题考查了方程的根与函数图象交点的关系.数形结合的思想是解题的关键.10.C【分析】设射线DF 交B 于点G ,连接BG ,证明DCE G ∠=∠,勾股定理得出GD ,进而根据sin sin DCE G ∠=∠,列出方程,解方程即可求解.【详解】解:如图所示,设射线DF 交B 于点G ,连接BG ,∵CE DF ⊥,∴GC 是B 的直径,∴28BC BC ==,∵四边形ABCD 是正方形,∴4,90CD BC DCG ==∠=︒,∴90DCE GDC G ∠=︒-∠=∠,GD =∴sin sin ED CD DCE G CD GD∠===,∴25CD ED GD ===,故选:C .【点睛】本题考查了直角所对的弦是直角,正弦的定义,正方形的性质,勾股定理,掌握以上知识是解题的关键.11.7【分析】该程序计算是先平方,再乘以3,再减去5.将x 输入即可求解.【详解】解:输入x =-2,x 2=(-2)2=4,4×3=12,12-5=7.故答案为:712.23x x -(答案不唯一)【分析】根据因式分解的结果,乘以一个单项式即可求解.【详解】解:∵()233x x x x -=-,∴出一个满足条件的二次二项式可以是:23x x -(答案不唯一).故答案为:23x x -(答案不唯一).【点睛】本题考查了因式分解与整式乘法的联系,掌握因式分解是解题的关键.13.20【分析】首先连接OB ,由AB 与⊙O 相切于点B ,根据切线的性质,即可得OB ⊥AB ,又由∠A =50°,即可求得∠AOB 的度数,然后由圆周角定理,求得∠C 的度数.【详解】解:连接OB ,如图:∵AB 与⊙O 相切于点B∴OB ⊥AB∴∠OBA =90°∵∠A =50°∴∠AOB =90°﹣∠A =40°∴11402022C AOB ∠=∠=⨯︒=︒.故答案是:20【点睛】此题考查了切线的性质,圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.14.12【分析】作CD AB ⊥于点D .由1tan 3A =可设BC x =,3AC x =,根据勾股定理即可求出BC 和AC 的值,利用面积法求出CD 的值,再利用勾股定理求出BD 的值,得到点C 的坐标,然后可求出k 的值.【详解】如图,作CD AB ⊥于点D .∵()5,0A -,O 为Rt ABC △斜边AB 的中点,∴()5,0B ,∴5OB =,10AB =.∵1tan 3A ==BC AC,∴可设BC x =,3AC x =,由勾股定理得()222310x x +=,x ∴=(负值舍去),BC ∴=AC =1122AC BC AB CD ⋅=⋅,10CD ,3CD ∴=,BD ∴=1=,514OD ∴=-=,(4C ∴,3).反比例函数(0)k y k x=≠经过点C ,4312k ∴=⨯=.故答案为:12.【点睛】本题考查了勾股定理,面积法求线段的长,锐角三角函数的定义,以及反比例函数图象上点的坐标特征,求出点C 的坐标是解答本题的关键.15.2-##2-+【分析】先根据等边三角形的性质证明ABD CAE ≅ ,得出60AFE ∠=︒,进而得到150AGC ∠=︒,从而得到点G 在以AC 为弦、所对圆周角为150︒的一段弧上运动,然后作辅助线图如图,得到BG OG OB +≥(当且仅当,,B G O 三点共线时取=),得出BG 的最小值即为BO OG -,再求出,BO GO 即得答案.【详解】解:∵等边三角形ABC ,∴,60=∠=∠=︒AB AC ABC BAC ,又∵AE BD =,∴ABD CAE ≅ ,∴BAD ACE ∠=∠,∴60AFE FAC ACE FAC FAE BAC ∠=∠+∠=∠+∠=∠=︒,连接AG ,如图,∵FG FA =,∴30FAG FGA ∠=∠=︒,∴150AGC ∠=︒,∴点G 在以AC 为弦、所对圆周角为150︒的一段弧上运动,设这段弧所在的圆心为O ,连接,,,AO CO BO GO ,如图,则BG OG OB +≥(当且仅当,,B G O 三点共线时取=),∴BG 的最小值即为BO OG -,设,BO AC 交于点H ,∵150AGC ∠=︒,∴()218015060AOC ∠=⨯︒-︒=︒,∵AO CO =,∴ACO △是等边三角形,∴2AO CO AC AB BC =====,∴四边形ABCO 是菱形,∴11,1,,3022AC BO AH AC BH OH ABH ABC ⊥===∠=∠=︒,∴BH ==,∴BO =∴BG 的最小值为2;故答案为;2.【点睛】本题考查了等边三角形的判定和性质、菱形的判定和性质、勾股定理以及圆的相关知识,得出点G 取最小值的位置是解题的关键.16.1x <,数轴见解析【分析】分别求出每一个不等式的解集,然后把解集表示在数轴上,根据数轴即可确定不等式的解集.【详解】解:21141x x -<⎧⎨-≥⎩①②解不等式①得:1x <解不等式②得:3x ≤在数轴上表示不等式的解集为:∴不等式组的解集为:1x <【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.17.(1)22x x --;(2)1【分析】(1)根据多项式乘以多项式进行计算即可求解;(2)根据分式的混合运算进行计算即可求解.【详解】解:(1)()()12x x +-22x x =--;(2)322322121x x x x x x x x ----÷++()()()23221121x x x x x x x x --=⨯++-+2111x x x -=+++11x x +=+1=.【点睛】本题考查了多项式乘以多项式,分式的混合运算,掌握整式与分式的运算法则是解题的关键.18.(1):200,120,216︒.(2)1050人【分析】(1)由A 组人数除以A 组所占的百分比可得总人数,再利用总人数减去A ,B ,D 组的人数可求解a 的值,再利用360︒乘以C 组所占的百分比即可得到C 组所在扇形的圆心角;(2)由1500乘以样本中达到国家规定体育活动时间的学生人数的百分比即可.【详解】(1)解:由A 组人数为20人,占比10%,所以此次调查的总人数为:2010%=200÷(人),所以200204020120a =---=(人),C 组所在扇形的圆心角的大小是120360216200按=.故答案为:200,120,216︒.(2)解:1202015001050200+´=(人),所以该校约有1500名学生,估计达到国家规定体育活动时间的学生人数约为1050人.【点睛】本题考查的是频数分布表,扇形统计图,利用样本估计总体,熟练从频数分布表与扇形统计图中获取相关联的信息是解本题的关键.19.(1)该商场购进每台A 型护眼灯的成本价为26元,购进每台B 型护眼灯的成本价为35元(2)20元【分析】(1)设该商场购进每台A 型护眼灯的成本价为x 元,则购进每台B 型护眼灯的成本价为()9x +元,根据“用3120元和4200元购进A 型和B 型护眼灯的数量相同”建立方程,解方程即可得;(2)设每台A 型护眼灯升价a 元时,销售利润为w 元,则每台A 型护眼灯的售价为()36a +元,每天可以售出A 型护眼灯()1002a -台,根据“利润=(售价-成本价)⨯销售数量”建立函数关系式,利用二次函数的性质求解即可得.【详解】(1)解:设该商场购进每台A 型护眼灯的成本价为x 元,则购进每台B 型护眼灯的成本价为()9x +元,由题意得:312042009x x =+,解得26x =,经检验,26x =是所列分式方程的解,则926935x +=+=,答:该商场购进每台A 型护眼灯的成本价为26元,购进每台B 型护眼灯的成本价为35元.(2)解:设每台A 型护眼灯升价a 元时,销售利润为w 元,则每台A 型护眼灯的售价为()36a +元,每天可以售出A 型护眼灯()1002a -台,由题意得:()()()2362610022201800w a a a =+--=--+,010020a a ≥⎧⎨->⎩ ,050a ∴≤<,由二次函数的性质可知,在050a ≤<内,当20a =时,w 取得最大值,最大值为1800,答:每台A 型护眼灯升价20元时,销售利润最大.【点睛】本题考查了分式方程的应用、二次函数的应用,正确建立方程和熟练掌握二次函数的性质是解题关键.20.(1)C(2);【分析】(1)根据ABCD Y 可得AD EC ∥,结合AE BC ⊥可得,90EAD AEC AEB ∠===︒,再根据ABE 平移得到DCE ' ,可得90CE D '∠=︒,即可得到答案;(2)①根据平移可得AF DF '=,AF DF ' ,即可得到四边形AFF D '是平行四边形,根据60106AE =÷=,结合8EF =根据勾股定理可得AF ,即可得到证明;②根据10AD =,8EF =即可得到1082FE '=-=,结合6AE =即可得到DF ,根据AD EF 可得FE D ADF '∠=∠,即可得到答案;【详解】(1)解:∵ABCD Y 中,10AD =,=60ABCD S ,∴60106AE =÷=,∵四边形ABCD 是平行四边形,∴AD EC ∥,∵AE BC ⊥,∴90EAD AEC AEB ∠===︒,∵ABE 平移得到DCE ' ,∴90CE D '∠=︒,∴四边形AEE D '的形状为矩形,故选C ;(2)①证明:∵AEF △平移得到DE F ''△,∴AF DF '=,AF DF ' ,∴四边形AFF D '是平行四边形,∵60106AE =÷=,8EF =,∴10AF ,∴AF AD =,∴四边形AFF D '是菱形;②∵10AD =,8EF =,∴1082FE '=-=,∵6AE =,∴DF ==∵AD EF ,∴FE D ADF '∠=∠,∴sin =sinDE ADF FE D DF ''∠∠=.【点睛】本题考查平移的性质,矩形的判定,菱形的判定,三角函数,平行四边形的性质,解题的关键是根据平移及平行四边形的性质得到相应的条件.21.(1)223y x x =-++(2)点D 的坐标为()1,4或()2,3(3)存在,点P 的坐标为()2,3或()4,5-【分析】(1)运用待定系数法,将()1,0A -,()3,0B 代入2y x bx c =-++,即可求得抛物线的解析式;(2)先求出直线BC 的解析式,设()2,23D t t t -++,过点E 作EF x ⊥轴于点F ,过点D 作DG x ⊥轴于点G ,易得EFA DGA ∽,根据相似三角形的性质用含t 的式子表示点E 的坐标,再由点E 也在直线BC 上,得到关于t 的方程,解方程即可;(3)分情况讨论:①当点P 是抛物线上与点C 对称的点时,②当PA BC ∥时,分别求得点P 的坐标.【详解】(1)解:把()1,0A -,()3,0B 代入2y x bx c =-++,得10930b c b c --+=⎧⎨-++=⎩,解得23b c =⎧⎨=⎩,∴抛物线的解析式为223y x x =-++;(2)解: 抛物线与y 轴交于点C ,()0,3C ∴,设直线BC 的解析式为y kx a =+,把()3,0B ,()0,3C 代入y kx a =+,得303k a a +=⎧⎨=⎩,解得13k a =-⎧⎨=⎩,∴直线BC 的解析式为3y x =-+,设()2,23D t t t -++,过点E 作EF x ⊥轴于点F ,过点D 作DG x ⊥轴于点G,EAF DAG ∠=∠ ,90EFA DGA ∠=∠=︒,EFA DGA ∴ ∽,2AE DE = ,23AF EF AE AG DG AD ∴===,即1213E D x x +=+,23E D y y =,∴()2211133E D t x x -=+-=,()2223233E D t t y y -++==,又 点E 在直线3y x =-+上,∴()222321333t t t -++-⎛⎫=-+ ⎪⎝⎭,解得1t =或2t =,当1t =时,212134D y =-+⨯+=,即点D 的坐标为()1,4,当2t =时,222233D y =-+⨯+=,即点D 的坐标为()2,3;(3)解:存在点P 使得PAB ABC ∠=∠,如图,①当点P 是抛物线上与点C 对称的点时,则有PAB ABC ∠=∠, 点C ()0,3关于对称轴()2121x =-=⨯-的对称点坐标为()2,3,()12,3P ∴;②当PA BC ∥时,则有PAB ABC ∠=∠,直线BC 的解析式3y x =-+,∴直线AP 的解析式一次项系数为1-,设直线AP 的解析式为y x m =-+,把()1,0A -代入x m -+,得10m +=,解得1m =-,∴直线AP 的解析式为=1y x --,联立2123y x y x x =--⎧⎨=-++⎩,解得1145x y =⎧⎨=-⎩,2210x y =-⎧⎨=⎩(舍去),()24,5P ∴-,综上,存在点P 使得PAB ABC ∠=∠,点P 的坐标为()2,3或()4,5-.【点睛】本题属于二次函数综合题,考查了待定系数法求函数解析式,相似三角形的判定和性质,直线与抛物线的交点,互相平行的两直线的关系,熟练掌握二次函数图象和性质,灵活运用方程思想和分类讨论思想是解题的关键.22.(1)①见解析;②222AE FC EF +=,证明见解析(2)2AF =【分析】(1)①根据题意补全图形即可;②想法1:过B 作MB BF ⊥,使BM BF =,连接AM EM 、,由正方形的性质得出90ABC ∠=︒,1245∠=∠=°,AB BC =,证明()SAS MBE FBE ≌,得出EM EF =,证出45∠=∠,证明()SAS AMB CFB ≌,得出,6245AM FC =∠=∠=︒,证出6190MAE ∠=∠+∠=︒,在Rt MAE △中,由勾股定理即可222AF EC EF +=;想法2,证明NBF CBF ≌,在在Rt ENF △中,由勾股定理即可222EN FN EF +=,进而即可得出结论;(2)过B 作MB BE ⊥,使BM BE =,连接ME MF AM 、、,由SAS 证得:MBF EBF ∆≅∆,得出MF EF =,再由SAS 证得:AMB CBE ≌,得出AM EC =,45BAM BCE ∠=∠=︒,证出90MAE BAM BAC ∠=∠+∠=︒,得出90MAF ∠=︒,在Rt MAF 中,由勾股定理即可得得出222AF EC EF +=,根据题意得出,AE EC ,代入结论,解方程即可求解.【详解】(1)解:①补全图形,如图1所示:②222AE FC EF +=;理由如下:想法1:过B 作MB BF ⊥,使BM BF =,连接AM EM 、,如图2所示:∵四边形ABCD 是正方形,∴90,1245,ABC AB BC ∠=︒∠=∠=︒=,∵345∠=︒,∴345MBE ∠=∠=︒,在MBE △和FBE 中,43BM BF BE BE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS MBE FBE ≌,∴EM EF =,∵490,590ABF ABF ∠=︒-∠∠=︒-∠,∴45∠=∠,在AMB 和CFB 中45BM BF AB CB =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AMB CFB ≌,∴,6245AM FC =∠=∠=︒,∴6190MAE ∠=∠+∠=︒,在Rt MAE △中,222AE AM EM +=,∴222AE FC EF +=;想法2,如图所示,∵四边形ABCD 是正方形,将ABE 沿BE 翻折,得到NBE ,∴90,1245,ABC AB BC BN ∠=︒∠=∠=︒==,ABE NBE ∠=∠,445∠=︒∵45EBF ∠=︒,∴45EBN NBF ∠+∠=︒∴45ABE FBC Ð+Ð=°∴FBC NBF∠=∠在NBF 和CBF V 中,BN BC FBC NBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴NBF CBF ≌,∴3445∠=∠=︒,∴2390∠+∠=︒,在Rt ENF △中,222EN FN EF +=,∴222AE FC EF +=;(2)解:如图所示,过B 作MB BE ⊥,使BM BE =,连接ME MF AM 、、,∵直线BE 绕点B 顺时针旋转135°,交直线AC 于点F ,∴18013545FBE ∠=︒-︒=︒,∴904545MBF ∠=︒-︒=︒,∴FBE MBF ∠=∠,在MBF V 和EBF △中,BM BE MBF FBE BF BF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS MBF EBF ≌,∴MF EF =,∵90MBA ABE ∠=︒-∠,90EBC ABE ∠=︒-∠,∴MBA EBC ∠=∠,在AMB 和CBE △中,BM BE MBA EBC AB BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AMB CBE ≌,∴,45AM EC BAM BCE =∠=∠=︒,∴90MAE BAM BAC ∠=∠+∠=︒,∴90MAF ∠=︒,在Rt MAF 中,222AF AM MF +=,∴222AF EC EF +=.∵正方形边长为2,∴AC =∵:2:3AE EC =,设3EC x =,则2AE x=∴5AE EC x +==解得:5x =∴,55AE EC ==设AF a =,则EF AF AE a =+=,∵222AF EC EF +=.∴22255a a ⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:a=AF=.∴2【点睛】本题考查了正方形的性质、全等三角形的判定与性质、旋转的性质、勾股定理,证明三角形全等是解决问题的关键.。
北师大版九年级(上)期末数学模拟试卷(1)一、选择题(每题3分,共36分)1.(3分)sin30°的值为()A.B.C.D.2.(3分)如图,是一个物体的俯视图,它所对应的物体是()A.B.C.D.3.(3分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A.B.C.D.4.(3分)巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x,则可列方程为()A.45+2x=50 B.45(1+x)2=50 C.50(1﹣x)2=45 D.45(1+2x)=505.(3分)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥6.(3分)如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是()A.AB=BE B.AD=DC C.AD=DE D.AD=EC7.(3分)张明同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近一棵树的影长为8米,则这棵树的高是()米.A.10 B.6.4 C.4 D.无法确定8.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x的取值范围是()A.﹣1<x<3 B.x>3 C.x<﹣1 D.x>3或x<﹣19.(3分)如图,利用一面墙,用80米长的篱笆围成一个矩形场地,墙长为30m,围成鸡场的最大面积为()平方米.A.800 B.750 C.600 D.240010.(3分)如图,在菱形ABCD中,AE⊥BC于点E,EC=4,,则菱形的周长是()A.10 B.20 C.40 D.2811.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b <0;③4a﹣2b+c<0;④b2﹣4ac>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个12.(3分)如图,直线y=2x与双曲线(x>0)交于点A,将直线y=2x向右平移3个单位后,与双曲线(x>0)交于点B,与x轴交于点C.若,则k的值为()A.12 B.10 C.8 D.6二、填空题(每题3分,共12分)13.(3分)方程x(x﹣1)=x的根是.14.(3分)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出两个球,摸出的两球都是白球的概率是.15.(3分)如图,已知反比例函数y=(k≠0)与直线y=x交于A、C两点,AB⊥x轴于点B,若S△ABC=6,则反比例函数的解析式为.16.(3分)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是.三、解答题(17、18每题5分,19、20、21、22题8分,23题10分)17.(5分)sin45°﹣cos30°•tan60°+(π﹣3.14)0.18.(5分)解方程:﹣2x2=﹣7x+3.19.(8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.20.(8分)四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上.(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负.你认为这个游戏是否公平?请说明理由.21.(8分)大楼AD的高为10米,不远处有一塔BC,某人在楼底A处测得塔顶B处的仰角为60°,爬到楼顶D点测得塔顶B点的仰角为30°,求塔BC的高度.22.(8分)某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m (件)与每件的销售价x(元)满足一次函数,其图象如图所示.(1)求出每天的销售数量m(件)与每件的销售价格x(元)的函数解析式;(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式;保证商场赢利并使得每件的售价不超过80元,求出每天商场的最大利润.23.(10分)如图,在平面直角坐标系中,点A的坐标为(1,3),点B在x轴上,△AOB 的面积是3.(1)求过点A、O、B的抛物线的解析式;(2)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)抛物线的对称轴与x轴交于点D,在抛物线上是否存在点P使得以A,B,D,P为顶点的四边形是梯形?若存在,求出点P的坐标;若不存在,请说明理由.广东省深圳市新华中学九年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)sin30°的值为()A.B.C.D.【解答】解:sin30°=.故选C.2.(3分)如图,是一个物体的俯视图,它所对应的物体是()A.B.C.D.【解答】解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的长方体的顶面的两边相切高度相同.符合这些条件的只有A,故选A.3.(3分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A.B.C.D.【解答】解:画树状图得:∴一共有9种等可能的结果,指针指向的数字和为偶数的有4种情况,∴指针指向的数字和为偶数的概率是:.故选C.4.(3分)巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x,则可列方程为()A.45+2x=50 B.45(1+x)2=50 C.50(1﹣x)2=45 D.45(1+2x)=50【解答】解:依题意得:去年的粮油产量为:45(1+x)则今年的粮油产量为:45(1+x)(1+x)=45(1+x)2=50;故选B.5.(3分)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥【解答】解:根据题意得:1﹣2m<0,解得:m>.故选:C.6.(3分)如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是()A.AB=BE B.AD=DC C.AD=DE D.AD=EC【解答】解:根据折叠性质,有AB=BE,AD=DE,∠A=∠DEC=90°.∴A、C正确;又∠C=45°,∴△CDE是等腰直角三角形,EC=DE,CD>DE.∴D正确,B错误.故选B.7.(3分)张明同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近一棵树的影长为8米,则这棵树的高是()米.A.10 B.6.4 C.4 D.无法确定【解答】解:设这棵树的高度为xm,根据相同时刻的物高与影长成比例,则可列比例为:,解得:x=6.4.故选:B.8.(3分)(2008•达州)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x 的取值范围是()A.﹣1<x<3 B.x>3 C.x<﹣1 D.x>3或x<﹣1【解答】解:∵依题意得图象与x轴的交点是(﹣1,0),(3,0),当y<0时,图象在x轴的下方,此时﹣1<x<3,∴x的取值范围﹣1<x<3.故选A.9.(3分)如图,利用一面墙,用80米长的篱笆围成一个矩形场地,墙长为30m,围成鸡场的最大面积为()平方米.A.800 B.750 C.600 D.2400【解答】解:设矩形的面积为S,所围矩形ABCD的长BC为x(0<x≤30)米,由题意,得S=x•(80﹣x),S=﹣(x﹣40)2+800,易知在x<40的区间内,S单调递增;∴当x=30时,S最大=750,且符合题意.∴当所围矩形的长为30m、宽为25m时,能使矩形的面积最大,最大面积为750 m2.故选B.10.(3分)如图,在菱形ABCD中,AE⊥BC于点E,EC=4,,则菱形的周长是()A.10 B.20 C.40 D.28【解答】解:∵,∴cosB=.∵在菱形ABCD中,AE⊥BC于点E,EC=4,∴BE:AB=(BC﹣EC):BC=3:5,∴BC=10,则菱形的周长=10×4=40.故选C.11.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b <0;③4a﹣2b+c<0;④b2﹣4ac>0,其中正确结论的个数为()A.4个B.3个C.2个D.1个【解答】解:∵图象开口向下,∴a<0,∵x=﹣>0,∴b>0,∵图象与y轴的正半轴相交,∴c>0,∴abc<0,故①错误;∵抛物线的对称轴x=﹣<1,a<0,∴b<﹣2a,∴2a+b<0,故②正确;∵当x=﹣2时,y<0,∴4a﹣2b+c<0,故③正确;∵图象和x轴交于两点,∴b2﹣4ac>0,故④正确.故选B.12.(3分)(2011•桐乡市一模)如图,直线y=2x与双曲线(x>0)交于点A,将直线y=2x向右平移3个单位后,与双曲线(x>0)交于点B,与x轴交于点C.若,则k的值为()A.12 B.10 C.8 D.6【解答】解:∵直线y=2x与双曲线(x>0)交于点A,将直线y=2x向右平移3个单位后,∴y=2(x﹣3)=2x﹣6,∵与双曲线(x>0)交于点B,与x轴交于点C.若,∴AD=2BE,∴假设B点的横坐标为3+x,∴B点的纵坐标为:y=2(x+3)﹣6=2x,∴BE=2x,AD=4x,∵y=2x,∴OD=AD=2x,∴A点的纵坐标为:4x,根据A,B都在反比例函数图象上得出:∴2x×4x=(3+x)×2x,x=1,∴k的值为:2×1×4×1=8,故选:C.二、填空题(每题3分,共12分)13.(3分)方程x(x﹣1)=x的根是x1=0,x2=2.【解答】解:由原方程,得x2﹣2x=0,∴x(x﹣2)=0,∴x﹣2=0或x=0,解得x1=2,x2=0.故答案为:x1=2,x2=0.14.(3分)布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出两个球,摸出的两球都是白球的概率是.【解答】解:画图如下:一共有30种情况,其中两个球都是白球的有2种情况,因此摸出的两球都是白球的概率是=.故答案为:.15.(3分)如图,已知反比例函数y=(k≠0)与直线y=x交于A、C两点,AB⊥x轴于点B,若S△ABC=6,则反比例函数的解析式为y=.【解答】解:过C作CD⊥x轴于D,设A的坐标是(a,b),则根据双曲线的两个分支关于原点对称,则C的坐标是(﹣a,﹣b),则ab=k,OB=a,AB=b,CD=b,∵S△ABC=S△AOB+S△COB=4,∴ab+ab=6,即k+k=6,解得k=6,故该反比例函数解析式为:y=.故答案为:y=.16.(3分)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是.【解答】解:根据三角形内心的特点知∠ABO=∠CBO,∵已知点C、点B的坐标,∴OB=OC,∠OBC=45°,∠ABC=90°可知△ABC为直角三角形,BC=2,∵点A在直线AC上,设A点坐标为(x,x﹣1),根据两点距离公式可得:AB2=x2+,AC2=(x﹣2)2+,在Rt△ABC中,AB2+BC2=AC2,解得:x=﹣6,y=﹣4,∴AB=6,∴tanA===.故答案为:.三、解答题(17、18每题5分,19、20、21、22题8分,23题10分)17.(5分)sin45°﹣cos30°•tan60°+(π﹣3.14)0.【解答】解:原式=×﹣×+1=﹣+1=﹣.18.(5分)解方程:﹣2x2=﹣7x+3.【解答】解:移项得:2x2﹣7x+3=0,(2x﹣1)(x﹣3)=0,2x﹣1=0,x﹣3=0,x1=,x2=3.19.(8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.20.(8分)四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上.(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负.你认为这个游戏是否公平?请说明理由.【解答】解:(1)四张牌中,有二张“5”,故其概率为=.故答案为:.(2)不公平.画树状图如图所示:∴P(和为偶数)=,P(和为奇数)=;∵P(和为偶数)≠P(和为奇数),∴游戏不公平.21.(8分)大楼AD的高为10米,不远处有一塔BC,某人在楼底A处测得塔顶B处的仰角为60°,爬到楼顶D点测得塔顶B点的仰角为30°,求塔BC的高度.【解答】解:过点B作BE⊥AD,交AD延长线于点E.(1分)在Rt△BED中,∵D点测得塔顶B点的仰角为30°,∴∠BDE=60度.设DE=x,则BE=x.(2分)在Rt△BEA中,∠BAE=30度,BE=x.∴AE=3x.(3分)∴AD=AE﹣DE=3x﹣x=2x=10.∴x=5.(4分)∴BC=AD+DE=10+5=15(米).(5分)答:塔BC的高度为15米.22.(8分)某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m (件)与每件的销售价x(元)满足一次函数,其图象如图所示.(1)求出每天的销售数量m(件)与每件的销售价格x(元)的函数解析式;(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式;保证商场赢利并使得每件的售价不超过80元,求出每天商场的最大利润.【解答】解:(1)设出一次函数的一般表达式m=kx+b,将(0,100)(100,0)代入得:,解得:k=﹣1,b=100,故每天的销售数量m(件)与每件的销售价格x(元)的函数解析式为:m=﹣x+100(0≤x ≤100);(2)由题意得,y=(x﹣50)(﹣x+100)=﹣x2+150x﹣5000,即y=﹣x2+150x﹣5000;∵y=﹣x2+150x﹣5000=﹣(x﹣75)2+625,∴当x=75元时,每天商场的最大利润是625元.23.(10分)如图,在平面直角坐标系中,点A的坐标为(1,3),点B在x轴上,△AOB 的面积是3.(1)求过点A、O、B的抛物线的解析式;(2)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)抛物线的对称轴与x轴交于点D,在抛物线上是否存在点P使得以A,B,D,P为顶点的四边形是梯形?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)如图1,由△AOB的面积是3,得S△AOB=|OB|y A=3,即|OB|×3=3,解得OB|=2,B(﹣2,0).设抛物线的解析式为y=ax2+bx+c,将A、B、O的坐标代入函数解析式,得,解得,抛物线的解析式为y=x2+2x;(2)如图2,抛物线的解析式为y=x2+2x的对称轴是x=﹣1,由两点之间线段最短,得AC+CO=AB,直线AB与对称轴的交点,即为C点,设AB的解析式为y=kx+b,将A,B点坐标代入,得,解得,AB的解析式为y=x+2.当x=﹣1时,y=﹣1+2=1,即C(﹣1,1);(3)①当AD∥BP时,P点与A点关于x=﹣1对称,P点的横坐标为﹣1﹣[1﹣(﹣1)]=﹣3,P点的纵坐标与A点的纵坐标相等,P1(﹣3,3);②当AD∥BP时,AD的解析式为y=x+,设BP的解析式为y=x+b,将B(﹣2,0)代入函数解析式,解得b=3,BP的解析式为y=x+3,联立BP与抛物线,得,解得(不符合题意,舍),,即P2(,);③如图3,当AB∥DP时,AB的解析式为y=x+2,设DP的解析式为y=x+b,将D(﹣1,0)代入,得b=1,即DP的解析式为y=x+1.联立DP与抛物线,得,解得,,即P3(,),P4(,),综上所述:P1(﹣3,3);P2(,);P3(,),P4(,).。
2024年安徽数学中考模拟试温馨提示:1试卷满分150分,考试时间120分钟。
2 本试卷共六页,共23题。
一、选择题(本题10小题,每小题4分,共40分)1.的倒数是( )A .B .C.D .2.天宫二号空间实验室的运行轨道距离地球约393000米,将393000用科学记数法表示应为( )A .B .C .D .3. 下列运算正确的是( )A .B .CD4.某物体如图所示,其俯视图是( )A .B .C .D .5.已知直线,将一块含角的直角三角板ABC 按如图方式放置,若,则的度数是( )A .B .C .D .6.如图,在Rt 中,4,点是斜边BC 的中点,以AM 为边作正方形AMEF.若S 正方形AMEF =16,则( )20232023-20231202312023-70.39310⨯53.9310⨯63.9310⨯339310⨯22a b ab +=()32528x x -=-4=-=a b 45︒124∠=︒2∠56︒66︒76︒86︒ABC AB =M ABC S =A .B .C .12D .167.已知(a+b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D .28.将分别标有“大”、“美”、“织”、“金”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“织金”的概率是( )A.B .C .D .9.已知点,,在同一个函数图象上,这个函数图象可以是( )A .B .C .D .10.如图,在矩形 中, 、 分别是边 、 上的点, ,连接 、, 与对角线 交于点 ,且 , , ,则的长为( )18161412()21A a --,()1B a -,()1C a ,ABCD E F AB CD AE CF =EF BF EF AC O BE BF =2BEF BAC ∠=∠2FC =ABA .B .C .4D .6二、填空题(本题4小题,每小题5分,共20分)11.已知,则 .12.关于的方程的解是,则的值是 .13.如图,四边形为⊙O 的内接四边形,已知,则度数为 .14.如图,将一把矩形直尺和一块含角的三角板摆放在平面直角坐标系中,在轴上,点与点重合,点在上,三角板的直角边交于点,反比例函数的图象恰好经过点,若直尺的宽,三角板的斜边,则 .三、(本题2小题,每小题8分,共16分)15.先化简,再求值:,其中.16.如图,为了测量旗杆的高度,在离旗杆底部米的处,用高米的测角仪测得旗杆顶端处的仰角为求旗杆的高.精确到米参考数据:,,23(4)0x y ++-=x y -=x 323x k -=1-k ABCD 140BOD ∠=︒BCD ∠ABCD 30︒EFG AB x G A F AD EF BC M ky (x 0)x=>F M.CD 2=FG =k =236214422x x x x x x --÷-++++260430x tan sin =︒-︒BC 12A 1.5DA C α47.︒BC (0.1)[sin470.73︒≈cos470.68︒≈tan47 1.07]︒≈四(本题2小题,每小题8分,共16分)17.某水果商从批发市场用16000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.(1)大樱桃和小樱桃的进价分别是每千克多少元?(2)在运输过程中大樱桃损耗了,若大樱桃售价为每千克80元,要使此次销售获利不少于6700元,则小樱桃的售价最少应为每千克多少元?18.将连续奇数1,3,5,7,9,…排列成如下的数表:(1)设中间数为x ,用式子表示十字框中五个数之和.(2)十字框中的五个数之和能等于2024吗?若能,请写出这五个数;若不能,请说明理由.五、(本题2小题,每小题10分,共20分)19.如图所示,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABO的三个顶点分别为 A(-1,3),B(-4,3),O(0,0).(1)画出△ABO 关于原点对称的图形△A 1B 1O ,并写出点B 1的坐标;(2)画出△ABO 绕O 点顺时针旋转90°后得到的图形△A 2B 2O ,并写出点B 2的坐标.20.如图,内接于,,它的外角的平分线交于点D ,连接交于点F.15%ABC O 90ABC ∠>︒EAC ∠O DB DC DB ,,AC(1)若,求的度数.(2)求证:.(3)若,当,求的度数(用含的代数式表示).六、(本题2小题,每小题12分,共24分)21.我市教育局为深入贯彻落实立德树人根本任务,2022年在全市中小学部署开展“六个一”德育行动.某校为了更好地开展此项活动,随机抽取部分学生对学校前段时间开展活动的情况进行了满意度调查,满意度分为四个等级:A :非常满意;B :满意;C :一般;D :不满意.根据调查数据绘制了如下两幅不完整的统计图表:等级人数A 72B 108C 48Dm请你根据图表中的信息,解答下列问题:(1)本次被调查的学生人数是多少?(2)求以上图表中m ,n 的值及扇形统计图中A 等级对应的圆心角度数;(3)若该校共有学生1200人,估计满意度为A ,B 等级的学生共有多少人?75EAD ∠=︒ BCDB DC =DA DF =αABC ∠=DFC ∠α22.(1)问题如图1,在四边形中,点P 为上一点,当时,求证:.(2)探究若将角改为锐角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在中,,,以点A 为直角顶点作等腰.点D 在上,点E 在上,点F 在上,且,若,求的长.七、(本题1小题,共14分)23.如图,已知抛物线经过、、三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当的值最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使为等腰三角形,若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.答案解析ABCD AB 90DPC A B ∠=∠=∠=︒AD BC AP BP ⋅=⋅90︒ABCAB =45B ∠=︒Rt ADE BC AC BC 45EFD ∠=︒CE =CD 2y ax bx c =++(10)A -,(30)B ,(03)C ,PA PC +MAC【解析】【解答】解:由题意得的倒数是,故答案为:C【分析】根据有理数的倒数结合题意即可得到2023的倒数,进而即可求解。
九年级数学复习模拟试卷一、选择题(本题共12个小题。
每小题3分,满分36分). 1.下列式子中结果为负数的是( )A .│-2│B .-(-2)C .-2—1D .(-2)22.不等式2x -7<5-2x 的正整数解有( ) (A)1个 (B)2个 (C)3个 (D)4个 3.如图,三角形被遮住的两个角不可能是( )A .一个锐角,一个钝角B .两个锐角C .一个锐角,一个直角D .两个钝角 4.一物体及其正视图如下图所示,则它的左视图与俯视图分别是右侧图形中的( ) (A)①② (B)③② (C)①④ (D)③④5.已知:如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧上不同于点C 的任意一点,则∠BPC 的度数是( ) A .45° B .60° C .75° D .90°6.在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中(如图),然后匀速向上提起,直至铁块完全露出水面一定高度,则能反映弹簧秤的读数y(单位:N)与铁块被提起的高度X(单位:cm)之间的函数关系的图象大致是( )7.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )A .⎩⎨⎧x –y = 49y =2(x +1)B .⎩⎨⎧x +y = 49y =2(x +1)C .⎩⎨⎧x –y = 49y =2(x –1)D .⎩⎨⎧x +y = 49y =2(x –1)8.如图,已知□ABCD 的两条对角线AC 与BD 交于平面直角坐标 系的原点,点A 的坐标为(-2,3),则点C 的坐标为 (A)(-3,2) (B)(-2,-3) (C)(3,-2) (D)(2,-3) 9.如图所示,CD 是一个平面镜,光线从A 点射出经CD 上 的E 点反射后照射到B 点,设入射角为a(入射角等于反 射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C ,D .若AC =3,BD =6,CD =12,则tan a的值为( )(A)34 (B) 43 (C) 54 (D) 53 10.将n 个边长都为lcm 的正方形按如图所示的方法摆放,点A 1,A 2,……,A n 分别是正方形的中心,则n 个这样的正方形重叠部分(阴影部分)的面积和为( )A .14cm 。
九年级数学模拟题(一)(考试时间120分钟,试卷满分150分)一、选择题(本大题共10个小题,每小题3分,共30分)1、-2的倒数是()A.2 B.-21C.21D.-22、左下图为主视方向的几何体,它的俯视图是()3、下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D4、下列运算正确的是()A、x2x3 =x6B、(-2x)2 =4x2C、x2+x2=2x4D、(-2x)2 (-3x )3=6x55、下列事件中,为必然事件的是A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.6、下列方程中是关于x的一元二次方程的是()A.(x-1)(x+2)=1 B.ax2+bx+c=0C.x2+21x=0 D.3x3-2xy-5y2=07、如图,四边形P AOB是扇形OMN的内接矩形,顶点P在上,且不与M,N重合,当P点在上移动时,矩形P AOB的形状、大小随之变化,则P A2+PB2的值A.逐渐变大B.逐渐变小C.不变D.不能确定8、如图,A是反比例函数y=xk图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则K的值为()(第8题)ABP xyOA .1B .2C .3D .49、某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ( )A .205.0420420=--x x B .204205.0420=--x x C .5.020420420=--x x D .5.042020420=--xx10、已知二次函数2y ax bx c =++ ()0a ≠ 的图像,如图所示,有下列5个结论: ⑴0abc >; ⑵b a c <+;⑶420a b c ++>;⑷23c b <;⑸()a b m am b +>+,()1m ≠的实数.其中,正确结论的个数为( )A .4B .3C .2D .1二、填空题(本大题共8个小题,每小题3分,共24分) 11、要使式子aa 2+有意义,则a 的取值范围为_________. 12、根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过8000000人次,试用科学记数法表示8000000= .13、若m 2-5m +2=0,则2m 2-10m +2012= .14、如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于 .15、如图,一块含有30°角的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到C B A ''的位置.若BC 的长为15cm ,那么顶点A •从开始到结束所经过的路径长为 ㎝.16、如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两动点,且总使AD =BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FGAF = __________.17、如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm .18、在直角坐标系中,直线y =x +1与y 轴交于点A 1, 按 如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2…, 点A 1、A 2、A 3…在直线y =x +1上,点C 1、C 2、C 3…在 x 轴上,图中阴影部分三角形的面积从左到右依次记 为S 1、S 2、S 3、…S n ,则S n 的值为____________ (用含n 的代数式表示,n 为正整数).三、解答题(本大题共2个题,第19题10分,第20题12分,共22分)19、先化简,再求值:4441x 1122++-÷x x x )--(,其中1311+⎪⎭⎫ ⎝⎛=-x20、如图,在平面直角坐标系中,已知点(42)B ,,BA x ⊥轴于A .(1)画出将△OAB 绕原点旋转180°后所得的△OA 1B 1,并写出 点A 1、B 1的坐标;(2)将△OAB 平移得到△O 2A 2B 2,点A 的对应点是A 2,点B 的对应点B 2的坐标为(22)-,在坐标系中作出△O 2A 2B 2,并写出点O 2、A 2的坐标;(3)△OA 1B 1与△O 2A 2B 2成中心对称吗?若是,找出对称中心,并写出对称中心的坐标.四、解答题(本大题共2个题,每题10分,共20分)21、有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2,B 布袋中有三个完全相同的小球,分别标有数字-l ,-2和-3.小强从A 布袋中随机取出一个小球,记录其标有的数字为a ,再从B 布袋中随机取出一个小球,记录其标有的数字为b ,这样就确定点Q 的一个坐标为OxAB11 y(a,b).⑴用列表或画树状图的方法写出点Q的所有可能坐标;⑵求点Q落在直线y=x-3上的概率、22、数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算GH的长.(3≈1.73要求结果精确到0.1m)五、解答题(本大题共12分)23、如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.六、解答题(本大题14分)24、某书店正在销售一种课外读本,进价12元/本,售价20元/本,为了促销,书店决定凡是一次购买10本以上的客户,每多买一本,售价就降低0.10元,但最低价为16元/本.(1)客户一次至少买多少本,才能以最低价购买?(2)写出当一次购买x本时(x>10),书店利润y(元)与购买量x(本)之间的函数关系式;(3)在销售过程中,书店发现卖出50本比卖出46本赚的钱少,为了使每次的销售均能达到多卖出就多获利,在其他促销条件不变的情况下,最低价应确定为多少元/本?请说明理由.七、解答题(本大题14分)ll l25、已知,在△ABC中,AB=AC.过A 点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.(1)当∠BAC=∠MBN=90°时,①如图a,当θ=45°时,∠ANC的度数为;②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.八、解答题(本大题14分)26、如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行与y轴交CD于点N.设点M的横坐标为t,MN的长度为,求与t之间的函数关系式,并求取最大值时,点M的坐标。
2023学年九年级上学期数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)1.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若AC =BC =2,则图中阴影部分的面积是( )A .π4B .1π24+C .π2D .1π22+ 2.为了迎接春节,某厂10月份生产春联50万幅,计划在12月份生产春联120万幅,设11、12月份平均每月增长率为,x 根据题意,可列出方程为( )A .()()2501501120x x +++=B .()()250501501120x x ++++=C .()2501120x +=D .()50160x += 3.对于二次函数y =-(x +1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x =1;③其图象的顶点坐标为(-1,3);④当x>1时,y 随x 的增大而减小.其中正确结论的个数为( )A .1B .2C .3D .44.如图是一根空心方管,则它的主视图是( )A .B .C .D .5.如图,在△ABC 中,D ,E ,F 分别为BC ,AB ,AC 上的点,且EF ∥BC ,FD ∥AB ,则下列各式正确的是( )A . AE CD EB BD = B .EF AE BC DF = C .EF DF BC AB =D .AE BD AB BC= 6.一元二次方程23210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .只有一个实数根7.如图,在Rt OAB 中,OA AB =,90OAB ∠=︒,点P 从点O 沿边OA ,AB 匀速运动到点B ,过点P 作PC OB ⊥交OB 于点G ,线段22AB =,OC x =,POC S y =△,则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .8.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为x ,那么x 满足的方程是( )A .()2501182x +=B .()()250501501182x x ++++= C .()()2501501182x x +++= D .()50501182x ++= 9.关于x 的方程x 2﹣mx+6=0有一根是﹣3,那么这个方程的另一个根是( )A .﹣5B .5C .﹣2D .210.若点112233(,),(,),(,)A x y B x y C x y 在反比例函数()0k y k x=<的图象上,且1230y y y >>>,则下列各式正确的是( )A .123x x x <<B .213x x x <<C .132x x x <<D .321x x x <<二、填空题(每小题3分,共24分)11.某品牌手机六月份销售400万部,七月份、八月份销售量连续增长,八月份销售量达到576万部,则该品牌手机这两个月销售量的月平均增长率为_________.12.如图是某小组同学做“频率估计概率”的实验时,绘出的某一实验结果出现的频率折线图,则符合图中这一结果的实验可能是_______(填序号).①抛一枚质地均匀的硬币,落地时结果“正面朝上”;②在“石头,剪刀,布”的游戏中,小明随机出的是剪刀;③四张一样的卡片,分别标有数字1,2,3,4,从中随机取出一张,数字是1.13.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有________种14.已知反比例函数y =k x的图象经过点(3,﹣4),则k =_____. 15.一元二次方程(x+1)(x-3)=2x-5根的情况_______.(表述正确即可)16.如图,已知电流在一定时间段内正常通过电子元件“”的概率是,在一定时间段内,A ,B 之间电流能够正常通过的概率为 .17.如图,在正方形铁皮上剪下一个扇形和一个半径为3cm 的圆形,使之恰好围成一个圆锥,则圆锥的高为____.18.如图是某幼儿园的滑梯的简易图,已知滑坡AB 的坡度是1:3 ,滑梯的水平宽是6m ,则高BC 为_______m .三、解答题(共66分)19.(10分)如图,AB 为O 的直径,C 、D 为O 上两点,BC CD =,CF AD ⊥,垂足为F .直线CF 交AB 的延长线于点E ,连接AC .(1)判断EF 与O 的位置关系,并说明理由;(2)求证:2AC AB AF =⋅.20.(6分)平安超市准备进一批书包,每个进价为40元.经市场调查发现,售价为50元时可售出400个;售价每增加1元,销售量将减少10个.超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少21.(6分)已知△ABC 是等腰三角形,AB=AC .(1)特殊情形:如图1,当DE ∥BC 时,有DB EC .(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE 绕点A 顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P 是等腰直角三角形ABC 内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC 的度数.22.(8分)某校在向贫困地区捐书活动中全体师生积极捐书.为了解所捐书籍的种类,某同学对部分书籍进行了抽样调查,并根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请通过计算补全条形统计图;(2)求出图1中表示科普类书籍的扇形圆心角度数;(3)本次活动师生共捐书2000本,请估计有多少本文学类书籍?23.(8分)如图,是由两个等边三角形和一个正方形拼在-起的图形,请仅用无刻度的直尺按要求画图,(1)在图①中画一个60的角,使点C或点E是这个角的顶点,且以CE为这个角的一边:AP CE.(2)在图②画一条直线AP,使得//24.(8分)如图,一面利用墙,用篱笆围成的矩形花圃ABCD的面积为Sm2,垂直于墙的AB边长为xm.(1)若墙可利用的最大长度为8m,篱笆长为18m,花圃中间用一道篱笆隔成两个小矩形.①求S与x之间的函数关系式;②如何围矩形花圃ABCD的面积会最大,并求最大面积.(2)若墙可利用最大长度为50m,篱笆长99m,中间用n道篱笆隔成(n+1)小矩形,当这些小矩形都是正方形且x 为正整数时,请直接写出所有满足条件的x、n的值.25.(10分)如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座边长为(a+b)米的正方形雕像.(1)试用含a、b的式子表示绿化部分的面积(结果要化简).(2)若a=3,b=2,请求出绿化部分的面积.26.(10分)用适当的方法解下列一元二次方程(1)x2+2x=3;(2)2x2﹣6x+3=1.参考答案一、选择题(每小题3分,共30分)1、A【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.【详解】∵AB为直径,∴∠ACB=90°,∵2,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=22AC=1,∴S阴影部分=S扇形AOC=290?13604ππ⨯=.故选A.【点睛】本题考查了扇形面积的计算:圆面积公式:S=πr 2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法; ②和差法; ③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.2、C【分析】根据“当月的生产量=上月的生产量⨯(1+增长率)”即可得.【详解】由题意得:11月份的生产量为50(1)x +万幅12月份的生产量为250(1)(1)50(1)x x x ++=+万幅则250(1)120x +=故选:C .【点睛】本题考查了列一元二次方程,读懂题意,正确求出12月份的生产量是解题关键.3、C【解析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【详解】∵2(1)3y x =-++,∴抛物线开口向上,对称轴为直线x =−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x =−1,∴当x >−1时,y 随x 的增大而增大,∴当x >1时,y 随x 的增大而增大,故④正确,∴正确的结论有3个,故选:C.【点睛】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.4、B【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看是:大正方形里有一个小正方形,∴主视图为:故选:B.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线.5、D【分析】根据EF∥BC,FD∥AB,可证得四边形EBDF是平行四边形,利用平行线分线段成比例逐一验证选项即可.【详解】解:∵EF∥BC,FD∥AB,∴四边形EBDF是平行四边形,∴BE=DF,EF=BD,∵EF∥BC,∴AE AFBE FC=,AE EF AFAB BC AC==,∴AE BDAB BC=,故B错误,D正确;∵DF∥AB,∴AF BDFC DC=,DF FCAB AC=,∴AE BDBE DC=,故A错误;∵EF AFBC AC=,DF FCAB AC=,故C错误;故选:D.【点睛】本题考查了平行四边形的的判定,平行线分线段成比例的定理,掌握平行线分线段成比例定理是解题的关键.6、B【分析】直接利用判别式△判断即可.【详解】∵△=()()22431160---=>∴一元二次方程有两个不等的实根故选:B .【点睛】本题考查一元二次方程根的情况,注意在求解判别式△时,正负号不要弄错了.7、D【分析】分两种情况:①当P 点在OA 上时,即2≤x≤2时;②当P 点在AB 上时,即2<x≤1时,求出这两种情况下的PC 长,则y=12PC•OC 的函数式可用x 表示出来,对照选项即可判断.【详解】解:∵△AOB 是等腰直角三角形,AB=∴OB=1.①当P 点在OA 上时,即2≤x≤2时,PC=OC=x ,S △POC =y=12PC•OC=12x 2, 是开口向上的抛物线,当x=2时,y=2;OC=x ,则BC=1-x ,PC=BC=1-x ,S △POC =y=12PC•OC=12x (1-x )=-12x 2+2x , 是开口向下的抛物线,当x=1时,y=2.综上所述,D 答案符合运动过程中y 与x 的函数关系式.故选:D .【点睛】本题主要考查了动点问题的函数图象,解决这类问题要先进行全面分析,根据图形变化特征或动点运动的背景变化进行分类讨论,然后动中找静,写出对应的函数式.8、B【分析】由题意根据增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,进而即可得出方程.【详解】解:设该厂五、六月份平均每月的增长率为x ,那么得五、六月份的产量分别为50(1+x )、50(1+x )2, 根据题意得50+50(1+x )+50(1+x )2=1.故选:B .【点睛】本题考查由实际问题抽象出一元二次方程的增长率问题,注意掌握其一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量,x 为增长率.9、C【分析】根据两根之积可得答案.【详解】设方程的另一个根为a ,∵关于x 的方程x 2﹣mx+6=0有一根是﹣3,∴﹣3a =6,解得a =﹣2,故选:C .【点睛】本题主要考查了根与系数的关系,一元二次方程()200ax bx c a ++=≠的根与系数的关系:若方程两个为1x ,2x ,则12b c x x a a=-=,. 10、C 【分析】先判断反比例函数所在象限,再根据反比例函数的性质解答即可. 【详解】解:反比例函数为()0k y k x=<,∴函数图象在第二、四象限,在每个象限内,y 随着x 的增大而增大, 又1230y y y >>>,10x ∴<,230x x >>,132x x x ∴<<.故选C .【点睛】本题考查了反比例函数的图象和性质,属于基本题型,熟练掌握反比例函数的性质是解答的关键.二、填空题(每小题3分,共24分)11、20%【分析】根据增长(降低)率公式()21a x b ±=可列出式子.【详解】设月平均增长率为x.根据题意可得:()24001+576x=. 解得:0.2x =.所以增长率为20%.故答案为:20%.【点睛】本题主要考查了一元二次方程的应用,记住增长率公式很重要.12、②【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案. 【详解】抛一枚硬币,出现正面朝上的频率是12=0.5,故本选项错误; 在“石头,剪刀,布”的游戏中,小明随机出的是剪刀的概率是13 ,故本选项符合题意; 四张一样的卡片,分别标有数字1,2,3,4,从中随机取出一张,数字是1的概率是0.25故答案为②.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.13、1.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】解:由题意:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形; ③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD 为平行四边形;①③可证明△ADO ≌△CBO ,进而得到AD=CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;①④可证明△ADO ≌△CBO ,进而得到AD=CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;∴有1种可能使四边形ABCD 为平行四边形.故答案是1.【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.14、-1.【分析】直接把点(3,﹣4)代入反比例函数y =k x ,求出k 的值即可. 【详解】解:∵反比例函数y =k x 的图象经过点(3,﹣4), ∴﹣4=3k ,解得k =﹣1. 故答案为:﹣1.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15、有两个正根【分析】将原方程这里为一元二次方程的一般形式直接解方程或者求判别式与0的关系都可解题.【详解】解:(x+1)(x-3)=2x-5整理得:22325x x x --=-,即 2420x x -+=,配方得:2(2)2x -=, 解得:1223x =+>,2220x =->, ∴该一元二次方程根的情况是有两个正跟;故答案为:有两个正根.【点睛】此题考查解一元二次方程,或者求判别式与根的个数的关系.16、.【解析】根据题意,电流在一定时间段内正常通过电子元件的概率是,即某一个电子元件不正常工作的概率为,则两个元件同时不正常工作的概率为;故在一定时间段内AB 之间电流能够正常通过的概率为1-=.故答案为:.17、315cm【分析】利用已知得出底面圆的半径为3cm ,周长为6cm π,进而得出母线长,再利用勾股定理进行计算即可得出答案.【详解】解:∵半径为3cm 的圆形∴底面圆的半径为3cm∴底面圆的周长为6cm π∴扇形的弧长为906180R ππ⋅⋅= ∴12R cm =,即圆锥的母线长为12cm22123315cm -=.故答案是:315cm【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.18、1【分析】根据滑坡的坡度及水平宽,即可求出坡面的铅直高度.【详解】∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC= 13×6=1m.故答案为:1.【点睛】本题考查了解直角三角形的应用中的坡度问题,牢记坡度的定义是解题的关键.三、解答题(共66分)19、(1)EF与⊙O相切,理由见解析;(2)证明见解析.【分析】(1)连接OC,由题意可得∠OCA=∠FAC=∠OAC,可得OC∥AF,可得OC⊥EF,即EF是⊙O的切线;(2) 连接BC,根据直径所对圆周角是直角证得△ACF∽△ABC,即可证得结论.【详解】(1)EF与⊙O相切,理由如下:如图,连接OC,∵BC CD,∴∠FAC=∠BAC,∵OC=OA,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AF,又∵EF⊥AF,∴OC⊥EF,∴EF 是⊙O 的切线;(2)连接BC ,∵AB 为直径,∴∠BCA=90°,又∵∠FAC=∠BAC ,∴△ACF ∽△ABC , ∴AC AF AB AC=, ∴2AC AB AF =⋅.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,相似三角形的判定和性质,熟练运用切线的判定和性质是本题的关键.20、60元【分析】设定价为x 元,则利用单个利润×能卖出的书包个数即为利润6000元,列写方程并求解即可.【详解】解:设定价为x 元,根据题意得(x-40)[400-10(x-50)]=60002x -130x+4200=0解得:1x = 60,2x = 70根据题意,进货量要少,所以2x = 60不合题意,舍去.答:售价应定为70元.【点睛】本题考查一元二次方程中利润问题的应用,注意最后的结果有两解,但根据题意需要舍去一个答案.21、(1)=;(2)成立,证明见解析;(3)135°.【分析】试题(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,再简单计算即可.【详解】(1)∵DE∥BC,∴DB EC AB AC=,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如图,将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=22在△PEA中,PE2=(222=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【点睛】考点:几何变换综合题;平行线平行线分线段成比例.22、(1)本次抽样调查的书籍有40本;作图见解析(2)108︒(3)估计有700本文学类书籍【分析】(1)根据艺术类图书8本占20%解答;(2)根据科普类书籍占总数的1240,即可解答;(3)利用样本估计总体.【详解】(1)8÷20%=40(本),40-8-14-12=6(本),答:本次抽样调查的书籍有40本.补图如图所示:(2)1236010840⨯︒=︒,答:图1中表示科普类书籍的扇形圆心角度数为108°.(3)14200070040⨯=(本),答:估计有700本文学类书籍.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,两图结合是解题的关键.23、(1)见解析;(2)见解析.【分析】(1)连接CF,EF,得到△ECF为等边三角形,即可求解:(2)连接CF,BD,交点即为P点,再连接AP即可.【详解】() 1FCE ∠或FEC ∠即为所求;()2直线AP 即为所求.【点睛】此题主要考查四边形综合的复杂作图,解题的关键是熟知正方形、等边三角形的性质.24、(1)①S=﹣3x 2+18x ;②当x =3米时,S 最大,为27平方米;(2)n =3,x =11;或n =4,x =9,或n =15,x =3,或n =48,x =1【分析】(1)①根据等量关系“花圃的面积=花圃的长×花圃的宽”列出函数关系式,并确定自变量的取值范围; ②通过函数关系式求得S 的最大值;(2)根据等量关系“花圃的长=(n +1)×花圃的宽”写出符合题中条件的x ,n .【详解】(1)①由题意得:S =x ×(18﹣3x )=﹣3x 2+18x ;②由S =﹣3x 2+18x =﹣3(x ﹣3)2+27,∴当x =3米时,S 最大,为27平方米;(2)根据题意可得:(n +2)x +(n +1)x =99,则n =3,x =11;或n =4,x =9,或n =15,x =3,或n =48,x =1.【点睛】此题主要考查二次函数的应用,解题的根据是根据题意找到等量关系列出方程或函数关系进行求解.25、(1)5a 2+3ab ;(2)63.【分析】(1)由长方形面积减去正方形面积表示出绿化面积即可;(2)将a 与b 的值代入计算即可求出值.【详解】解:(1)根据题意得:(3a+b )(2a+b )-(a+b )2=6a 2+5ab+b 2-a 2-2ab-b 2=5a 2+3ab ;(2)当a=3,b=2时,原式=2533324518=63⨯⨯⨯=++.【点睛】本题考查了整式的混合运算,熟练掌握整式混合运算的法则是解本题的关键.26、(1)x 1=﹣3,x 2=1;(2)12x x ==【分析】(1)移项,方程左边分解因式后,利用两数相乘积为1,两因式中至少有一个为1转化为两个一元一次方程来求解;(2)方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,开方即可求出解.【详解】解:(1)移项得:x 2+2x ﹣3=1,分解因式得:(x +3)(x ﹣1)=1,可得x +3=1或x ﹣1=1,解得:x 1=﹣3,x 2=1;(2)方程变形得:x 2﹣3x =﹣32, 配方得:x 2﹣3x +94=﹣32+94,即(x ﹣32)2=34,解得:12x x == 【点睛】 此题考查了解一元二次方程-因式分解法及配方法,熟练掌握各种解法是解本题的关键.。
118
3eud 教育网 教学资源集散地。
可能是最大的免费教育资源网!
数 学 试 卷
一.选择题(本题共5小题,每小题3分,共15分,每小题给的四个答案中,有且只
有一个是正确的,将你认为正确的选项填在题后的括号内). 1.下列运算中,正确的是 ( )
A .-5-2=-3
B .
532523a a a =+ C .()2222b ab a b a ++=+
D .()
63
2
62a a =
2.下列的正方体表面展开图中,折成正方体后“快”与“乐”相对的是 ( )
3.把不等式组⎪⎩⎪
⎨⎧<+-32
324x x 的解集在数轴上表示,正确的是
( )
4.用一把带有刻度的直角尺,①可画出两条平行的线段a 与b ,如图1;②可画出
∠AOB 的平分线OP ,如图2;③可检验工件的凹面是否为半圆,如图3.
上述三种说法中,正确的有 ( )
A .0个
B .1个
C .2个
D .3个
≤0
228
3eud 教育网 教学资源集散地。
可能是最大的免费教育资源网!
5.如图,DE 是△ABC 的中位线,且△ADE 的周长为20,
则△ABC 的周长为 ( )
A .30
B .40
C .50
D .无法计算
二.填空题(本题共5小题,每小题4分,共20分,请把你认为正确的答案写在横线上). 6.据有关资料表明,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,
该数据用科学记数法表示为 元.
7.如图,在等腰梯形ABCD 中,AD ∥BC ,∠A =120°,
AD =8,BC =14,则梯形的周长为
.
8.如图所示,将直尺与三角尺叠放在一起.在图中标记
的角中,所有与∠1互余的角是
.
9.如图,在⊙O 中,C 是AB 的中点,∠OAB =40°,
则∠BOC 的度数为
.
10.如图,是分别按A ,B 方法用钢丝绳捆扎6根圆形钢管的
截面图,设
A ,
B 所需钢丝绳的长度分别为a ,b (不计接 头部分),则a
b (填“>”、“=”或“<”).
三.解答题(本题共5小题,每小题6分,共30分).
11.解方程:04
15=-+x
x .
O A
B 第9题图
第8题图
A
B
C
D 第7题图
B
第10题图
A B
C
D E
338
3eud 教育网 教学资源集散地。
可能是最大的免费教育资源网!
12.列方程(组)解题:
商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品, 根据图中提供的信息,求一盒“福娃”和一枚徽章的价格各是多少元.
13.(1)按下列要求作图(能用尺规作图的,最高可加2分,但全卷最后得分不超过120分):
①作∠AOB =60°;
②作∠AOB 的平分线OC .(2分)
(2)在你所作的图形中,P 为OC 上一点,过点P 分别作OA ,OB 的垂线,垂
足分别为E ,F ,设PE =x ,四边形PEOF 的面积为y ,请写出y 与x 的关系 式:
.(4分)
14.小强与小颖两位同学在学习“概率”时,做抛骰子(均匀正方体形状)试验,
共抛了54次,出现向上点数的次数如下表:
(1)请计算:出现向上点数为1的频率.(2
分)
(2)小强说:“根据试验,一次试验中出现向上点数为5的概率最大.”小颖说:“如果抛
540次,则出现向上点数为6的次数正好是100次.”请判断他们说法的对错.(2分)
(3)若小强与小颖各抛一枚骰子,则P (出现向上点数之和为3的倍数)=
.(2分)
共计145元
共计280元
448
3eud 教育网 教学资源集散地。
可能是最大的免费教育资源网!
15.请阅读下列材料:
问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)用实线画出拼接成的新正方形.
小东同学的做法是:设新正方形的边长为x (x >0).依题意,割补前后图形的面积相等,有2x =5,解得5 x .由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图②所示的分割线,拼出如图③所示的新正方形.
请你参考小东同学的做法,解决如下问题:
现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的
正方形.要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
四.(本题共4小题,每小题7分,共28分).
16.如图,已知AB ∥DE ,点F ,C 在AD 上,AB =DE ,AF =DC .求证:BC =EF .
密
封
线
内
不
要
答
题
图①
图②
图③ 图④
图⑤
A
B
D
E
F C
(4分)
(2分)
558
3eud 教育网 教学资源集散地。
可能是最大的免费教育资源网!
17.在假期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂
组装玩具,该厂同意他们组装240套玩具,这些玩具分为A ,B ,C 三种型号,它 们的数量比例及每人每小时组装各种玩具的数量如图所示.若每人组装同一种型 号玩具的速度都相同,根据以上信息,完成下列填空:
(1)由上述信息可知,A 型玩具有 套,
B 型玩具有 套,
C 型玩具有 套.(3分)
(2)若每人组装A 型玩具16套与组装C 型玩具12套所用时间相同,则a 的值
为 ,每人每小时能组装C 型玩具 套.(4分)
18.我校数学活动小组在完成测量校内路灯高度后,填写了如下《数学活动报告》
中附件的一部分.请你根据以下图示及有关数据,完成未完成的部分:
班
号
姓名:
试室座号:
密
封
线
内
不
要
答
题
2a -
19.如图,已知一次函数)0
(≠
+
=k
b
kx
y的图象与x轴、y
A,B两点,且与反比例函数()0≠
=m
x
m
y的图象在第一象限交于
点C,CD垂直于x轴,垂足为D,若OA=OB=OD=1
(1)求点A,B,D的坐标;(2分)
(2)求一次函数的表达式;(3分) (3)求反比例函数的表达式.(2分)
五.解答题(本题共3小题,每小题9分,共27分).
20.取一张矩形的纸,按如下操作过程折叠:
第一步:将矩形ABCD沿MN对折,如图1;第二步:把B点叠在折痕MN上,新折
痕为AE,点B在MN上的对应点为B',如图2;第三步:展开,得到图3.
(1)你认为∠BAE的度数为.(3分)
(2)利用图3试证明(1)的结论.(6分)
D
C
N
图1
A D
C
N
E
B'
图2 D
N
图3
x
3eud教育网 教学资源集散地。
可能是最大的免费教育资源网!
21.我镇某圣诞礼品厂购进一批半成品礼品60 000个,根据市场信息,若对该礼品加工成A型礼品,每天可加工8 000个,每个可获利1元;如果加工成B型礼品,每天可加工500个,每个可获利5元。
由于受设备条件的限制,两种加工方式不能同时进行。
(1)设加工成B型礼品x个,则加工成A型礼品的个数为个,(1分) 加工完这批礼品要天,(1分)
共获利元(用含x的代数式表示)(2分)。
(2)由于市场原因,该厂必须在30天内将这批礼品加工完毕,加工B型礼品的个数x在
什么范围内时,该厂加工这批礼品的获利不低于80 000元?(5分
3eud教育网 教学资源集散地。
可能是最大的免费教育资源网!
888
3eud 教育网 教学资源集散地。
可能是最大的免费教育资源网!
22.如图,已知点O 为坐标原点,∠AOB =30°,∠B =90°,且点A 的坐标为(2,0). (1)求点B 的坐标;(2分)
(2)若二次函数c bx ax y ++=2的图象经过A ,B ,O 三点,求此二次函数的解析式;(3分) (3)在(2)中的二次函数图象的OB 段(不包括O ,B 点)上,是否存在一点C ,使
得四边形ABCO 的面积最大?若存在,求出点C 的坐标及四边形ABCO 的最大
面积;若不存在,请说明理由.(4分)
密
封
线
内
不
要
答
题
x。