2012年高考考试说明(课程标准实验版)——数学(理)
- 格式:doc
- 大小:104.50 KB
- 文档页数:16
山东省2012年高考考试说明根据新出台的2012年山东省高考说明,2012年山东省仍将采用“3+X+1”的模式,总分为750分,语文、数学、英语(听力除外)、文科综合、理科综合和基本能力测试科目的试题,仍由山东省组织专家自行命制。
5门科目成绩相加为750分,理科综合和文科综合,虽然最终仍然由山东省自主命题,但是综合科目的试卷结构发生较大变化。
近年来命题一直比较稳定的“基本能力”,今年也有较大变化,所有试题均改为选择题。
一、语文考试内容:按照《普通高中语文课程标准(实验)》规定的必修课程中阅读与鉴赏、表达与交流两个目标的“语文1”至“语文5”五个模块,选修课程中诗歌与散文、小说与戏剧、新闻与传记、语言文字应用、文化论著研读五个系列,组成必考内容和选考内容,必考和选考均有难易不同的考查。
考试形式:采用闭卷、笔试形式,考试限定用时为150分钟。
试卷结构:试卷分为第Ⅰ卷和第Ⅱ卷,满分150分。
第Ⅰ卷为单项选择题,均为必做题;第Ⅱ卷为文言文翻译题、填空题、简答题、论述题和写作题等题型,包括必做题和选做题两部分。
必做题为必考内容,共132分,其中:语言文字运用共27分;古代诗文阅读共30分;名句名篇共6分;现代文阅读共9分;作文共60分。
作文每一个错别字扣1分,重复的不计。
选做题为选考内容,共18分,本题给出文学类和实用类两个文本,并分别在文后设置18分的试题,考生任选其中一个文本阅读,并完成所选文本后的题目。
二、数学考试内容:文史类和理工农医类的必修内容都为:数学1:集合、函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数);数学2:立体几何初步、平面解析几何初步;数学3:算法初步、统计、概率;数学4:基本初等函数Ⅱ(三角函数)、平面上的向量、三角恒等变换;数学5:解三角形、数列、不等式。
文史类选修内容为:选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用;选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图。
2012年普通高等学校招生全国统一考试大纲新课标理综考试说明(新课标:河南,黑龙江,吉林,陕西,宁夏,海南,山西)2012年高考考试说明(课程标准实验版)——理科综合Ⅰ.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试。
高等学校根据考生的成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。
因此,高考应有较高的信度、效度、必要的区分度和适当的难度。
Ⅱ.考试形式与试卷结构一、答卷方式闭卷、笔试。
二、考试时间考试时间150分钟,试卷满分300分。
三、科目分值物理110分、化学100分、生物90分。
各学科试题只涉及本学科内容,不跨学科综合。
四、题型试卷包括选择题和非选择题,非选择题一般包括填空、实验、作图、计算、简答等题型。
五、试卷结构1、试卷分第Ⅰ卷和第Ⅱ卷第Ⅰ卷为生物、化学、物理三个科目的必考题,题型为选择题。
共21题,每题6分,共计126分。
其中生物6道题(单项选择题),化学7道题(单项选择题),物理8道题(包括单项选择题和多项选择题)。
第Ⅱ卷由生物、化学、物理三科的必考题和选考题构成。
生物、化学、物理各科选考内容的分值控制在15分左右。
2、物理三个选考模块,考生从中任意选做一个模块的试题;化学三个选考模块,考生从中任意选做一个模块的试题;生物两个选考模块,考生从中任意选做一个模块的试题;但均不得跨模块选做。
3、组卷:试卷按题型、内容和难度进行排列,选择题在前,非选择题在后,同一题型中同一学科的试题相对集中,同一学科中不同试题尽量按由易到难的顺序排列。
Ⅲ、各学科考核目标、内容物理根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》、《普通高中物理课程标准(实验)》和《2011年普通高等学校招生全国统一考试大纲(物理科·课程标准实验版)》,结合教学实际,确定高考理工类物理科考试内容。
考试内容包括知识和能力两个方面。
2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. },B={1,m} ,A B=A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=E为CC1的中点,则直线AC1与平面BED的距离为A 2BCD 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)(7)已知α为第二象限角,sin α+sin β,则cos2α=(A) -3 (B )-9 (C) 9 (D)3(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c =(A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。
2012年高考考试说明(湖南省)——语文Ⅰ、考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试。
高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。
高考应具有较高的信度、效度,必要的区分度和适当的难度。
Ⅱ、命题指导思想命题以中华人民共和国教育部2003年颁布的《普通高中语文课程标准(实验)》、教育部考试中心颁布的《普通高等学校招生全国统一考试大纲(课程标准实验)》,以及我省统一使用的普通高中教材为依据。
命题根据高校合格新生应具备的语文素养,考查考生的语文基本知识和基本能力,以及语文应用能力,审美、探究能力和创新能力。
同时,要切合我省中学语文教学和中学生语文水平的实际。
Ⅲ、考试能力要求高考语文考查识记、理解、分析综合、鉴赏评价、表达应用和探究六种能力,这六种能力表现为六个层级。
A、识记:指识别和记忆,是最基本的能力层级。
B、理解:指领会并能作简单的解释,是在识记基础上高一级的能力层级。
C、分析综合:指分解剖析和归纳整理,是在识记和理解的基础上进一步提高了的能力层级。
D、鉴赏评价:指对阅读材料的鉴别、赏析和评说,是以识记、理解和分析综合为基础,在阅读方面发展了的能力层级。
E、表达应用:指对语文知识和能力的运用,是以识记、理解和分析综合为基础,在表达方面发展了的能力层级。
F、探究:指对某些问题进行探讨,有见解、有发展、有创新,是在识记、理解和分析综合的基础上发展了的能力层级。
对A、B、C、D、E、F六个能力层级均可有难易不同的考查。
Ⅳ、考试内容依据中华人民共和国教育部颁布的《普通高中语文课程标准(实验)》和《普通高中课程方案(实验)》,依据教育部考试中心颁布的《普通高等学校招生全国统一考试大纲(课程标准实验)》,根据普通高等学校对新生语文素养的要求,结合湖南省的实际情况,确定语文科考试内容。
按照高中课程标准规定的必修课程中“阅读与鉴赏”“表达与交流”两个目标的“语文1”至“语文5”五个模块,选修课程中《中国文化经典研读》《中国古代诗歌散文欣赏》《外国小说欣赏》《新闻阅读与实践》《文章写作与修改》五个模块,组成考试内容。
2012年普通高等学校招生全国统一考试·福建省高考考试说明数学(理工农医类)Ⅰ.命题指导思想普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试.2012年福建省高考数学(理科)的命题应以教育部颁布的《普通高中数学课程标准(实验)》、《2012年普通高等学校招生全国统一考试大纲(理科数学·课程标准实验·2012年版)》、《福建省普通高中新课程教学要求(数学)》为指导,以《2012年普通高等学校招生全国统一考试福建省数学考试说明(试行)》(数学)为指导,以本《考试说明》为直接依据,并结合我省普通高中数学教学的实际进行.命题应有利于高校科学公正地选拔人才,有利于推进普通高中新课程,实施素质教育.命题应体现《普通高中数学课程标准(实验)》的理念,体现对知识与技能、过程与方法、情感态度与价值观等目标的要求,坚持能力立意,注重考查数学基础知识、基本技能和基本思想,着重考查考生的数学素养和对数学本质的理解水平,以及进入高等学校继续学习的潜能.命题应遵循以下命题原则:一、贯彻课程理念,推进素质教育命题要立足于《普通高中数学课程标准(实验)》,体现普通高中新课程的理念,准确理解和把握新课程标准的内涵与要求,考查对基础知识、基本技能的掌握程度和运用所学知识分析问题、解决问题的能力.重视数学素养的考查,关注科学技术和社会经济的发展,注重时代性和实践性,有利于高校科学公正地选拔人才;有利于激发学生学习数学的兴趣,促进素质教育的实施;有利于促进学生学习方式的转变,发挥高考命题对中学数学教学的正确导向作用,扎实推进我省普通高中新课程的顺利实施.二、强化基础知识,注重整体设计考查考生对基础知识的掌握程度,是数学高考的重要目标之一.对数学基础知识的考查,要求既全面,又突出重点.对于支撑数学知识体系的主干知识——函数与导数、数列、三角函数、立体几何、解析几何、概率与统计,要占有较大的比例,构成数学试卷的主体.对数学知识的考查要求全面,但不刻意追求知识点的百分比、知识内容的覆盖面,而是强调试题的综合性,注重学科的内在联系和知识的综合.高考命题应从学科整体意义的高度去考虑问题,强调知识之间的交叉、渗透和综合,体现综合性,以检验考生是否具备一个有序的网络化的知识体系,并能从中提取相关的信息,有效、灵活地解决问题.命题应继承和发扬我省自行命题的成果和经验,在保持整体稳定的前提下,适度创新,注重试题的多样性和选择性.命题应科学设置探究性和开放性试题,体现对不同层次的考生的选拔.命题应合理分配必考、选考内容的比例,既考查考生的共同基础,又满足不同考生的选择需求.对选考内容的命题应做到各选考专题的试题分值相等,难度基本等值.试卷应具有较高的信度、效度和必要的区分度以及适当的难度.鉴于我省新课程教材使用的多样性,命题务必充分体现公平性,试题必须适用于不同版本的教材.试题可以是取材于教材或课外参考资料中经过实质性改造后的问题,但切忌照搬任何教材或课外参考资料的原题或未经实质性改造过的题目.所设置的试题,特别是区分学生学习能力的把关试题应当关注解法的多样性,充分尊重学生在学习数学方面的差异,力求使得不同思维方式、思维层次的学生都能得到科学的评价.整份试卷的设计应合理,注重整体效应.三、淡化特殊技巧,强调思想方法数学思想和方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识发生、发展和应用的过程中.因此,对于数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想、方法的理解和掌握程度.考查时,要从学科整体意义和思想含义上立意,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.一般认为,中学数学基本思想是指渗透在中学数学知识与方法中具有普遍适应性的本质思想.中学数学涉及的数学思想主要有:函数与方程思想,数形结合思想,分类与整合思想,化归与转化思想,特殊与一般思想,有限与无限思想,或然与必然思想等.数学基本方法主要有:待定系数法、换元法、配方法、割补法等.数学逻辑方法或思维方法主要有:分析与综合、归纳与演绎、比较与类比、具体与抽象等.它们是理解、思考、分析与解决数学问题的普通方法,对数学思想和方法的考查要结合数学知识多层次进行.四、强调能力立意,突出问题解决“以能力立意命题”是数学的学科特点和考试目标所决定的.高考数学科考试的重点是考查运用知识分析问题和解决问题的能力,因此命题中应尽量避免编制刻板、繁难和偏怪的试题,避免编制死记硬背的内容和繁琐计算的试题,力图通过数学科的考试,不仅考查考生数学知识的积累是否达到进入高等学校学习的基本水平,而且要以数学知识为载体,测量考生将知识迁移到不同情境的能力,从而检测考生已有的和潜在的学习能力.命题应突出能力立意,对知识的考查侧重于理解和应用,力求突破固定的解答模式,要求考生抓住问题的实质,对试题提供的信息进行合理地分检、组合、加工,寻找解决问题的办法.高考对能力的考查,应以抽象概括能力、推理论证能力为重点,全面考查各种能力,强调综合性、应用性,切合考生实际.运算求解能力是推理论证能力和运算技能的结合,它包括数的运算、式的运算;包括精算、近似计算与估算.对考生运算求解能力的考查主要是以含字母的式的运算为主,同时要兼顾对算理和推理论证能力的考查.空间想像能力是对空间形式的观察、分析、抽象的能力,图形的处理与图形的变换都要注意与推理相结合.数据处理能力主要是指能对收集到的相关数据,采用适当的方法进行整理、归纳、分析、解决问题.分析问题和解决问题的能力是上述几种基本数学能力的综合体现,对数学能力的考查要以数学基础知识、数学思想和方法为基础,加强思维品质的考查.五、倡导学以致用,强化应用意识加强应用意识的培养与考查是时代的需要,是教育改革的需要,同时也是数学科的特点所决定的.应用性问题主要是考查数学知识的实际应用.应用题的设计应贴近生活,联系实际,具有强烈的现实意义.应用问题考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持“贴近生活,背景公平,控制难度”的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要切合我省中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考生自觉地置身于现实社会的大环境,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识.六、提倡开放探索,关注创新意识高考作为选拔性考试,应该偏重于能力测验,特别是能力倾向测验,适当考查考生在未来的学习或工作中是否具有创新意识.因此,高考中可适当设置开放性、探索性试题,考查创新意识和探究精神.考查创新意识的问题应立足于中学数学,以中学数学的基础知识为基本素材,考查学生创造性地应用知识分析问题、解决问题的能力.考查创新意识的创新性试题可重点体现在情景、设问等方面.在设计考查创新意识的试题时,一方面,要积极探索,大胆实践;另一方面,应进一步研究试题的稳定性与创新性的关系,处理好试题创新与试题难度的关系,做到“不难不怪,难度适中”.七、体现层次要求,控制试卷难度高考在考试目的、考试性质、考试内容和考试要求方面均不同于数学竞赛和普通高中学生学业基础会考.高考是要选拔部分合格高中毕业生升入高等院校深造,命题时应以知识为基础,多层次、多角度考查各种能力,试卷难度要适中,既要使一般考生都能得到基本分,又要使优秀学生的水平得以充分显现.根据我省高考的实际情况,整卷难度值应控制在0.6左右.试卷中各个试题的难度值一般控制在0.2~0.8之间,整份试卷中各种难度的试题分数的分布也应该适当.每种题型中都应编拟一些较易试题,使大部分考生都能得到一定的基本分;每种题型中也应编拟一些有一定难度的试题,以实现选拔的目的.Ⅱ.考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式.考试时间为120分钟,全卷满分150分,考试不使用计算器.二、试卷结构考试内容包括必考内容和选考内容两部分.必考内容为《普通高中数学课程标准(实验)》的必修课程和选修课程系列2的内容.选考内容为《普通高中数学课程标准(实验)》的选修课程系列4的4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》等三个专题的内容.试卷包括第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为10个选择题,全部为必考内容;第Ⅱ卷为非选择题,分为必考和选考两部分,必考部分由5个填空题和5个解答题组成;选考部分安排在第21题,作为解答题出现,由选修课程系列4的4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》等三个专题各命制1小题,考生从3小题中任选2小题作答,如果多做,则按所做的前两小题记分.选择题共10题,每题5分,共计50分;填空题共5题,每题4分,共计20分;解答题共6题,其中必考题5题,选考1题(包含3小题,每小题7分,考生从中任选2小题作答,满分14分),共计80分.选择题为四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等,解答题应写出文字说明、演算步骤或推证过程.试卷应由容易题、中等题和难题组成,难度值在0.7以上的试题为容易题,难度值在0.4~0.7的试题为中等题,难度值在0.4以下的试题为难题,易、中、难试题的比例约为4:4:2,全卷难度值控制在0.6左右.三、关于考试形式与试卷结构的说明1.注重试卷整体设计,发挥结构效应为发挥学科特点,体现高考的选拔功能,发挥整份试卷的区分作用,命题应注重试卷的整体设计.试卷的好坏取决于整张试卷产生的效应,而不仅仅是个别试题产生的效应,因此设计一份好的试卷不仅要编制好的试题,而且要注意试卷的整体结构,发挥整体效应.试卷应兼顾数学知识和能力等方面,要有合理的知识结构和能力层次结构.知识结构是指试卷中包含学科各部分知识的比例,在编制双向细目表时,应根据各部分内容的教学时数和高考对考生知识结构的要求,综合平衡试卷中各部分知识内容的分值比例.试卷对能力要求的层次和比例,反映着考查的性质和要求.在高考中,应既考查数学能力,又考查一般认识能力,如观察力、注意力、记忆力等.由于新课程高考考试目标还包括基本数学方法以及按照一定程序与步骤进行运算、处理数据,绘制图表等基本技能的内容,因此还应注意结合各项知识考查数学方法与技能.将数学知识和能力有机结合,并融入具体试题,以便有效地全面检测考生的素质和潜能.同时应使试题编排合理,体现人性化和选拔功能的和谐统一.2.合理确定试题梯度,体现试卷较好的区分度根据我省高中发展和高校招生的实际情况,确定本学科试卷难度值为0.6左右.为使考生产生良好的心理效应,应充分发挥各种题型的功能.试卷中必考内容的难度按两级坡度设计,整卷是一个大坡度,而每种题型由易到难又是一个坡度.各种题型中起点试题的难度都应比较低,特别是在选择题部分,起点题水平应相当于普通高中学生学业基础会考的水平,其目的是测量全体考生对基础知识的掌握情况,为教学评价提供参考.选择题最后几题的备选项应有较大的迷惑性,以此来区分考生对基础知识掌握的深度和熟练运用的程度.解答题变一题把关为多题把关,解答题中必考部分的最后两题应分别考查不同的内容并设置一定的关卡,区分考生综合和灵活运用数学知识分析问题、解决问题的能力.由于选修课程系列4中的《矩阵与变换》、《坐标系与参数方程》、《不等式选讲》是我省第一次作为选考内容进入高考试卷,应注意与实际教学相适应,控制好难度.难度定位为中等偏易.同时各选考专题的试题的分值应相等,并力求做到难度基本等值,体现考试的公平性.在命题中应适当控制新颖试题的比例,要充分估计考生对试题的适应程度,有效地控制整卷难度,避免因为考生对新颖试题的不适应而导致发挥失常.同时还应控制试题的综合程度,适当降低起点试题的难度.试题的表述应注意运用考生熟悉的语言和表述方式,同时采用文字语言、图表、数学符号等多种数学语言,简明直观,有利于考生的阅读理解;试题背景应贴近考生的生活实际,让考生处于一个较为平和、熟悉的环境中,增强解题信心.要控制计算量,避免繁琐运算,一些貌似有较长运算过程的试题要有不同的解题思维层次,以区分不同思维层次的考生.3.发挥各种题型的功能,充分体现新课程理念今年的高考是我省实施普通高中新课程的首次高考,试题应体现新课程理念,在命题时应当注意教材的多样性,讲究取材,以确保试题的公平性.应适当顾及新增课程内容在试卷中的比例,重视“探究”与“思考”问题,让新课程中“倡导积极主动、勇于探索的学习方式和注重提高学生的数学思维能力”等基本理念得到有效落实.从考查目标来看,高考强调在考查知识的基础上考查能力,因此需要一定数量的选择题和填空题以考查基础知识和基本技能,提高知识考查的覆盖面,考查考生敏锐地捕捉题设信息,迅捷地寻找合理的解题途径的解决问题能力,同时也增加考试的信度和效度.解答题包括计算题、证明题和应用题等,能比较全面地反映考生学科智力水平,展示其分析数学问题、综合运用数学知识进行逻辑思维的过程,适合对发散、综合以及推理运算、文字表达等高层次能力的考查.4.合理控制卷面字数和计算量卷面字数指卷面印刷符号数量和考生答卷书写字符的总和.为使考生能尽快、无误地获取信息,题目叙述应简单明了,字母、符号、标点等都应正确运用并发挥其作用,在文字语言不能简明叙述或不能清楚表达时,应注意各种符号和图形的运用,减少生活语言对数学语言的干扰,合理控制卷面字数.高考应以考查能力、检测素养为主,试题应尽量避免繁、难的运算,控制各题的计算量,排除由于计算过多过繁造成耗时较多,或由计算错误而造成全题失分的现象,以便更好地考查考生的各种能力.数学试卷全卷的计算量一直是高考命题研究的重要问题,而计算量的大小是和全卷的工作量的大小密切相关的.实际上,控制全卷工作量的大小主要是由高考的性质决定的,一般来说应以50%的考生在110分钟内能完成全卷的解答为标准.这里所谓完成,不含复核时间,由于数学试题往往存在一题多解、计算量相差悬殊的现象,同一道试题不同的解题思路会反映出不同的能力层次,考生实际计算量的大小往往反映出考生能力水平的差异.计算量的估计应以一般通用解法为准.高考应以考察能力、检测素养为主,试题应尽量避免帆、难的运算,控制各题的计算量,排除由于计算过多繁造成耗时较多,或由于计算错误而造成的全题失分的现象,以便更好地考查考生的各种能力。
2012年普通高等学校招生全国统一考试(必修+选修II)理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第8页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1、答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2、没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题:共12小题,每小题5分,共60分。
1、复数=++-ii 131( )A 、 i +2B 、i -2C 、i 21+D 、i 21- 2、已知集合=A {1,3,m },=B {1,m },A B A = ,则=m ( ) A 、0或3 B 、0或3 C 、1或3 D 、1或3 3、椭圆的中心在原点,焦距为4 ,一条准线为4-=x ,则该椭圆的方程为( ) A 、1121622=+yxB 、181222=+yxC 、14822=+yxD 、141222=+yx4、已知正四棱柱ABCD - A 1B 1C 1D 1中,2=AB ,221=CC ,E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A 、2B 、3C 、2D 、1 5、已知等差数列{}n a 的前n 项和为n S ,55=a ,155=S ,则数列⎭⎬⎫⎩⎨⎧+11n n a a 的前100项和为( )A 、101100 B 、10199 C 、10099 D 、1001016、ABC ∆中,AB 边的高为CD ,若a CB =,b CA =,0.=b a ,1||=a ,2||=b ,则=AD ( ) A 、b a 3131-B 、ba 3232-C 、ba 5353-D 、ba 5454-7、已知α为第二象限角,33cos sin =+αα,则=α2cos ( )A 、35-B 、95-C 、95 D 、358、已知F 1、F 2为双曲线2:22=-y x C 的左、右焦点,点P 在C 上,212PF PF =,则21c o s PF F ∠等于( )A 、41 B 、53 C 、43 D 、549、已知πln =x ,2log 5=y ,21-=ez ,则( )A 、z y xB 、y x zC 、x y zD 、x z y 10、已知函数c x x y +-=32的图像与x 恰有两个公共点,则=c ( ) A 、-2或2 B 、-9或3 C 、-1或1 D 、-3或111、将字母a ,a ,b ,b ,c ,c 排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有( )A 、12种B 、18种C 、24种D 、36种 12、正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37==BF AE .动点P 从E 出发沿直线喜爱那个F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( )A 、16B 、14C 、12D 、102012年普通高等学校招生全国统一考试(必修+选修II)理科数学第Ⅱ卷注意事项:1、答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2012年江苏高考数学科《考试说明》解读唐兵(江苏省洪泽中学223700)备战2012年高考,我们就必须研读江苏高考数学科《考试说明》,因为它是高考命题的准绳.对比2011年的《考试说明》,2012年的《考试说明》从考试的命题指导思想、考试内容及要求,到考试形式及试卷结构几乎没有变化.这说明今年江苏高考数学卷,在总结我省从2008年起的新课程高考命题经验的基础上,更加融入课程标准新理念,突出考查能力,注重应用创新.对基础知识的考查既全面又突出重点,支撑高中数学的重点内容将构成高考数学试卷的主体;知识交会点的命题,以考查对基础知识灵活运用的程度为主.能力考查重在以能力立意,注重对知识的深刻理解,强调综合和灵活应用.对思维能力的考查贯穿全卷;运算求解能力以代数运算为主,而空间想象能力则主要体现对文字语言、符号语言及图形语言的相互转化;应用问题的考查明确要求背景公平、符合考生的实际水平.对数学思想和方法的考查要求从数学学科整体意义和思想方面立意,注重通性通法,淡化解题技巧.2012年江苏高考数学科《考试说明》与去年相比,有如下变化:1、删除的知识点在考查内容上删除两个A级要求的知识点:一是必做题三角变换部分的积化和差、和差化积及半角公式;另一个是理科附加题导数及其应用部分的定积分.由于这两部分内容去年实际上已经不作要求,因此这一变化对2012的命题与复习基本上没有影响.2012年高考数学科(江苏卷)考试说明中对知识的考查要求依次分为了解(A)、理解(B)、掌握(C)三个层次.必做题部分A级考点29个,B级考点36个,C级考点8个.附加题部分A级考点11个,B级考点36个,无C级考点.2、典型示例加入高考原题今年《考试说明》中的典型题示例很多都是近两年的江苏高考原题.如典型题示例中的必做题部分第1、2、4、9、10、17、18题,分别是2011年江苏高考试卷第2、3、5、9、10、17、18题;典型题示例中的必做题部分第3、5、6、12、13、16题,分别是2010年江苏高考试卷第1、4、7、12、11、16题.必做题部分共选了19道典型题,其中就有近两年的江苏高考原题13道.由此可见,今年的《考试说明》给命题者拓宽了命题的自由度,命题形式更加灵活.根据今年的《考试说明》的变化趋势与近两年江苏高考数学试题的特点,在后阶段数学复习中我们应着重把握以下六个着力点:1、合理安排各模块的训练,把握复习的重点、难点和热点.点面兼顾,有的放矢.在复习时,要弄清相关知识的重点、难点、疑点和考点.在面方面,要明确各知识、能力点之间的互补和知识迁移与渗透,明确知识、能力点之间的网络结构.准确研读A、B、C三级考点是关键,A级知识点是出容易题的载体,填空题的容易题多数考查A级知识点,对于A级要求的知识点要严格控制难度,在这些内容上不要搞综合.要力争做到容易题不丢分;对于B,C两级要求的内容,无论在复习时间上,还是在训练难度上都要有适当的安排,C级要求的内容既可以出难题,也可以出中等题与容易题,作为新的高考热点,当然应成为复习的重点.C级考点未必一定在难题中考查,如2011年江苏高考数学卷中对平面向量的数量积和两角和与差的正弦、余弦及正切的考查便是例证;又如圆锥曲线中的双曲线和抛物线仅是必做题中的A级考点,无需拓展和拔高.基础知识、基本技能与基本方法仍然是高考考查的重点,所以要争取拿足基本分;高考试题与平时训练题有联系,也有区别.要善于将复杂问题转化为简单问题,要善于从陌生问题中分离出熟悉的问题,进而找到解决方法.为此要强化基本方法灵活运用的训练.2、关注教材,夯实基础,注重通性和通法.历年来,许多高考考题都能在课本上找到“原型”.在复习中要格外关注教材,挖掘教材中的新情境、新应用.试卷再怎么创新,也绝对不会动摇其学科根基.所以,在总复习阶段夯实高中数学基础的理念不能动摇.填空题的题量有14道之多,容易题、中等题、难题都会出现,要加大训练填空题的力度,研究填空题各种可能出现的题型变化及相应的解法.复习中不搞“偏题”和“怪题”,切实领会教材中的基本解题思想和方法.比如2011年江苏高考17题考查了最基本的在应用题中建模和解模的能力.复习中需切实加强以下能力的训练和培养:阅读理解能力、书面表达交流能力、计算能力等等.比如2010年江苏高考16题中对“点面距”的考查,虽然在考试说明中未列出这一考点,其实考查的是“转化与化归”的数学思想方法.因此,在复习中应十分重视基本数学思想方法在解题中的渗透和运用,尤其要重视配方法、换元法、待定系数法和数形结合法等常用的方法;分析法、综合法、归纳法、演绎法和反证法等常用的逻辑推理方法;函数与方程、变换与转化、分类与归纳、数形的结合与分离、定常与变化的对立与统一等重要的数学思想方法.以夯实主干知识为原点,以熟练数学思想方法为支点,以提升能力为驻点,不遗余力地培养学生较高的思维层次中的探索能力,直觉思维能力,合情推理能力,策略创新能力.3、处理好落实基础知识与培养能力的关系.知识是能力的载体,高考虽然是从能力立意,但是并不是等于削弱基础知识和基本技能.复习时一定要十分重视基础知识的落实.对基本概念要准确理解和把握,对基本原理要弄明白;以课本为本,以《考试说明》为纲,扎扎实实,步步为营,打好基础.同时,还要注意培养学生的能力,讲课、考试、评讲试试时,要注重由知识向能力过渡,适当训练,逐渐培养.前期主要培养理解能力、表达能力、获取信息的能力.后期重点培养推理能力、科学探究能力、综合分析能力.这样既落实了基础知识,又促进了能力的培养,避免了复习备考走过场,提高了备考的目的性.4、附加题的训练要适度附加题的训练要适度,应根据考试说明来控制训练的难度.附加题由2题必做题与4题选做题(选2题)组成,容易题、中等题与难题的比例大致为5:4:1.选做题依次考查选修4系列中4-1,4-2,4-4,4-5这4个专题的内容,这一部分出容易题的可能性较大,一般不会出难题.必做题是考查选修系列2中有而选修系列1中没有的内容,根据难度比例的安排,必做题出中等题与难题的可能性较大.要重视附加题,但不要盲目地增加附加题的训练难度.应用题每年均考查,可认真研究到底考查建立哪些数学模型,还有哪些模型没有考查等等,可考虑进行专题复习和训练.5、讲究复习方法,抓好复习环节,增强复习备考的科学性.高考数学复习一般分为三个阶段,第一是基础复习阶段.此阶段的主要任务是落实基础知识,形成基本技能.第二是专题复习阶段,这是在第一阶段的基础上,将备考内容以知识体系来划分为几个专题,使点连成线,由线连成网.使学生形成较强的能力,并且能用所学的知识解决一些问题.第三是模拟复习、心理调试阶段,这一阶段为考前的最后冲刺,教师可以根据学生的具体情况,精选几套模拟题,有针对性地训练.选题时,一定要根据可靠信息尽量和高考题接近,训练的时间、方式、阅卷、评卷时也要模拟高考进行,使学生尽量适应高考.由于各种原因,有的考生在这一阶段心理出现不正常现象,教师要特别关注,科学地引导,对学生多鼓励,让学生多休息放松.我们要根据高考的重点、难点、热点进行针对性的复习,这样能节约时间,提高效率.对于各地模拟试题的使用,教师一定要帮助学生精选,没有最好的,只有适合自己的,对一些简单地、重复地试题要舍弃,对于一些偏、难、怪的试题,没有必要去做.对于信息,一定要通过正当渠道来获取,一些以赢利为目的的杂志、小册子,根本不可能有可靠信息.一般以市区教研室或正规部门的信息为准.高考属于多学科的综合科目考试,如果长时间专门复习一门科目,势必会导致大脑疲劳、思维定势,学习单调乏味,严重影响复习质量.为避免这种高耗低效现象,应该采用交替推进,循序渐进的方法.复习时要根据自己的知识结构和掌握程度来安排复习顺序,如按照易—难—易—难—易的模式交替排列,波浪式向前推进,从而发挥最大的效益.学以致用,优势互补.在复习时,应该克服单干、蛮干的不良习惯.应该以自身为第一主体,挑选一名同班同学为第二主体,以老师为第三主体.6、重视研究性学习,根据学科特点,做到规范训练,提高备考的针对性.新课程的特点是精简传统内容,更新知识内容和教学方法,增加灵活性,重视数学应用.研究性学习问题是新课程的亮点之一,试题要求学生自己动手实践、体会、总结、解决实际问题,体现了自主学习和主动探究精神,显现出研究性学习的特点.我们复习时必须多角度、多方向地分析,去探索、去发现、去研究、去创新,而不是去做大量的模仿式的解题.一个问题解决后,不能匆匆而过,回顾与反思是非常有必要的,以充分发挥每一道题目的价值.除了要重视一题多解外,更要重视一题多变,主动探索:条件和结论换一种说法如何?变换一个条件如何?反过来又会怎么样?等等.只有这样才能做到举一反三,以不变应万变.同时,教师还可以通过最近两年高考试题中学生容易答错或答不准的问题,给学生分析一下,引导学生规范性地答题.很多学生并不是不会解题,而是因为其表述含糊不清,答题不规范,不能切中问题的要害所致.答题的关键是能够用准确、精炼的文字表述.要求学生对答案的表述应有高度的概括性、严密的逻辑性,力求准确、规范表述.重视各主干知识的形成,必然要先理清主干知识的脉络,分析各主干知识的内涵、外延和交汇.这就要求我们在后期复习中应充分重视数学主干知识的支撑作用,以主干知识为支柱,构建知识网络.比如在函数的复习中一定要链接导数;数列的复习中嫁接数学归纳法;三角函数的复习中要重新审视和定位函数;在向量的复习中要载人平面几何、立体几何、解析几何、复数、三角函数和数列;不等式的复习中倾注函数、数列、向量和解析几何;排列、组合、概率与统计二合一进行复习,等等.2012年的高考复习,还得均衡发展.教材中的每一个知识点都可能成为高考的热点和重点,一个也不能少,哪个也不能轻视,要步步为营,稳扎稳打.。
2012年高考考试说明(湖南省)——数学(理/文)注:文科与理科不同出用红色字体Ⅰ.命题指导思想和命题原则普通高等学校招生数学科的考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试.命题根据高校合格新生应具备的数学素养,考查考生的数学基础知识、基本技能和数学思想方法,并在此基础上注重考查考生的数学基本能力、应用意识和创新意识,考查考生对数学本质的理解.同时,命题要切合湖南省高中数学教学和高中生数学水平的实际,充分体现《课程标准》中提出的基本理念,有利于数学课程改革的实施.一、强化主干知识,从学科整体意义上设计试题强化主干知识,从学科整体意义上设计试题,是落实课程目标“知识与技能”的一项重要措施.考查考生对基础知识的掌握程度,是数学科高考的重要目标之一,对数学基础知识的考查,既要全面又要突出重点,重点知识,即学科的主干知识,它们是支撑学科知识体系的主要内容,对其考查要保持较高比例,并达到必要的深度,构成数学试题的主体.从学科整体意义的高度设计试题是指命题时要注意知识的整体性,注意学科知识的内在联系,强调试题的综合性,在知识网络的交汇点设计试题.高考命题强调知识之间的交叉、渗透和综合,是落实课程目标“过程与方法”的重要体现.按照高中数学课程标准编写的教材,一般都强调过程,突出思想,重视探究.其实,这些内容属于“程序性知识”的范畴,比那些具体的知识内容(“陈述性知识”)更为重要.强调知识之间的交叉、渗透和综合,就是重视知识直接按的内在联系,将有关内容视为一个发展的过程和有机的整体,这有利于考查考生的思维过程和思维能力.二、注重通性通法,强调考查数学思想方法加强数学思想方法的考查,是落实《课程标准》中“强调本质,注意适度形式化”理念的一个重要方面。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识发生、发展和应用的过程中.因此,对于数学思想方法的考查必然要与数学知识的考查结合进行.通过对数学知识的考查,反映考生对数学思想和方法的理解与掌握程度,考查时,要从学科整体意义和思想含义上立意,注重通性通法,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.数学思想方法属方法范畴,但更多的带有思想、观点的属性,属于较高层次的提炼与概括,在中学教学与高考考查中,数学思想有函数与方程的思想,数形结合的思想,分类与整合的思想,化归与转化的思想,特殊与一般的思想,有限与无限的思想,或然与必要的思想等;基本数学法有待定系数法、换元法、配方法、割补法、反证法等;数学逻辑方法或思维方法有分析与综合、归纳与演绎、比较与类比、具体与抽象等,这些都是数学中常用的思想和方法。
2012年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I 卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上.....作答无效....。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、 选择题1、 复数131i i-++= A 2+I B 2-I C 1+2i D 1- 2i2、已知集合A ={1.3. },B ={1,m} ,A B =A, 则m=A 0B 0或3C 1D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24y =1 4 已知正四棱柱ABCD- A1B 1C 1D 1中 ,AB=2,CC 1= E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2BCD 1(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为 (A)100101 (B) 99101(C) 99100 (D) 101100 (6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)(7)已知α为第二象限角,sin α+sin β=3,则cos2α=(A) 3 (B )-9 (C) 9 (D)3(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=7。
2012年高考考试说明(课程标准实验版)——数学(理)根据教育部考试中心《2012年普通高等学校招生全国统一考试大纲(理科·课程标准试验版)》(以下简称《大纲》),结合基础教育的实际情况,制定了《2012年普通高等学校招生全国统一考试大纲的说明(理科·课程标准实验版)》(以下简称《说明》)的数学科部分。
制定《说明》既要有利于数学新课程的改革,又要发挥数学作为基础学科的作用;既要重视考查考生对中学数学知识的掌握程度,又要注意考查考生进入高等学校继续学习的潜能;既要符合《普通高中数学课程标准(实验)》和《普通高中课程方案(实验)》的要求,符合教育部考试中心《大纲》的要求,符合本省(自治区、直辖市)普通高等学校招生全国统一考试工作指导方案和普通高中课程改革试验的实际情况,又要利用高考命题的导向功能,推动新课程的课堂教学改革。
Ⅰ.命题指导思想1.普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试.2.命题注重考查考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求.3.命题注重试题的创新性、多样性和选择性,具有一定的探究性和开放性.既要考查考生的共同基础,又要满足不同考生的选择需求.合理分配必考和选考内容的比例,对选考内容的命题应做到各选考专题的试题分值相等,力求难度均衡.4.试卷应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式.全卷满分为150分,考试时间为120分钟.二、试卷结构全卷分为第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为12个选择题,全部为必考内容.第Ⅱ卷为非选择题,分为必考和选考两部分.必考部分题由4个填空题和5个解答题组成;选考部分由选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”各命制1个解答题,考生从3题中任选1题作答,若多做,则按所做的第一题给分.1.试题类型试题分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程.三种题型分数的百分比约为:选择题40%左右,填空题10%左右,解答题50%左右.2.难度控制试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题.三种难度的试题应控制合适的分值比例,试卷总体难度适中.Ⅲ.考核目标与要求一、知识要求知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(独立操作)、掌握(运用、迁移),且高一级的层次要求包括低一级的层次要求.1.知道(了解、模仿):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.2.理解(独立操作):要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等.3.掌握(运用、迁移):要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.二、能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.1.空间想像能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.2.抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.3.推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.四、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和社会生活.因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.数学是一门思维的科学,是培养理性思维的重要载体,通过空间想象、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式作出思考和判断,形成和发展理性思维,构成数学能力的主题.对能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查,以思维能力为核心.全面考查各种能力,强调综合性、应用性,切合学生实际.运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是对算理合逻辑推理的考查,以含字母的式的运算为主.空间想象能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合.实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持“贴近生活,背景公平,控制难度”的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要结合中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考试自觉地置身于现实社会的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识.创新意识和创造能力是理想思维的高层次表现.在数学的学习和研究过程中,知识的迁移、组合、融会的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强.命题时要注意试题的多样性,涉及考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目,让考生独立思考,自主探索,发挥主观能动性,探究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现创新意识、发挥创造能力创设广阔的空间.Ⅳ.考试范围与要求一、必考内容和要求(1)集合1.集合的含义与表示(1)了解集合的含义,体会元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(V enn)图表达集合间的基本关系及集合的基本运算.(二)函数概念与基本初等函数Ⅰ1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用(函数分段不超过三段).(4)理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.(5)会运用基本初等函数的图像分析函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.(4)体会指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,1/2的对数函数的图像.(3)体会对数函数是一类重要的函数模型;(4)了解指数函数与对数函数()互为反函数.4.幂函数(1)了解幂函数的概念.(2)结合函数的图像,了解它们的变化情况.5.函数与方程结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.6.函数模型及其应用(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(三)立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会简单应用空间两点间的距离公式.(五)算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句了解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含义.(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差(不要求记忆公式).(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(八)基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制(1)了解任意角的概念和弧度制的概念.(2)能进行弧度与角度的互化.2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出α,π±α的正弦、余弦、正切的诱导公式,能画出的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大值和最小值以及与x 轴交点等).理解正切函数在区间()内的单调性.(4)理解同角三角函数的基本关系式:(5)了解函数的物理意义;能画出的图像,了解参数对函数图像变化的影响.(6)体会三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(九)平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念和两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.(十)三角恒等变换1.两角和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)会用两角差的余弦公式推导出两角差的正弦、正切公式.(3)会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(十二)数列1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).(2)了解数列是自变量为正整数的一类特殊函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)了解等差数列与一次函数、等比数列与指数函数的关系.(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.(十四)常用逻辑用语(1)理解命题的概念.(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的意义.(4)了解逻辑联结词“或”、“且”、“非”的含义.(5)理解全称量词与存在量词的意义.(6)能正确地对含有一个量词的命题进行否定.(十五)圆锥曲线与方程(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质(范围、对称性、定点、离心率).(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质(范围、对称性、定点、离心率、渐近线).(4)了解曲线与方程的对应关系。