核电站系统三个回路
- 格式:docx
- 大小:3.73 MB
- 文档页数:3
核电站的工作原理和结构热堆的概念中子打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。
这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。
堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。
热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。
由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。
慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。
热中子堆一般都是把燃料元件有规则地排列在慢化剂中,组成堆芯。
链式反应就是在堆芯中进行的。
反应堆必须用冷却剂把裂变能带出堆芯。
冷却剂也是吸收中子很少的物质。
热中子堆最常用的冷却剂是轻水(普通水)、重水、二氧化碳和氦气。
核电站的内部它通常由一回路系统和二回路系统组成。
反应堆是核电站的核心。
反应堆工作时放出的热能,由一回路系统的冷却剂带出,用以产生蒸汽。
因此,整个一回路系统被称为“核供汽系统”,它相当于火电厂的锅炉系统。
为了确保安全,整个一回路系统装在一个被称为安全壳的密闭厂房内,这样,无论在正常运行或发生事故时都不会影响安全。
由蒸汽驱动汽轮发电机组进行发电的二回路系统,与火电厂的汽轮发电机系统基本相同。
轻水堆――压水堆电站自从核电站问世以来,在工业上成熟的发电堆主要有以下三种:轻水堆、重水堆和石墨汽冷堆。
它们相应地被用到三种不同的核电站中,形成了现代核发电的主体。
目前,热中子堆中的大多数是用轻水慢化和冷却的所谓轻水堆。
轻水堆又分为压水堆和沸水堆。
田湾核电站2x1000MW机组热力系统介绍田湾核电站2x1000MW机组热力系统介绍1.总体介绍田湾核电站厂址位于江苏省连云港市东北部连云区高公岛乡田湾村,东临黄海,西南距连云港市新浦区直线距离约28公里,西北距连云港市连云区中心约11公里,北与连云港码头隔山相对,直线距离约5公里。
1.1 电厂规模田湾核电厂规划容量为4台1000MW级核动力发电机组,一次规划分期建设。
第一期工程建设两台俄罗斯设计制造的WWER-1000/428/AES-91型压水堆核动力发电机组。
每台机组由额定热功率为3012MW的WWER-1000/428/AES-91型反应堆装置、K-1000-60/3000改进型汽轮机及TBB-1000-2YZ型发电机组成。
核电站主要由反应堆、一回路系统、二回路系统和辅助系统组成。
1.2 机组主要参数田湾核电厂一期工程采用AES-91型核动力发电机组,它是在具有多年运行经验的WWER-1000/320型压水堆核动力发电机组的基础上改进设计和制造的。
反应堆为V428型压水堆,汽轮机为带有中间汽水分离和单级再热蒸汽的K-1000-60/3000型汽轮机,与汽轮机相配的是由“Electrosila”工厂生产的直驱式TBB-1000-2Y3型发电机。
汽轮机与WWER-1000型压水堆配套运行,压水堆热功率为3012MW,汽轮机采用饱和蒸汽。
AES-91型核动力发电机组主要设计参数:田湾核电厂新建工程安装两台ЛМЗ生产的额定功率为1000MW、全速、单轴(一个双流高压缸和4个双流低压缸)、八排汽、中间去湿再热机组。
主要技术参数如下∶汽轮机额定转速 3000 rpm核岛提供蒸汽供应系统热功率能力 3012 MW汽轮机额定功率 1060 MW高压缸阀前新蒸汽的额定绝对压力 5.88 MPa高压缸阀前新蒸汽的额定温度274.3℃高压缸阀前新蒸汽的最大温度293.6℃高压缸阀前蒸汽额定干燥度(湿度,%)0.995(0.5%)冷却水设计温度18℃冷却水最大允许温度33℃汽机跳闸和高压缸阀关闭时的最大绝对压力 7.85 MPa辅助用汽量60 t/h新蒸汽额定流量(包括再热蒸汽流量) 5870 t/h再热蒸汽压力0.55 MPa再热蒸汽温度250℃凝汽器蒸汽额定绝对压力 4.7 kPa至凝汽器的冷却水额定流量 170,000 t/h除氧器蒸汽额定绝对压力0.84 MPa给水温度218℃保证工况时总热耗量 10190 kJ/kWh 反应堆热功率 3000 MW环路数 4一回路压力15.7MPa反应堆入口冷却剂温度292℃反应堆出口冷却剂温度321.7℃2.热力系统介绍2.1汽轮机原则性热力系统汽轮机热力系统是将蒸汽发生器产生的蒸汽的热能转换成汽轮机的机械能,再通过发电机转变成电能,做过功的蒸汽经凝汽器冷却凝结成水,再加热到217.9℃送入蒸汽发生器。
核电站施工中重要焊接技术和要求内容摘要:本文介绍了AP1000、CPR1000核电施工现场较重要的焊接技术和要求,包括主管道和波动管焊接、堆芯仪表管焊接、控制棒驱动机构密封焊等,同时也介绍了土建、常规岛和BOP重要的焊接项目。
概述核岛主设备内主要介质为放射性核物质,其设备制造和安装焊接质量对防止核电厂泄漏造成核物质放射性污染具有特殊性,同时也关系到这些主设备在核安全状态下稳定运行的可靠性和重要性。
1、民用核安全设备焊接特殊性核岛主设备通常包括反应堆压力容器、蒸汽发生器、稳压器、主泵、主管道等反应堆冷却剂系统设备,也是核电厂第二道安全屏障的组成部分。
核岛主设备的制造和安装焊接质量,直接影响反应堆冷却剂系统的完整性,焊缝又是一回路的压力边界,一旦泄漏将会使大量放射性物质向安全壳泄漏。
反应堆压力容器、蒸汽发生器、稳压器、主泵、主管道等核岛主设备,由于长期处于高温、高压和强辐照环境下运行,要求其制造用原材料包括焊接材料具有较高的塑性和韧性,以及良好的焊接性和抗辐照、耐蚀等性能。
同时由于其焊接壁厚较大,焊接工艺较为复杂,通常焊前需要预热,焊后需要热处理,以避免冷裂纹等焊接缺陷的产生。
单条焊缝焊接工作量大,要求焊工在操作过程中严格执行焊接工艺规程,尤其是采用机械化焊接时,要克服麻痹思想,认真操作,加强自检,直至焊接完成。
控制棒驱动机构的耐压壳和热电偶法兰的焊接质量直接影响反应堆调节系统的运行状态。
当调节系统失灵时,有可能危及堆芯的安全。
安全壳是核电厂的第三道安全屏障。
一旦发生一回路管道破裂,也能将大量核放射性物质封住。
钢制安全壳和安全壳钢衬里安装焊缝质量要求较为严格,通常要进行泄漏检验。
2、民用核安全设备焊接重要性核岛主设备通常采用焊接结构,焊接接头与其结构中的母材相比加工条件相差较大,虽然现代焊接技术已使焊接接头的性能接近母材的性能,但其制作仍需要合格的焊接工艺评定才能实现,其焊接质量仍取决于操作焊工的技术水平和工艺过程的控制,因此焊接接头在其结构中属于薄弱环节。
1.3 专设安全设施§1.3.1安全注入系统(RIS)安全注入系统由高压安注(HHSI)、中压安注(MHSI)和低压安注(LHSI)三个分系统组成。
高压安注和低压安注(LHSI)的流程如图1,中压安注(MHSI)如图2所示。
高压安注和低压安注为能动注入分系统,具有足够的设备和流道冗余度,即使发生单一能动或非能动故障,仍能保证运行安全的可靠性和连续的堆芯冷却。
中压安注为非能动注入分系统,它包括两条单独的安注箱排放管线,每条连接到反应堆压力容器的一条注入管线上。
一、RIS系统的功能1.1主要功能在反应堆冷却剂系统发生失水事故或主蒸汽系统发生管道破裂事故时,安全注入系统(RIS)完成堆芯应急冷却功能。
(1)在失水事故情况下,通过向堆芯注入冷却水,防止燃料包壳熔化,并保持堆芯的几何形状和完整性;(2)在主蒸汽管道破裂事故工况下,本系统向反应堆冷却剂系统快速注入浓硼溶液,以补偿由于不可控地产生蒸汽致使反应堆冷却剂过冷而引起地容积变化和反应性的增加,从而可以使反应堆迅速安全停堆,并防止反应堆重返临界;(3)在失水事故后的再循环注入阶段,本系统的部分承压边界作为安全壳的延伸,起安全壳屏障作用。
1.2 辅助功能(1)在换料冷停堆期间,向反应堆换料水池充水;(2)对反应堆冷却剂系统进行水压试验;(3)在失去全部电源时,向反应堆冷却剂泵注入密封水。
二、高压安注分系统高压安注分系统包括:——三台HHSI泵(卧式多级离心泵)和相关的管道;——硼注入箱、缓冲罐、硼酸再循环泵(屏蔽式离心泵)及相关管道;——通向RCP系统的注入管线;——高压安注泵从PTR 001 BA的吸水管道。
在一回路出现小泄漏或二回路蒸汽管道破裂引起一回路温度和压力下降到一定值时,立即投入高压安注系统,以补偿泄露并注入浓硼酸溶液。
1.高压安注泵(RCV001、002、003PO)高压安注泵是利用RCV系统的三台上充泵。
在电厂正常运行时,它们作为RCV系统上充泵用于正常充水,其一台运行、一台备用、一台在维护。
【核电】Balance of Plant
BOP为核电站的外围设施,主要由BX/AG/EL/YA/PX/GA/GB/AC/GL/CB等厂房组成
BOP即Balance Of Plant,是指核电站,除了反应堆芯(中国人称为核岛),水循环辅助动力系统,一回路系统,二回路系统,换热器,蒸发器,操纵组件以及其他环绕系统(中国人称为常规岛)
这两个之外的部分,即BOP。
BOP按照术语的解释为,辅助系统
重水堆与压水堆的差别主要在核岛部分。
重水堆核电站核岛以外的系统统称为BOP部分,包括常规岛、海水循环、输变电、取排水、应急柴油发电机组,以及电厂辅助和服务设施,这部分与压水堆大体相同。
核电站主要由核反应堆厂房(简称核岛)、汽机厂房(简称常规岛)及技术性或非技术性建筑物(简称BOP)等组成。
换言之,BOP是核电厂中核岛和常规岛以外的配套建筑物、构筑物及其设施的统称。
AP1000第三代核电站主回路管道和稳压器PZR
第三代核电 2009-09-29 19:22 阅读34 评论0
字号:大中小
1. AP1000的主回路有2个环路,每个环路有1条内径为31″的热段管,2条内径为22″的冷段管,其中一
个环路上有1条螺旋形稳压器波动管。
2. M310的主回路有3个环路,每个环路有1条内径为28″的热段管,1条内径为28″的冷段管,1条内径
为28″的交叉段管,其中一个环路上有1条Ω形稳压器波动管。
3. AP1000的稳压器容积约59立方米,M310约39立方米。
容积增加,相应瞬态响应能力增强,可减少
停堆事件发生频率,并有利于限制事件发展。
4. AP1000中与主回路相连的系统减少,如取消传统设计中的高压安注和低压安注系统。
摘录自:《非能动安全先进核电厂AP1000》《AP1000设计成熟度及对中广核工程适应性研究报告。
核岛与常规岛核电站安全壳内的核反应堆及与反应堆有关的各个系统的统称。
核岛主要包括核蒸汽供应系统、安全壳喷淋系统和辅助系统。
核岛的主要功能是利用核裂变能产生蒸汽。
核岛厂房主要包括反应堆厂房(安全壳)、核燃料厂房、核辅助厂房、核服务厂房、排气烟囱、电气厂房和应急柴油发电机厂房等。
核蒸汽供应系统由一回路(反应堆冷却剂循环系统)及与一回路相连接的系统所组成。
一回路的主要设备有反应堆堆心、压力容器、蒸汽发生器、稳压器、主循环泵及管道。
一回路中冷却剂(高温高压的水流)的主要作用是将反应堆堆心产生的热量带到蒸汽发生器,传给二回路,生产蒸汽;在一回路水中加入硼酸,用来控制反应性的慢变化;用稳压器维持一回路压力的稳定和补偿水在冷态和热态时的体积变化。
与一回路相联的系统包括化学和容积控制系统、反应堆安全注射系统和余热冷却系统。
化学和容积控制系统的主要作用是维持一回路所需要的水量;调节溶解在冷却水中的硼酸浓度,以控制反应堆的反应性;对水进行净化处理,除去水中的裂变产物和腐蚀产物;给一回路的水加入腐蚀抑制剂和各种化学添加剂。
反应堆安全注射系统的主要作用是当一回路发生失水(例如,一回路管道发生大破裂而引起大泄漏)时,安全注射系统就作为安全给水系统。
它主要由高压注射部分、安全注射箱和低压注射部分组成。
前者于中等失水时起动,后者于大量失水时起动。
安全注射箱通过两个逆止阀和一个隔断阀与一回路相连,起安全注射作用。
这几部分协同工作即能保证堆心的冷却,并可使反应堆停堆。
核反应堆停堆后,燃料元件因裂变产物的衰变而发热,余热冷却系统的作用是带走这部分热量。
它主要由热交换装置、循环泵和阀门等组成,用于停堆、更换燃料以及一回路系统发生大量泄漏事故时带走热量,冷却堆心。
安全壳喷淋系统由两条独立的管线组成。
每条管线系统都是由喷淋泵、冷却器、喷头、换料水箱、阀门等设备组成。
当发生失水事故时,一回路中高温高压的水漏到安全壳中,由于安全壳是密封的,安全壳里的压力和温度都会升高。
压水堆核电站工作原理简介核反应堆是核电动力装置的核心设备,是产生核能的源泉。
在压水反应堆中,能量主要来源于热中子与铀-235核发生的链式裂变反应。
裂变反应是指一个重核分裂成两个较小质量核的反应。
在这种反应中,核俘获一个中子并形成一个复合核。
复合核经过很短时间(10-14s)的极不稳定激化核阶段,然后开裂成两个主要碎片,同时平均放出约2.5个中子和一定的能量。
一些核素,如铀-233、铀-235、钚-239和钚-241等具有这种性质,它们是核反应堆的主要燃料成分。
铀-235的裂变反应如图1.3-1所示。
对于铀-235与热中子的裂变反应来说,目前已发现的裂变碎片有80多种,这说明是以40种以上的不同途径分裂。
在裂变反应中,俘获1个中子会产生2~3个中子,只要其中有1个能碰上裂变核,并引起裂变就可以使裂变继续进行下去,称之为链式反应。
由于反应前后存在质量亏损,根据爱因斯坦相对论所确定的质量和能量之间的关系,质量的亏损相当于系统的能量变化,即ΔE=Δmc2。
对铀-235来说,每次裂变释放出的能量大约为200Mev(1兆电子伏=1.6×10-13焦耳)。
这些能量除了极少数(约2%)随裂变产物泄露出反应堆外,其余(约98%)全部在燃料元件内转化成热能,由此完成核能向热能的转化。
水作为冷却剂,用于在反应堆中吸收核裂变产生的热能。
高温高压的一回路水由反应堆冷却剂泵送到反应堆,由下至上流动,吸收堆内裂变反应放出的热量后流出反应堆,流进蒸汽发生器,通过蒸汽发生器的传热管将热量传递给管外的二回路主给水,使二回路水变成蒸汽,而一回路水流出蒸汽发生器后再由反应堆冷却剂泵重新送到反应堆。
如此循环往复,形成一个封闭的吸热和放热的循环过程,构成一个密闭的循环回路,称为一回路冷却剂系统。
蒸汽发生器产生的饱和蒸汽由主蒸汽管道首先送到汽轮机的高压阀组以调节进入高压缸的蒸汽量,从高压阀组出来的蒸汽通过四根环形蒸汽管道进入高压缸膨胀做功,将蒸汽的热能转变为汽轮机转子旋转的机械能。
第六章反应堆一回路主系统6.1 概述反应堆冷却剂系统又称一回路主系统,如图6.1所示。
广东大亚湾核电站每台机组的一回路主系统有三个环路,每个环路设置一台冷却剂循环泵(又称主泵)、一台蒸汽发生器,其中一个环路上设有一台稳压器以及与其相关的泄压箱。
反应堆冷却剂系统的功能是:①主泵使冷却剂在环路中循环,将堆芯的热量带出,通过蒸汽发生器将热量传给二次侧给水;②堆内冷却剂又是慢化剂的水使中子得到慢化;③冷却剂中融有硼酸用来控制反应堆的变化;④稳压器用来控制冷却剂压力,防止堆芯产生偏离泡核沸腾;⑤稳压器上的安全阀起超压保护作用;⑥在发生燃料元件包壳破损时,反应堆冷却剂系统的压力边界使防止放射性泄露的第二道屏障。
图6.1 一回路主系统6.2 反应堆冷却剂泵6.2.1 概述主泵是由空气冷却的三相感应电动机驱动的立式、单级、轴封机组。
它由电动机、轴封组件和水力部件组成。
反应堆冷却剂由装在转动轴下部的泵唧送,冷却剂通过泵壳底部吸入,向上流过叶轮,然后通过扩散器从泵壳侧面出口接管排出。
串联布置的三级轴封控制冷却剂沿泵轴泄露,由化学容积控制(RCV)系统供应的密封水注入泵内,以防止冷却剂沿泵轴向上流动,并冷却轴封和泵的轴封。
在密封水注入失效工况下,热屏冷却向上流到密封器的冷却剂。
主泵的外形及结构如图6.2所示,主要技术规范:表6-1 反应堆冷却剂泵技术规范6.2.2 水力部件⑴泵体图6.2 冷却剂泵结构图6.3 主泵泵体如图6.3所示,泵体由泵壳、扩散器(又称导叶)、进水导管、叶轮、泵轴组成。
其中除泵轴为不锈钢锻件之外,均为不锈钢铸件。
叶轮有七个螺旋离心叶片,装在泵轴的下端。
扩散段汇集来自叶轮的冷却剂,它由十二个螺旋离心叶片组成,被安装在扩散的法兰的底部,扩散器可以与泵的内部部件同时从泵体中取出。
在扩散器的下部装有防热罩。
冷却剂由泵壳底部的进口接管吸入,由装在泵轴下部的叶轮唧送,经扩散器从泵壳侧面的出口接管排出。
(2)热屏热屏装在叶轮与泵轴承之间,由热屏法兰构成泵壳上法兰,它装有热屏及泵轴承。
核电厂系统与设备一回路复习题绪论1、简述压水堆核电站基本组成及工作原理?基本组成:以压水堆为热源的核电站。
主要由核岛(NI)、常规岛(CI)、电站配套设施(BOP)三大部分组成。
工作原理:(一)工作过程:核电厂用的燃料是铀235。
用铀制成的核燃料在“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水(冷却剂)把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动汽轮机带着发电机一起旋转,电就源源不断地产生出来,并通过电网送到四面八方。
一回路冷却剂循环:反应堆蒸汽发生器冷却剂泵反应堆二回路工质循环:蒸汽发生器汽轮机凝汽器凝、给水泵蒸汽发生器(二)压水堆核电站将核能转变为电能的过程,分为四步,在四个主要设备中实现的。
1、反应堆:将核能转变为热能(高温高压水作慢化剂和冷却剂);2、蒸汽发生器:将一回路高温高压水中的热量传递给二回路的给水,使其变为饱和蒸汽,在此只进行热量交换,不进行能量的转变;3、汽轮机:将饱和蒸汽的热能转变为高速旋转的机械能。
4、发电机:将汽轮机传来的机械能转变为电能。
能量传递过程为:裂变能→热能→传递→机械能→电能。
2、厂房及房间的识别符号如何定义?(P 3-5)厂房的识别定义:厂房的识别一般用3个符号来表示。
第一个符号为数字,表示机组识别,即该厂房是属于那个机组的,或两个机组共用的,还是不属于任何机组,而是属于工地系统的,第二、三个符号为两个英文字母,其中第一个字母表示厂房,第二个字母表示该厂房之区域。
房间的识别定义:房间的识别一般用三个数字符号来表示,第一个数字表示楼层,第二、三个数字表示房号。
3、设备的识别符号如何定义?设备识别用9个符号来表示。
这9个符号又分为两个大组,前4个符号为功能组符号,表示该设备属于哪台机组,哪个系统。
后5个符号为设备组符号,表示是什么设备及设备的编号。
(L—字母,N—数字)I-第一章1、压水型反应堆由哪几大部分组成?反应堆由堆芯、压力容器、堆内构件和控制棒驱动机构等四部分组成。
核电站一般有四道安全屏障什么是第四道同时也是最外层安全屏障第一道屏障——核燃料芯块。
现代反应堆广泛采用耐高温、耐辐射和耐腐蚀的二氧化铀陶瓷核燃料。
经过烧结、磨光的这些陶瓷型的核燃料芯块能保留住98%以上的放射性裂变物质不使逸出,只有穿透能力较强的中子和γ射线才能辐射出来。
这就大大减少了放射性物质的泄漏。
第二道屏障——锆合金包壳管。
二氧化铀陶瓷芯块被装入包壳管,叠成柱体,组成了燃料棒。
由锆合金或不锈钢制成的包壳管必须绝对密封,在长期运行的条件下不使放射性裂变产物逸出,一旦有破损,要能及时发现,采取措施。
第三道屏障——压力容器和封闭的一回路系统。
这屏障足可挡住放射性物质外泄。
即使堆芯中有1%的核燃料元件发生破坏,放射性物质也不会从它里面泄漏出来。
第四道屏障——安全壳厂房。
它是阻止放射性物质向环境逸散的最后一道屏障,它一般采用双层壳体结构,对放射性物质有很强的防护作用,万一反应堆发生严重事故,放射性物质从堆内漏出,由于有安全壳厂房的屏障,对厂房外的环境和人员的影响也微乎其微。
第一章回热循环总是可以提高热效率的原因:(1)从热量利用方面,减少了向凝汽器的放热损失;(2)从加热方面看,回热加热时加热器温差比热源直接加热时小,因而不可逆损失减小了;采用加热循环可使热经济性提高百分之十到百分之十五。
核能的转换与传输;一回路;水作为冷却剂在反应堆中吸收核裂变产生的热能,成为高温高压的水,然后沿着管道进入蒸汽发生器的U 形管内,将热量传给U形管外侧的汽轮机工质(水),使其变为饱和蒸汽;被冷却的冷却剂再由主泵打回到反应堆内重新加热,如此循环往复,形成一个封闭的吸热和放热的循环过程,这循环回路称为一回路。
一回路压力由稳压器控制,把一回路及其辅助系统和厂房称为核岛。
一回路主系统由反应堆,主泵,稳压器,蒸汽发生器和相应管道组成。
一些安全和辅助系统按照他们功能大体分为三类;(1)专设安全系统——包括安全注入系统,安全壳喷淋系统,辅助给水和安全壳隔离系统(2)核辅助系统——包括化学和容积控制系统,硼和水补给系统,余热排除系统,反应堆和乏燃料水池冷却和处理系统,设备冷却水系统。
(3)三废处理系统——包括废液处理系统,废弃处理系统和固体废物处理系统。
厂房布置分为核岛和常规岛,电厂配套设施。
核岛主要厂房(1)反应堆厂房(2)染料厂房(3)核辅助厂房(4)电气厂房第二章压水堆的结构简图分为四部分;(1)反应堆堆芯,(2)堆内构件,(3)反应堆压力容器和顶盖,(4)控制棒驱动结构。
燃料组件1燃料元件棒(1)燃料芯块(2)燃料包壳2定位格架3上下管座4控制棒导向管燃料包壳容纳燃料芯块,将燃料与冷却剂隔离开,并包容裂变气体。
他是防止放射性外逸的第一道屏障锆水反应Zr +2H20 =Zr02 +2H2控制棒组件是一种快速控制反应性的工具,在正常运行时用于调节反应堆功率,在事故工况下快速引入负反应性,使反应堆紧急停堆,保证核安全。
由星形架和吸收剂棒组成。
堆内构件在反应堆压力容器内支撑和固定堆芯组件分为堆芯下部和上部支承构件。
核电站系统三个回路
一回路:反应堆冷却剂(硼水)在主泵的驱动下进入反应堆,流经堆芯后从反应堆容器的出口管流出,进入蒸汽发生器,然后回到主泵,这就是反应堆冷却剂的循环流程(亦称一回路流程)。
二回路:在循环流动过程中,反应堆冷却剂从堆芯带走核反应产生的热量,并且在蒸汽发生器中,在实体隔离的条件下将热量传递给二回路的水。
二回路水被加热,生成蒸汽,蒸汽再去驱动汽轮机,带动与汽轮机同轴的发电机发电。
三回路:作功后的乏蒸汽在冷凝器中被海水或河水、湖水冷却水(三回路水)冷凝为水,再补充到蒸汽发生器中。
以海水为介质的三回路的作用是把乏蒸汽冷凝为水,同时带走电站的弃热。
核电站主要设备:核反应堆、蒸汽发生器、稳压器、主冷却剂泵、汽轮发电机机组。
1、压水堆核电站
以压水堆为热源的核电站。
它主要由核岛和常规岛组成。
压水堆核电站核岛中的四大部件是蒸汽发生器、稳压器、主泵和堆芯。
在核岛中的系统设备主要有压水堆本体,一回路系统,以及为支持一回路系统正常运行和保证反应堆安全而设置的辅助系统。
常规岛主要包括汽轮机组及二回等系统,其形式与常规火电厂类似。
2、沸水堆核电站
以沸水堆为热源的核电站。
沸水堆是以沸腾轻水为慢化剂和冷却剂并在反应堆压力容器内直接产生饱和蒸汽的动力堆。
沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。
它们都需使用低富集铀作燃料。
沸水堆核电站系统有:主系统(包括反应堆);蒸汽-给水系统;反应堆辅助系统等。
3、重水堆核电站
以重水堆为热源的核电站。
重水堆是以重水作慢化剂的反应堆,可以直接利用天然铀作为核燃料。
重水堆可用轻水或重水作冷却剂,重水堆分压力容器式和压力管式两类。
重水堆核电站是发展较早的核电站,有各种类别,但已实现工业规模推广的只有加拿大发展起来的坎杜型压力管式重水堆核电站。
4、快堆核电站
由快中子引起链式裂变反应所释放出来的热能转换为电能的核电站。
快堆在运行中既消耗裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。
目前,世界上已商业运行的核电站堆型,如压水堆、沸水堆、重水堆、石墨气冷堆等都是非增殖堆型,主要利用核裂变燃料,即使再利用转换出来的钚-239等易裂变材料,它对铀资源的利用率也只有1%—2%,但在快堆中,铀-238原则上都能转换成钚-239而得以使用,但考虑到各种损耗,快堆可将铀资源的利用率提高到60%—70%。