钢结构人行天桥的振动分析与控制
- 格式:doc
- 大小:26.00 KB
- 文档页数:7
勘家与测量张恩辰:某简支钢结构人行天桥自振频率分析与计算某简支钢结构人行天桥自振频率分析与计算张恩辰(合肥市市政设计研究总院有限公司,安徽合肥230041)摘要:本文以某简支钢结构人行天桥为例,采用有限元分析方法对该天桥进行自振频率计算,分析人行天桥当考虑桥面铺装层时,按组合梁截面考虑换算截面刚度后,对结构的自振频率的影响。
关键词:简支梁;自振频率;桥面铺装;有限元;组合截面中图分类号:U441+.3文献标识码:A文章编号:1673-5781(2020)01-0100-020引言桥梁的自振频率(基频)宜采用有限元方法计算。
对于常规结构,当无更精准方法计算时,也可采用下列公式估算⑴。
规范中,对于公式的各个参数均有说明,但对于桥面铺装的影响,没有具体的解释,因此在实际执行时没有统一的计算模式。
但是当铺装层厚度较大时,尤其对于钢结构人行天桥,对桥梁自振频率计算值影响较大,需引起足够重视。
现行规范中,对于桥梁自振频率的限值没有具体规定,这里不做具体展开。
对于人行天桥,为避免主桥的固有自振频率与人的步行频率较接近而引起主梁振动及挠度过大,引起行人感到不适,甚至危及天桥安全,因此规范规定:为避免共振,减少行人不安全感,天桥上部结构竖向自振频率不应小于3Hz ra。
1工程实例某两跨简支钢箱梁,采用“一字型”人行天桥布置形式,跨径布置为33.8m+6.15m o其中北侧梯道按单侧布置,南侧梯道按双侧布置,不考虑非机动车推行上桥,设置1:2梯道;主桥及北侧梯道净宽4in,两侧栏杆各0.15in,全宽4.3m,南侧梯道净宽2.5in,两侧栏杆各0.15in,全宽2.8m o主桥钢板均采用Q345qD钢,梁高1.6m,腹板厚度为16mm,顶、底板厚度为16mm。
桥面铺装为“6cm钢筋混凝土+2cm砂浆+1.5cm火烧板”。
根据桥通规第4.3.2条文说明,以33.8m简支跨为例:f一兀/EIcJ2L2y m c(1)Gm c=—(2)g5GL4°—384EI C(3)式中:%为均布质量;L为计算跨径;E厶为梁刚度;G为均布自重;g为重力加速度;5为简支梁在均布荷载下的挠度。
钢结构人行桥TMD减振分析及测试王梁坤;施卫星【摘要】Steel structure pedestrian bridge under the impact of pedestrian load,will produce vertical vibration.Excessive vibration will not only cause comfort problems,but also may lead to structural safety problems.This article uses the Midas Gen software to analyze the dynamic response of a pedestrian bridge in Shanghai,and the vibration response of TMD system is verified by the structural vibration response of TMD system.And compared the structure vibration response before and after the optimization design of the TMD system installation.It verified that the TMD has good vibration damping effect.And we tested the dynamic response of the bridge contrast before and after the installation of TMD.The vibration effect of TMD was evaluated by the acceleration peak,the global root mean square value and the continuous root mean square value.%钢结构人行桥在人行荷载作用下,会产生竖向振动.过大的振动不但会引起舒适度问题,还可能引发结构的安全问题.本文采用Midas Gen软件对上海市某人行桥进行人行荷载激励下的动力响应分析,对比安装经优化设计的TMD系统前后的结构振动响应,验证了TMD良好的减振效果.并对该人行桥进行安装TMD前后的对比振动测试,用加速度峰值、整体均方根值和连续均方根值评价了TMD的减振作用.【期刊名称】《低温建筑技术》【年(卷),期】2017(039)009【总页数】5页(P66-70)【关键词】人行桥;人行荷载;TMD;动力分析;振动测试【作者】王梁坤;施卫星【作者单位】同济大学结构工程与防灾研究所,上海200092;同济大学结构工程与防灾研究所,上海200092【正文语种】中文【中图分类】TU391钢结构人行桥由于具备施工周期短、造型轻巧美观等优点而在城市中有广泛的应用。
桥梁结构的振动与减震控制桥梁结构的振动问题一直以来都备受关注。
随着现代桥梁的跨度和高度不断增加,桥梁结构在遭受外力作用时所产生的振动也日益显著。
对于大跨度、高自振频率的桥梁结构而言,其振动问题已经成为限制工程性能和使用寿命的重要因素。
因此,研究桥梁结构的振动特性,并采取相应的减震控制措施成为提高桥梁结构安全性和舒适性的关键。
1. 桥梁结构的振动特性桥梁结构在遭受外界荷载时,会发生自由振动或强迫振动。
自由振动是指桥梁结构在没有外界激励作用下的自然振动,其振动频率与桥梁的固有特性相关。
强迫振动是指桥梁结构在受到外界激励作用下的振动,外界激励可以是车辆行驶产生的载荷、风速、地震等。
桥梁结构由于体积大且刚性高,振动特性往往比较复杂,可能存在多种振动模态。
了解桥梁结构的振动特性对于进行减震控制具有重要意义。
2. 桥梁结构的减震控制方法(1)被动减震控制:被动减震控制是指通过添加有效阻尼器、质量块等被动元件来消耗桥梁结构振动能量的一种方法。
被动减震控制的主要原理是利用附加的阻尼器阻尼桥梁结构的振动,从而减小结构的加速度响应。
常见的被动减震控制方法包括液体减振器、摩擦阻尼器等。
(2)主动减震控制:主动减震控制是指将传感器、执行器等主动元件应用于桥梁结构,通过采集结构振动响应并进行实时控制,实现对结构振动的主动抑制。
主动减震控制系统具有反馈闭环、自适应调节等特点,能够根据桥梁结构的实时振动状态进行有效的控制,从而减小结构的振动响应。
主动减震控制方法包括电液伺服减震、电流控制阻尼器等。
3. 减震控制技术的应用案例减震控制技术在实际工程中已经得到广泛应用。
例如,日本的“神户大桥”在1995年的阪神大地震中因减震控制系统的作用,减少了地震对桥梁产生的破坏。
另一个例子是位于美国旧金山湾区的“新金门大桥”,该桥梁采用了主动减震控制系统,可以实时监测桥梁的振动状态,并使用伺服阀进行控制,从而减小了桥梁结构的振动响应。
4. 减震控制技术的发展趋势随着科技的不断进步和减震控制技术的研究深入,人们对于桥梁结构振动控制技术的要求也越来越高。
桥梁工程中的振动响应分析与控制桥梁是现代交通和城市发展的重要组成部分,然而,在桥梁工程中,振动响应可能是一个不可忽视的问题。
当桥梁在行车、风力、地震等外界作用下受到振动时,会出现振动响应的现象,这对桥梁的安全性、稳定性和使用寿命都会产生一定的影响。
因此,对桥梁工程中的振动响应进行分析与控制成为了一个重要的课题。
首先,我们来讨论一下桥梁工程中的振动响应分析。
要分析桥梁的振动响应,首先需要了解桥梁的结构特点和材料特性。
桥梁结构常见的有悬索桥、拱桥、斜拉桥等,每种结构的振动响应特点有所不同。
此外,桥梁所用的材料也会对振动响应产生影响,比如钢桥和混凝土桥的振动响应会有所区别。
其次,我们需要对桥梁的振动激励进行评估。
桥梁振动的主要激励源包括行车、风力、地震等。
行车引起的振动是桥梁工程中最常见的振动激励,车辆行驶过桥梁时会对桥梁产生振动力。
风力也是导致桥梁振动的重要因素,当风速较大时,会对桥梁产生侧向振动力。
地震是导致桥梁振动的最危险因素之一,特别是在地震活动频繁的地区,需要对桥梁的抗震性能进行充分考虑。
然后,我们对桥梁振动响应进行数值模拟与分析。
数值模拟是研究桥梁振动响应的常见方法之一。
通过建立桥梁的有限元模型,可以对桥梁在各种激励下的振动响应进行模拟与分析。
数值模拟可以帮助工程师预测和评估桥梁的振动响应情况,从而改进桥梁的设计和施工过程,提高桥梁的安全性和稳定性。
最后,对于振动响应较大的桥梁,我们需采取相应的振动控制措施。
桥梁振动控制主要分为主动控制和被动控制两种方式。
主动控制是通过控制器对桥梁的振动进行实时调节,如安装振动减振器、主动负荷调节等。
被动控制则是通过改变桥梁的结构和材料特性来降低振动响应,如增加桥墩、提高桥梁刚度等。
振动控制措施的选择需要根据具体情况进行评估和确定。
综上所述,桥梁工程中的振动响应分析与控制是一个涉及多个学科和多个方面的复杂问题。
通过对桥梁结构特点、振动激励评估、振动响应数值模拟与分析以及振动控制措施的研究,可以提高桥梁的安全性和稳定性,延长桥梁的使用寿命。
钢结构人行天桥自振频率模态分析研究作者:钱若霖黎豪王劭琨来源:《粘接》2022年第03期摘要:城市人行天桥多采用钢结构设计,避免共振,其自振频率应不小于3 Hz;以某一字形钢结构人行天桥为研究对象,从理论计算方法确定影响自振频率的3个影响参数,通过有限元建模分析计算不同跨径、梁高及铺装各参数扰动下,天桥的一阶模态自振基频变化规律特点,并对结构的前5阶自振频率及振型特征研究。
结果表明:不同模态下结构的自振频率首先出现在刚度较小的方向和部位,竖向和横向刚度均应符合设计要求;天桥设计阶段,应从减小跨径、增加梁高以及减小铺装质量对桥梁自振频率加以控制,使其满足规范动力特性要求,提高安全性。
关键词:钢结构;人行天桥;有限元;自振频率中图分类号:U448.11文献标识码:A文章编号:1001-5922(2022)03-0116-04Modal analysis and research on the natural frequency ofsteel pedestrain bridgeQIAN Ruolin, LI Hao, WANG Shaokun(Civil Engineering College, Shaanxi Polytechnic Institute, Xianyang 712000, Shaanxi China)Abstract:Urban pedestrian bridges are mostly designed with steel structure. In order to avoid resonance, the natural vibration frequency should not be less than 3Hz. Firstly, the three influencing parameters that affect the natural frequency are determined from the theoretical calculation method. Through the finite element modeling analysis and calculations under different spans, beam heights and paving parameters, the characteristics of the first-order modal natural fundamental frequency change of the flyover, and the first five-order natural frequency and mode shape of the structure feature research. The results show that the natural frequency of the structure under different modes first appears in the direction and position with less rigidity, and the vertical and lateral rigidity should meet the design requirements; during the design stage of the overpass, the span should be reduced, the beam height should be increased, and the pavement quality should be reduced so as to meet the requirements of the normative dynamic characteristics and to improve safety.Key words:steel structure; pedestrian bridge; finite element; natural vibration frequency钢结构以其强度高、自重小、韧性好、工厂化加工和施工便捷的特点得到土木建筑行业的广泛应用[1]。
第2P总第262期)2021年2月URBAN ROADS BRIDGES&FLOOD CONTROL桥梁结构D01:10.16799/ki.csdqyfh.2021.02.013钢结构人行桥自振频率影响因素及其分析叶涛!,李亚平",肖海波1(1.宁波市城建设计研究院有限公司,浙江宁波315012;2•宁波市供排水有限公司工程建设管理分公司,浙江宁波315041)摘要:城市钢结构人行天桥竖向自振频率为设计控制要素之一。
提出了影响桥梁自振频率的因素,并通过有限元分析软件梁单元模型进行分析计算,研究了结构型式、梁高及桥面铺装对桥梁自振频率的影响。
得到的相关结论可对同类工程起到借鉴参考意义。
关键词:钢结构;人行天桥;自振频率中图分类号:U448.11文献标志码:A文章编号:1009-7716(2021)02-0048-030引言城市进程,人行过天桥及公天桥来多。
伴人们日渐提高的审,新的人行天桥相来结构有频率的,行人[常行频,人-桥振,人行桥L 振⑴人行桥对人行桥共振提的设计要有频率响分析城市人行天桥人行(CJJ69—1995)频率£法,要竖向自振频率3Hz。
人行天桥的过振行人来,对结构有一影响有要对人行天桥的竖向振及其影响因素进行深入研究。
1影响桥梁自振频率的因素结构的自振频率公式Y#(%)]2d%!2二一!-------------------------------------------------------------]°&(%)[Y(%)]2d%+"m(Y?(1)(2)式!为圆频率;/为频率;*为模;/为面;$(%)为位移形状函数;Y(为质点&的振幅;&为平均质;I为桥梁跨式(1)、式(2)可知,桥梁的自振频率与以下因素有关:收稿日期:2020-07-17作者简介:叶涛(1989―),男,硕士,工程师,从事桥梁设计工作。
一种提高钢结构人行桥自振频率的方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, suchas educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!提高钢结构人行桥自振频率的方法钢结构人行桥是城市中常见的重要交通设施,其质量和稳定性直接影响市民的出行安全。
桥梁结构的振动分析与控制桥梁作为连接两地的交通要道,承载着人们出行的重要任务。
然而,在过去的几十年里,由于设计不合理、施工质量差等原因,很多桥梁出现了严重的振动问题,甚至导致了桥梁的坍塌。
因此,桥梁结构的振动分析与控制成为了桥梁工程领域的一个重要方向。
首先,我们来分析桥梁结构的振动问题。
桥梁结构在使用过程中,会受到外界因素的作用,比如车辆行驶过桥梁时的冲击力、风的吹拂等。
这些外界因素的作用会引起桥梁结构的振动,并且随着时间的推移,振动幅度可能会逐渐增大,最终导致结构的破坏。
因此,我们需要对桥梁结构的振动特性进行分析,找出其固有频率和振动模态。
其次,针对桥梁结构的振动问题,我们需要采取相应的控制措施。
目前,主要的振动控制方法有被动控制和主动控制两种。
被动控制方法是指通过在桥梁结构上添加阻尼材料、调整支座刚度等方式来降低振动幅度。
这种方法比较简单容易实现,但其效果有限。
另一种是主动控制方法,通过在桥梁结构上安装传感器和执行器,采集和控制振动信号,实现振动的主动控制。
这种方法可以更为精确地控制振动的大小和频率,但其实施难度较大。
在实际应用中,我们还需要考虑到桥梁结构的耐久性和保养成本等因素。
为了保证桥梁结构的长期稳定和运行安全,我们需要综合考虑各种因素,并选择合适的振动控制方法。
此外,还可以通过在设计阶段进行动力分析和模拟试验,评估不同方案对振动的抑制情况,以便在实施过程中选择最优方案。
另外,近年来,随着工程技术的进步和计算机科学的发展,结构振动分析与控制的研究也取得了许多突破。
比如,利用有限元分析方法和数值计算技术,可以对复杂的桥梁结构进行精确的振动分析和优化设计。
同时,人工智能和大数据技术的应用也为桥梁结构的振动分析和控制提供了新的思路和方法。
总的来说,桥梁结构的振动分析与控制是一个复杂的工程问题,需要综合考虑各种因素,并采取合理的控制措施。
在日益发展的社会中,保障桥梁结构的安全稳定对于人们的生活质量具有重要意义。
钢结构的防振措施钢结构作为一种常见的建筑结构形式,在各个领域广泛应用。
然而,钢结构在面对地震、风震等自然灾害时,常常会受到振动的影响,导致结构安全问题。
因此,采取有效的防振措施对于保障钢结构的安全和稳定至关重要。
本文将探讨钢结构的防振措施,以应对振动对结构产生的影响。
一、结构设计方面的防振措施1. 密集节点设计在钢结构的设计过程中,节点是关键的连接部分。
为了提高结构的整体刚度,减少振动传递的影响,应该采用密集节点设计。
密集节点能够增加结构的刚度和稳定性,从而减缓振动的传播速度,降低对整个结构的影响。
2. 高刚度设计在钢结构设计中,增加结构的刚度可以有效抵抗振动的影响。
因此,在结构设计中应该注重提高结构的刚度。
刚性梁柱的选用、合理的截面设计以及适当的加强措施都能有效提高结构的刚度,减小振动产生的影响。
3. 动力性能设计在进行结构设计时,应该充分考虑结构的动力性能,确保结构在地震、风载等外力作用下能够满足安全要求。
采用合适的软、硬连廊设计和减震设备等,能够有效地减少结构的振动,提高结构的稳定性。
二、结构材料方面的防振措施1. 抑制共振共振是结构振动的一个重要特征,容易引发结构的破坏。
为了抑制共振的发生,可以合理选用结构材料,并通过调整材料的物理性能来改善结构自身的振动特性。
通过研究材料的弹性模量、密度等参数,选择合适的材料,能够有效降低共振的发生,并提高结构的抗震能力。
2. 减震材料的运用减震材料是一种有效的防振措施,能够在结构遇到振动时吸收和抵消能量,减小振动的幅度。
常见的减震材料有弹性材料、减震器等。
这些材料通过其特殊的机械性能,在结构遇到振动时能够吸收能量,从而减少振动的传递。
三、结构加固方面的防振措施1. 钢筋混凝土加固对于已有的钢结构,在面对振动影响时,可以采取钢筋混凝土加固措施。
通过对结构进行加固,能够提高结构的整体刚度和稳定性,减缓振动的传播速度,从而降低振动对结构的影响。
2. 预应力技术应用预应力技术是一种有效的结构加固方法,通过施加预应力,可以提高结构的整体刚度和稳定性,减小结构的变形和位移,降低振动的影响。