移动通信数字调制解调技术
- 格式:pptx
- 大小:1.00 MB
- 文档页数:103
移动通信中的调制解调移动通信中的调制解调1.引言1.1 背景1.2 目的2.调制的概述2.1 调制的定义2.2 调制的目的2.3 调制的基本原理3.调制的分类3.1 模拟调制3.1.1 AM调制3.1.2 FM调制3.2 数字调制3.2.1 ASK调制3.2.2 FSK调制3.2.4 QAM调制4.调制器种类4.1 调幅器4.2 调频器4.3 调相器4.4 调性器5.解调的概述5.1 解调的定义5.2 解调的目的5.3 解调的基本原理6.解调的分类6.1 模拟解调6.1.1 按幅度解调 6.1.2 按频率解调 6.1.3 按相位解调 6.2 数字解调6.2.2 FSK解调6.2.3 PSK解调6.2.4 QAM解调7.解调器种类7.1 幅度解调器7.2 频率解调器7.3 相位解调器7.4 多解调器8.调制解调在移动通信中的应用8.1 调制解调在2G移动通信中的应用 8.2 调制解调在3G移动通信中的应用 8.3 调制解调在4G移动通信中的应用8.4 调制解调在5G移动通信中的应用9.未来发展趋势9.1 调制解调技术的进一步创新9.2 调制解调在物联网中的应用9.3 调制解调在中的应用附件:无法律名词及注释:1.调制:将信号按照一定规律调整成为适合传输的波形。
2.解调:从接收到的波形中还原出原始信号。
3.AM调制:调制信号的幅度随着原始信号的变化而变化。
4.FM调制:调制信号的频率随着原始信号的变化而变化。
5.ASK调制:调制信号的振幅随着原始信号的变化而变化。
6.FSK调制:调制信号的频率随着原始信号的变化而变化。
7.PSK调制:调制信号的相位随着原始信号的变化而变化。
8.QAM调制:将多个调制信号组合成一个符号,符号中的振幅和相位都可变化。
本文档涉及附件:无。
移动通信中的调制解调引言移动通信是一种无线通信技术,可以实现移动设备之间的语音、数据和图像传输。
在移动通信中,调制解调起着重要的作用。
调制解调是将数字信号转换为模拟信号,或将模拟信号转换为数字信号的过程。
调制的目的调制是为了适应信道传输的要求和提高信号的抗干扰能力。
由于信道通常是模拟的,而数字信号是离散的,在信道传输时需要将数字信号转换为模拟信号。
调制的目的是将数字信号转换为模拟信号,以便在信道输。
调制的分类调制可以分为模拟调制和数字调制两种类型。
模拟调制是将模拟信号调制为模拟载波进行传输,常见的模拟调制方式有调幅(AM)、调频(FM)和调相(PM)。
数字调制是将数字信号调制为数字载波进行传输,常见的数字调制方式有二进制振幅移键(ASK)、二进制频移键(FSK)和二进制相移键(PSK)。
解调的目的解调是将调制过的信号恢复为原始的数字信号。
在信道传输中,信号会受到噪声和干扰的影响,解调的目的是将接收到的调制信号恢复为原始的数字信号,以便进行后续的处理和分析。
解调的分类解调可以分为模拟解调和数字解调两种类型。
模拟解调是将模拟调制信号恢复为模拟载波,常见的模拟解调方式有包络检波、相干解调和同步解调。
数字解调是将数字调制信号恢复为数字信号,常见的数字解调方式有ASK解调、FSK解调和PSK解调。
调制解调技术在移动通信中的应用调制解调技术在移动通信中扮演着重要的角色。
在移动通信中,调制解调技术被广泛应用于无线传输系统中,如GSM、CDMA和LTE 等。
调制解调技术可以通过提高信号的抗干扰能力和提高传输效率,实现可靠和高效的无线通信。
移动通信中的调制解调是实现无线通信的关键技术之一。
调制是将数字信号转换为模拟信号的过程,解调是将调制信号恢复为原始的数字信号的过程。
调制解调技术在移动通信中有着广泛的应用,能够提高通信系统的效率和可靠性。
不断的技术创新和发展将进一步推动移动通信技术的进步和应用。
调制技术的应用随着无线通信技术的迅猛发展,调制技术成为了无线通信技术中的重要组成部分。
调制技术是将待传输信息信号与载波进行相互作用,使信息信号可以经过空气、导线等媒介传输。
在现代无线通信领域,调制技术应用广泛,如移动通信、卫星通信、航空通信、广播、电视等等。
本文将介绍调制技术的应用。
一、移动通信移动通信是无线通信领域中最为突出的应用之一,而移动通信中最为重要的调制技术是数字调制。
移动通信中常用的数字调制技术有ASK(振幅调制)、FSK(频移键控)、PSK (相移键控)和QAM(正交振幅调制)等。
数字调制技术通过使用数字信号来信号调制,可以提高信道容量,减少传输误码率,提高通信信号质量,因此其应用十分广泛。
二、卫星通信卫星通信中,调制解调器是重要的组成部分,其主要作用是将要传输的数据进行载波调制,以便于通过卫星传输。
卫星通信中常用的调制技术有BPSK(二进制相移键控)、QPSK (四进制相移键控)和8PSK(八进制相移键控)等。
这些技术具有高频谱效率和低误码率的特点,适用于土地和海洋等不同的地理环境和信息传播需求。
三、航空通信在航空通信中,调制技术逐渐发展为MF、HF、VHF/UHF等各种频段的无线电波通信系统。
调制技术的主要应用在航空导航、气象信息、空中交通管制等方面。
这些系统需要在不同频段和调制方式下进行信息传输,包括调幅、调频以及数字调制等。
这些技术可以提高通信信号的覆盖范围和传输速率,增强通信信号的可靠性和抗干扰性,提高系统的适用性和安全性。
四、广播电视广播电视是调制技术的重要应用领域之一,其主要应用的调制技术有AM(调幅)、FM (调频)和数字调制等。
广播电视中涉及到的信号类型与传输环境都各具特点,需要选择不同的调制技术来适应不同的传播需求,常规广播与电视采用调幅方式传播,而数字广播与电视采用数字调制方式传播。
广播电视的传输距离较远,信号传输可靠性要求高,调制技术在广播电视中的应用显得尤为重要。
移动通信原理移动通信原理1. 引言2. 移动通信系统结构移动通信系统是由移动终端、基站和核心网组成的。
移动终端是用户使用的移动设备,例如方式、平板电脑等。
基站是无线信号的发射和接收站点,负责和移动终端进行无线通信。
核心网是移动通信系统的中心,负责管理和控制移动终端之间的通信。
3. 无线信道原理移动通信系统使用的是无线信道进行信息传输。
无线信道是指通过无线电波进行传输的信道。
无线信道的传播特性会受到多种因素的影响,例如距离、障碍物、多径等。
为了提高无线通信的质量,通信系统会采取多种技术来克服这些影响,例如信号编码、调制解调、多址接入等。
4. 调制解调技术调制解调技术是移动通信中非常重要的技术之一,它将数字信号转换成模拟信号进行传输。
常见的调制技术包括调频(FM)、调相(PM)和调幅(AM)。
调制技术可以将信号从低频信号转换为高频信号,以便在无线信道中传输。
解调技术则将接收到的信号转换为原始的数字信号。
5. 多址接入技术多址接入技术是移动通信中实现多用户访问无线信道的关键技术。
常见的多址接入技术包括时分多址(TDMA)、频分多址(FDMA)和码分多址(CDMA)。
多址接入技术可以使多个用户共享同一个频率带宽的无线信道,提高了无线通信系统的容量和效率。
6. 移动通信网络移动通信网络是由多个基站和核心网组成的。
基站负责与移动终端进行通信,将用户的语音、数据和多媒体信息传输到核心网。
核心网负责管理和控制移动通信系统的各个部分,协调基站之间的通信和移动终端的切换。
7. 移动通信标准移动通信标准是制定移动通信系统中各种技术和规范的组织机构制定的。
常见的移动通信标准包括GSM、CDMA2000、WCDMA和LTE 等。
这些标准规定了移动通信系统的基本原理、技术和频谱分配,确保了不同厂商的设备之间的互通性。
8. 移动通信的发展趋势移动通信技术在不断地发展和演进。
移动通信系统将实现更高的数据传输速率、更低的时延和更大的网络容量。
通信系统中的调制与解调技术研究在现代信息社会中,通信技术是连接人与人、人与物的关键。
通信系统的中心任务是实现信号的传输和接收。
为了在传输过程中尽量减小噪声和失真的影响,通信系统采用了调制与解调技术。
本文将重点研究通信系统中的调制与解调技术,并探讨其应用和发展。
一、调制技术调制技术是将需要传输的信息信号(基带信号)用载波信号进行叠加,使其在传输过程中克服干扰,同时保持信息的完整性。
调制技术广泛应用于无线通信、有线通信和光通信等领域。
主要的调制技术包括:幅度调制(AM)、频率调制(FM)和相位调制(PM)。
1. 幅度调制(AM)幅度调制是一种将基带信号的振幅与载波信号的振幅成比例地变化,从而实现信息传输的技术。
在幅度调制中,基带信号被用来改变载波信号的振幅,形成调制波。
幅度调制广泛应用于调幅广播、调幅电视和调幅电话等领域。
2. 频率调制(FM)频率调制是一种将基带信号的频率与载波信号的频率成比例地变化,从而实现信息传输的技术。
在频率调制中,基带信号被用来改变载波信号的频率,形成调制波。
频率调制广泛应用于调频广播、话音通信和卫星通信等领域。
3. 相位调制(PM)相位调制是一种将基带信号的相位与载波信号的相位成比例地变化,从而实现信息传输的技术。
在相位调制中,基带信号被用来改变载波信号的相位,形成调制波。
相位调制广泛应用于调相广播、数字通信和光纤通信等领域。
二、解调技术解调技术是将调制波恢复为原始的基带信号的过程。
解调技术在通信系统中起到至关重要的作用,它能够还原信号的特征,使其可以被接收终端正确解读。
1. 同步解调同步解调是一种将调制波与本地振荡器进行同步,以消除相位偏移的解调技术。
同步解调能够保证调制信号被准确还原,并能够根据载波信号的特点将其分解为基带信号和附加信息。
2. 频谱解调频谱解调是一种根据调制波的频谱特性进行解调的技术。
在频谱解调中,通过分析调制波的频谱图,可以还原出原始的基带信号。
频谱解调在数字通信领域中得到广泛应用,具有难以复制的优势。
5G的调制与解调技术一、调研背景随着科技的进步,人们的生活从飞鸽传书进入了互联网时代,而随着时代的推移,我们的移动网络经历了2G、3G、4G的时代,网络更新换代,使我们的生活也越来越快捷便利,足不出户便知晓天下事,而如今5G即将到来,这是更先进的一带网络,5G元年也即将开启。
二、调研目的紧贴信号与系统课程内容,了解关于5G的相关知识与背景,联系实际更好的学习相关信号与系统课程内容,了解具体5G技术的调制与解调功能的开发与应用。
三、调研内容1、什么是5G技术5G的全称是第五代移动电话行动通信标准,也称第五代移动通信技术,目前公认5G为未来科技的基础技术,会从衣食住行等全方面影响我们的生活,人类社会将进入真正的全数字连接时代。
2、5G技术会给我们带来什么样的好处5G技术除了我们众所周知的网速快,这项技术还有超低延迟、万物互联等诸多的先进特性,这些优点都是从5G网络扩展到智能手机、平板等科技产品之外的技术特性。
当然不可以不提的有点就是网速的问题,对于这几代网络来说,简单的打个比方,2G网络就好比是自行车,能走但是累,3G网络呢就相当于摩托车,跑的速度还行但是玩不好就得撞车,4G呢就相当于汽车,跑的快还安全基本上满足人们需求,但是5G就不一样了,那就相当于高铁甚至火箭,思想多块他多快,这样的网络速度,为我们探索其他的未知领域打下来更好的基础。
5G的毫秒级别的延迟也是史诗级的,由于网络请求和响应之间不能做到完全同步的级别所以才会出现延迟,4G网络大概是50毫秒左右,但是5G网络的延迟降低到了1-2毫秒的级别,几乎是大大降低了延迟性,这一优势为自动驾驶、医疗应用等智能领域取得了新的进展。
万物互联,这个词听起来是一个非常高端的词汇,没错他就是非常高端,目前的移动通信四代技术是围绕着移动手机来进行的,但是5G的时代,手机也仅仅是5G所覆盖的冰山一角而已,5G网络的覆盖面足以让成千上万的设备连接,从而达到万物互联的效果,据专家预测,到2025年之后全球会有三分之一的人口将被5G网络所覆盖,但这也仅仅是一个开始,未来的5G将无处不在。
《移动通信--BPSK调制与解调》报告《移动通信BPSK 调制与解调》报告在当今的信息时代,移动通信技术的发展日新月异,为人们的生活和工作带来了极大的便利。
其中,BPSK(Binary Phase Shift Keying,二进制相移键控)调制与解调技术作为一种重要的数字通信技术,在移动通信中发挥着关键作用。
一、BPSK 调制的基本原理BPSK 是一种最简单的相移键控方式。
在 BPSK 中,通常用二进制数字“0”和“1”来控制载波的相位。
当数字信号为“0”时,载波的相位为0 度;当数字信号为“1”时,载波的相位为 180 度。
从数学角度来看,假设发送的二进制数字序列为{an},其中 an 取值为 0 或 1,载波信号为Acos(2πfct),那么 BPSK 调制后的信号可以表示为:s(t) =Acos(2πfct +πan)通过这种方式,将数字信息加载到载波信号的相位上,实现了信号的调制。
二、BPSK 调制的实现方式在实际应用中,BPSK 调制可以通过多种方式实现。
一种常见的方法是使用乘法器。
将数字信号与一个正弦载波相乘,得到调制后的信号。
另一种实现方式是基于数字电路,通过逻辑门和计数器等组件来生成 BPSK 调制信号。
这种方式在数字通信系统中应用广泛,具有稳定性高、易于集成等优点。
三、BPSK 解调的基本原理解调是从接收到的已调信号中恢复出原始数字信号的过程。
BPSK的解调通常采用相干解调的方法。
相干解调需要在接收端产生一个与发送端载波同频同相的本地载波。
接收到的 BPSK 信号与本地载波相乘,然后通过低通滤波器滤除高频分量,再进行抽样判决,恢复出原始的数字信号。
四、BPSK 解调的实现过程首先,接收到的信号与本地载波相乘,得到:r(t) = s(t) × cos(2πfct +φ)其中,φ 为本地载波与发送端载波的相位差。
经过乘法运算后,得到:r(t) = 05A1 +cos(2πfct +πan +φ 2πfct)= 05A1 +cos(πan +φ)通过低通滤波器后,滤除高频分量,得到:r'(t) = 05A1 +cos(πan +φ)最后,对 r'(t) 进行抽样判决。
移动通信中的调制解调AM和FM射频信号被用来传递信息,信息有可能是音频,数据或者其他格式,该信息被调制(modulate)到载波信号上,并通过射频传送到接收器,在接收器端,信息从载波上分离出来,这个被称为解调(demodulation)。
而载波本身并不带有任何信息。
调制方法多种多样,简单的一般有幅度调制,频率调制和相位调制,尽管调频和调相本质上是相同的。
每种调制方法都有其有缺点。
了解每种调制方法的基础是很重要的,尽管大家更为关注的是移动通信系统的调制方法。
复习这些简单技术可以让大家对它们的优缺点有更好的认识。
载波无线通信的基础是载波,基本的载波如下图所示,这个信号在发射器部分产生,并不带有任何信息,在接收器部分也作为不变的信号出现。
调幅调制最显而易见的的方式就是调幅了,通过调整信号幅度大小传递信息。
最简单的调制是OOK(on–off keying,开关键控),载波以开关的形式传递信息。
这个是数字调制的基础,并用在传递莫斯(Morse)电码上面,莫斯在早期的“无线”应用上广为采用,通过开或关的长度传递码元。
在音频或其他领域应用更为常见的是,整个信号的幅度通过载波体现,如下图,这个被称为幅度调制(AM)。
AM解调音频信号的过程十分简单,只需要一个简单的二极管包络检波电路就可以实现,如图3-3,在这个电路中二极管只允许无线信号的半波通过,一个电容被作为低通滤波器来去除信号的高频部分,只留下音频信号。
这个信号直接通过放大后输出至扬声器。
该解调电路十分简单和易于实现,在目前的AM收音机接收上面还在广泛采用。
AM解调过程同样可以用更为有效的同步检波电路实现。
如图3-4,射频信号被本地载波振荡信号混频。
该电路的优点是比二极管检波器有更好的线性度,而且对失真和干扰的抵抗比较好。
产生本振信号的方法很多,其中最简单的就是把接收到的无线信号通过高通滤波器,从而滤掉调制信号保留精确频率和相位的载波,再与无线信号混频滤波就能得到原始音频信号。
移动通信的基本技术随着科技的进步和人们对通信需求的不断增长,移动通信已经成为现代社会不可或缺的一部分。
移动通信的基本技术是支撑移动通信系统正常运行的关键,本文将就移动通信的基本技术进行介绍和解析。
一、移动通信的基本原理移动通信是指通过无线技术实现的移动设备之间的通信。
其基本原理是利用无线电波传输信息,在移动设备之间建立起通信链路,实现语音、数据和多媒体等信息的传递。
移动通信的基本技术主要包括无线信号传输、调制解调、信道编码、多址技术等。
二、无线信号传输无线信号传输是移动通信的基础。
无线通信系统通过无线电波传输信号,将信息从发送端传输到接收端。
在无线信号传输中,主要使用的频段有低频、中频、高频以及超高频等,不同频段的选择取决于通信系统的需求和应用环境。
三、调制解调技术调制解调技术是将原始信号转换为适合在无线传输信道中传输的信号,并在接收端将其恢复为原始信号的过程。
调制技术主要包括模拟调制和数字调制两种。
模拟调制主要用于语音通信,而数字调制则适用于数据和多媒体通信。
四、信道编码信道编码是为了提高无线信道传输的可靠性和效率而采取的一种技术手段。
通过对信息进行编码处理,可以在有限的带宽和受干扰的环境下,提高信息的传输质量和容量。
信道编码主要包括纠错编码和压缩编码两种。
五、多址技术多址技术是指在同一频率资源上实现多个用户之间的并行传输。
通过将不同用户的信号进行编码和解码,实现用户之间的区分和同时传输。
常见的多址技术有时分多址(TDMA)、码分多址(CDMA)和频分多址(FDMA)等。
六、移动通信网络移动通信网络是支撑移动通信系统运行的基础设施。
移动通信网络主要由基站、交换网和移动终端组成。
基站负责无线信号的覆盖和转发,交换网负责信号的传输和交换,移动终端作为用户的通信设备。
七、移动通信标准为了保证不同厂商的设备能够互相兼容和互联,移动通信领域制定了一系列的标准。
常见的移动通信标准有GSM、CDMA、WCDMA、TD-SCDMA、LTE等。
移动通信中的调制解调移动通信中的调制解调一、调制与解调的基本概念在移动通信系统中,调制(Modulation)是指将要传输的数字信号转换为模拟信号的过程,而解调(Demodulation)则是将接收到的模拟信号转换回数字信号的过程。
调制解调技术在移动通信中起着至关重要的作用,它们决定了无线信号在传播过程中的可靠性和效率。
调制解调技术的核心思想是利用模拟信号的某些特性来表示数字信号,以便于在传输过程中保持信号的完整性。
常见的调制方式有频移键控(FSK)、相移键控(PSK)、振幅移键控(ASK)等。
解调过程则是将接收到的调制信号恢复成原始的数字信号。
二、调制解调器的工作原理调制解调器(Modem)是实现调制解调功能的设备或软件。
它一般由调制器和解调器两个部分组成。
调制器负责将数字信号转换为模拟信号,并在发送端将信号发送出去;解调器则负责将接收到的模拟信号转换回数字信号,并在接收端进行解码等后续处理。
调制器通常包含一个调制器算法,用于将数字信号转换为模拟信号。
常见的调制算法有调相(PSK)和调频(FSK)等。
调制器通过改变模拟信号的频率、振幅或相位等特性,将数字信号转换为模拟信号,然后发送出去。
解调器则是对调制过程的逆过程。
它接收到经过传输过程中受到噪声和干扰后的模拟信号,通过解调算法将其转换为数字信号。
解调器还会对接收到的信号进行解码、纠错等处理,以提高接收到的数字信号的质量。
三、调制解调技术在移动通信中的应用调制解调技术在移动通信中发挥着重要的作用。
在无线通信系统中,调制技术用于将数字数据转换为模拟信号,以便于在无线信道中传输。
解调技术则负责将接收到的模拟信号转换回数字数据,以便于后续处理和解码。
在移动通信系统中,调制解调技术不仅用于语音通信,还广泛应用于数据通信。
例如,在3G和4G网络中,调制解调技术被用于将高速的数字数据转换为适合无线信道传输的模拟信号。
调制解调技术的性能直接影响着数据传输的速度和可靠性。
移动通信网络中的信号处理技术移动通信是当今社会中不可或缺的一种通信方式。
随着移动设备的普及和移动通信技术的不断发展,移动通信网络的应用越发广泛,尤其在移动宽带、物联网等领域中,移动通信技术更是发挥着重要的作用。
而这一切离不开信号处理技术的支持。
一、移动通信网络中的信号传输移动通信网络需要通过信号传输让移动设备与基站进行通信。
信号传输技术主要包括数字调制、信道编码、纠错编码和通道均衡等。
其中,数字调制是将低速数字信号转换为高速模拟信号的过程。
数字调制方式有多种,如二进制振幅键控(ASK)、二进制频移键控(FSK)、二进制相移键控(PSK)等。
信道编码则是为了保证信号在传输过程中的可靠性。
传统的信道编码方式有卷积码、块码等。
其中,卷积码具有较好的纠错性能,在移动通信中得到了广泛应用。
纠错编码能够检测和纠正传输中出现的误码,增强信号的可靠性。
移动通信网络中常用的纠错编码方式有前向纠错(FEC)和重传请求(ARQ)等。
通道均衡则是为了消除因信号在传输过程中出现的失真而引起的信号失真。
通道均衡的方式有很多,如最小二乘法(LS)、循环坐标下降法(CCD)等。
二、信号处理技术在移动通信网络中的应用信号处理技术在移动通信网络中具有重要的应用。
举例而言,移动通信网络中的语音信号处理将数字语音信号转换为模拟语音信号,以便用户直接听到声音。
同时,这种处理技术还可以对语音信号进行增强处理,使其达到更好的可听性和语音质量。
移动通信网络中还应用了调制解调技术,利用这种技术可以调制和解调数字信号,实现数据在传输中不出现错误。
同时,数字信号在传输之前需要进行数据压缩,利用信号压缩算法可以实现信号传输速度的提高,并节约带宽资源。
另外,在移动通信网络中,信号处理技术还能用于多天线技术,如空时编码(STC)和空间分集(SD)等技术,这些技术可以利用多个天线在不同的传输路径上同时传输信号,有效提高信号的传输速度和可靠性。
三、信号处理技术的未来发展趋势随着移动通信网络的不断发展,信号处理技术也在不断发展。
通信技术中的信号调制与解调技术信号调制与解调技术是现代通信系统中不可或缺的关键技术之一。
它负责将要传输的信息信号转换为适合传输的载波信号,并在接收端将收到的信号还原为原始的信息信号。
本文将介绍信号调制与解调技术的基本原理、常见调制解调方法以及其在通信系统中的应用。
一、信号调制的基本原理信号调制是指将要传输的信息信号和高频载波信号相结合,以便在传输过程中提高信号的抗干扰能力和传输效率。
调制技术的基本原理可以归纳为将低频的信息信号调制到高频的载波信号上,产生调制后的信号。
二、常见调制解调方法1. 幅度调制(Amplitude Modulation,AM)幅度调制是最简单的一种调制方法,它是通过改变载波信号的振幅来传输信息。
在AM调制中,原始信号的幅度变化会导致载波信号的幅度随之变化。
接收端通过解调将幅度变化还原为原始信号。
2. 频率调制(Frequency Modulation,FM)频率调制是一种通过改变载波信号的频率来传输信息的调制方法。
FM调制中,原始信号的振幅不变,而是通过改变载波信号的频率来传输信息。
接收端通过解调将频率变化还原为原始信号。
3. 相位调制(Phase Modulation,PM)相位调制是一种通过改变载波信号的相位来传输信息的调制方法。
PM调制中,原始信号的振幅和频率不变,而是通过改变载波信号的相位来传输信息。
接收端通过解调将相位变化还原为原始信号。
三、调制解调技术的应用1. 无线通信系统中的调制解调技术调制解调技术广泛应用于无线通信系统中,如移动通信、卫星通信、无线局域网等。
在这些系统中,调制技术能够提高信号的传输距离和抗干扰能力,使得移动设备能够稳定地进行通信。
2. 数字通信系统中的调制解调技术调制解调技术在数字通信系统中也具有重要作用。
在数字通信中,信息信号经过模数转换器转换为数字信号后,需要通过调制技术将其转换为模拟信号进行传输。
在接收端,通过解调技术将模拟信号转换为数字信号进行处理和解码。