钢液脱磷机理
- 格式:docx
- 大小:360.52 KB
- 文档页数:5
10、脱磷的基本条件是什么?脱磷反应是钢渣间的反应,其反应方程式为:4(CaO)+2[P]+5(FeO)=(4CaO·P2O5)+5FeO在顶吹转炉中,脱磷主要是在泡沫渣中及冲击区内的钢渣乳化液中进行。
影响脱磷的主要因素是:(1)炉渣碱度的影响渣中CaO越高,分配比越高,脱磷能力就强。
CaO的脱磷作用在于:它能使P2O5生成更加稳定的磷酸钙,但炉渣中的SiO2与CaO的结合能力更强,更易生成硅酸钙。
因此,只有自由的(2)(FeO)的影响增加渣中FeO含量,将提高脱磷能力。
这是因为(FeO)可以氧化钢液中的磷生成P2O5;(FeO)还可以使石灰溶解,提高炉渣碱度;在低温下(FeO)还可与P2O5生成复杂化合物:3(FeO)+(P2O5)=(3FeO·P2O5)可以起到稳定(P2O5)的作用。
但(FeO)过高对脱磷不利。
(3)温度的影响脱磷反应是一个强的放热反应,降低温度使KP增大,从而与利于脱磷。
(4)渣量的影响渣量并不影响脱磷的分配比LP,但增加渣量意味着稀释了(P2O5)的浓度,即增加渣量可降低钢中的含磷量[P%]。
(5)粘度的影响炉渣有适当的粘度可使渣中的金属液滴数量增加,金属液滴在渣中的停留时间延长,有利于磷的去除。
防止回磷的措施有那些?
防止回磷的措施有:(1)出钢尽量减少出钢时带渣;(2)采用碱性包衬,减少因钢包侵蚀而降低炉渣碱度;(3)出钢过程中向钢包投入少量石灰粉,稠化渣子保持碱度;(4)出钢完毕时,尽量减少钢水在钢包中的停留时间。
转炉脱磷造渣工艺1. 简介转炉脱磷造渣工艺是一种钢铁生产过程中常用的炼铁工艺,用于将炼钢过程中产生的高磷铁水进行脱磷处理,并同时生成具有一定含铁量的渣。
脱磷是炼钢过程中的一个重要环节,因为高磷含量的钢铁会使钢的力学性能下降,同时还会影响钢的冷加工性能。
因此,通过转炉脱磷造渣工艺,可以有效降低钢铁中的磷含量,提高钢的质量。
2. 工艺原理转炉脱磷造渣工艺的主要原理是利用氧气气体在高温条件下与铁水中的磷发生氧化反应,生成氧化磷(P2O5)。
氧化磷被熔融的渣中吸附,从而实现了脱磷的目的。
具体来说,转炉脱磷造渣工艺分为两个步骤:2.1 碱性补矿在转炉炼钢过程中,通常需要进行钙质或镁质的碱性物料的补矿。
这是因为转炉炼钢过程中消耗了大量的碱质物料,导致炉渣中的碱度下降。
通过补充碱性物料,可以提高炉渣的碱度,为脱磷创造良好的条件。
2.2 硅酸盐造渣在转炉炼钢的末期,废钢或铁水被注入转炉。
同时,掺入含有大量氧化剂的硅酸盐物料,如硅石、硅灰石等。
在高温条件下,硅酸盐物料会与铁水中的磷发生反应,生成氧化磷。
氧化磷被熔融的渣中吸附,从而脱离钢水,实现脱磷的目的。
3. 工艺流程转炉脱磷造渣工艺的流程如下:1.准备碱性物料:根据炉渣的碱度要求,准备钙质或镁质的碱性物料,并进行补充。
常用的碱性物料包括石灰石、白云石等。
2.准备硅酸盐物料:选择合适的硅酸盐物料,如硅石、硅灰石等,并加入适量的氧化剂。
3.开始转炉炼钢:将废钢或铁水注入转炉,并进行炼钢操作。
4.碱性补矿:在适当的时机,通过给炉内注入碱性物料,提高炉渣的碱度。
5.硅酸盐造渣:当转炉炼钢接近末期时,通过给炉内注入硅酸盐物料,利用氧化剂促进磷的氧化反应。
6.淋渣:根据炉内的渣情况,选择合适的时间进行淋渣操作。
淋渣可以通过人工或机械设备进行。
7.渣铁分离:在脱磷过程中,渣中生成的氧化磷会被吸附在渣中,从而脱离钢水。
通过合适的方法,将渣与钢水分离。
8.尾渣处理:处理分离出来的尾渣,并对其进行资源化利用或安全处理。
碱性氧气转炉转炉炼钢过程脱磷、脱硫热力学从铁水中去除杂质元素是碱性氧气转炉炼钢非常重要的功能,早期炼钢,少数研究者对铁水氧化脱磷进行了研究,近来一些作者研究了不同参数对磷分配比的影响,与早期报道有所不同。
另一方面,对氧气炼钢过程脱硫研究较少。
这可能是由于氧气炼钢过程中脱硫能力较弱,且铁水预处理和钢包精炼炉内脱硫在工业上的成功应用。
此外,通常认为炼钢过程中硫只是以硫化物形态脱除到渣中的。
然而,最近的研究表明,在氧化的条件下,碱性氧气转炉炼钢过程中,大量硫也会以硫酸盐形态脱除到渣中。
带有高硫高炉渣的情况下,因为增加了顶吹氧气转炉(BOF)的硫负荷,炼钢过程中硫的分配变得更加重要。
在氧化精炼过程中,硫在渣中的化学属性经历了一个由硫化物逐渐转化为硫酸盐的过程。
前言任何炼钢工艺过程,脱除铁水中的杂质元素是非常重要的功能。
严格控制杂质含量对生产优质钢来说是很重要的。
磷、硫是最普遍遇到的杂质元素,众所周知磷在钢中会引起冷脆,硫引起热脆,且增加钢结构的腐蚀速率。
目前,深冲薄带、汽车外壳、石油天然气输送管道用钢,降低磷含量已成为极为严格的要求。
表1概括了磷、硫含量对钢性能的影响。
炼钢初期,少数研究者对铁水氧化脱磷进行了研究,近来一些作者研究了不同参数对磷分配比的影响,与早期报道有所不同。
另一方面,之前对氧气炼钢过程脱硫研究较少。
这可能是由于氧气炼钢过程中脱硫能力较弱,且铁水预处理和钢包精炼炉内脱硫在工业上的成功应用。
但是带有高硫高炉渣的情况下,因为增加了顶吹氧气转炉(BOF)的硫负荷,炼钢过程中硫的分配变得更加重要。
通常认为炼钢过程中硫只是以硫化物形态脱除到渣中,然而,最近的研究表明,碱性氧气转炉炼钢过程中,大量硫也会以硫酸盐形态脱除到渣中。
过去数十年的报道中称,因为低磷、低硫铁矿石和焦炭的短缺,炼钢原料中残余的磷、硫含量在逐步增加,因此炼钢工作者期望获得低磷、硫含量的产品,面临着艰难挑战。
背景本文所讨论的研究,是首次在塔塔钢铁公司炼钢厂(Tata),与印度科学院、KTH 技术学院共同实验开展的范例,Tata钢铁公司用高炉、碱性氧气转炉(BF-BOF)路线生产钢水,所用的原料富含磷,因此,铁水中的磷含量达到了0.2-0.25%,对生产低磷钢极为不利。
一.前言内容导读:中频电炉在铸钢行业中的应用已经极为普遍,特别是在小型砂型铸钢和在钢熔炼过程中只有较弱的冶金反应,难以进行脱磷、脱硫操作,基本上是一种废钢和铁合金的重熔过程。
现实生产当中,很多使用中频电炉冶炼铸钢材质的企业,在遇到原材料出现波动时,造成钢液成份中磷或硫超标,解决问题的方法基本上是倾倒出部分钢液,再加低磷硫的废钢重新配料熔化,常常造成较大的损失,因此,强化中频电炉熔炼过程中的冶金反应,掌握脱磷、脱硫的方法,是一项很有价值的工作。
二.钢水熔炼过程中脱P、脱S的冶金原理(一)脱P的冶金反应原理磷在钢液中以Fe2P的形式存在,在钢液中溶解度很高,容易与自炉渣扩散到钢液中的(FeO)作用并释放热量,反应式:2[P]+5(FeO)→(P2O5)+5[Fe];△H=-260000J 磷的氧化物在钢液中溶解度很低,但易溶于炉渣,并与炉渣中的(FeO)反应生成(3FeOP2O5),反应式如下:(P2O5)+3(FeO)→(3FeOP2O5);△H=-127900J (P2O5)和(3FeOP2O5),都是不稳定的氧化物,在冶炼时,温度稍高就会分解,使磷重回钢液,因此,以FeO为主的炉渣脱磷能力很差,为了取得很好的脱P效果,就必须向炉渣中加入强碱性氧化物CaO(石灰),与(P2O5)结合成稳定的磷酸钙,反应式如下:(P2O5)+4(CaO)→[(CaO)4P2O5];△H=-689700J 脱P过程综合反应式如下:2[P]+ 5(FeO)+ 4(CaO)→[(CaO)4P2O5]+ 5[Fe];△H=-949700J 由以上反应式可知,做好脱P工作,注意以下几个方面:(1)钢液氧化性强,炉渣碱度高是脱P的必要条件;(2)控制钢液温度,由于脱磷是放热反应,因此钢液温度低有利于脱P;(3)流动性良好的炉渣能提高渣中的CaO活性,有利于脱P;(4)加强钢液与渣的搅拌,有利于脱P。
(二)脱S的冶金反应原理硫在钢液与炉渣中均以FeS形态存在,钢液中的[FeS]与炉渣中的(FeS)可以通过扩散互相转移,在一定温度下,两者质量分数比是一个常数,脱S过程,就是利用这一原理。
中频电炉冶炼过程中脱磷、脱硫操作要点(总4页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March一.前言内容导读:中频电炉在铸钢行业中的应用已经极为普遍,特别是在小型砂型铸钢和失蜡熔模精密铸钢中几乎都是采用中频电炉炼钢,由于技术力量的不足,绝大多数企业对中频电炉在熔炼过程中的冶金反应研究较少,以至于形成了一种较为普遍的观点,即中频电炉在钢熔炼过程中只有较弱的冶金反应,难以进行脱磷、脱硫操作,基本上是一种废钢和铁合金的重熔过程。
现实生产当中,很多使用中频电炉冶炼铸钢材质的企业,在遇到原材料出现波动时,造成钢液成份中磷或硫超标,解决问题的方法基本上是倾倒出部分钢液,再加低磷硫的废钢重新配料熔化,常常造成较大的损失,因此,强化中频电炉熔炼过程中的冶金反应,掌握脱磷、脱硫的方法,是一项很有价值的工作。
二.钢水熔炼过程中脱P、脱S的冶金原理(一)脱P的冶金反应原理磷在钢液中以Fe2P的形式存在,在钢液中溶解度很高,容易与自炉渣扩散到钢液中的(FeO)作用并释放热量,反应式:2[P]+5(FeO)→(P2O5)+5[Fe];△H=-260000J磷的氧化物在钢液中溶解度很低,但易溶于炉渣,并与炉渣中的(FeO)反应生成(3FeOP2O5),反应式如下:(P2O5)+3(FeO)→(3FeOP2O5);△H=-127900J(P2O5)和(3FeOP2O5),都是不稳定的氧化物,在冶炼时,温度稍高就会分解,使磷重回钢液,因此,以FeO为主的炉渣脱磷能力很差,为了取得很好的脱P效果,就必须向炉渣中加入强碱性氧化物CaO(石灰),与(P2O5)结合成稳定的磷酸钙,反应式如下:(P2O5)+4(CaO)→[(CaO)4 P2O5];△H=-689700J脱P过程综合反应式如下:2[P]+ 5(FeO)+ 4(CaO)→[(CaO)4 P2O5]+ 5[Fe];△H=-949700J由以上反应式可知,做好脱P工作,注意以下几个方面:(1)钢液氧化性强,炉渣碱度高是脱P的必要条件;(2)控制钢液温度,由于脱磷是放热反应,因此钢液温度低有利于脱P;(3)流动性良好的炉渣能提高渣中的CaO活性,有利于脱P;(4)加强钢液与渣的搅拌,有利于脱P。
大型转炉炼钢脱磷的研究摘要:主要研究近年来脱磷的方法,一些防止回磷的措施,复吹转炉成渣过程对脱磷的影响,高磷铁水脱磷效率影响因素,以及钢渣在微波场中还原脱磷的工艺。
关键词:脱磷;回磷;炉渣碱度;还原;预熔脱磷剂;高磷铁水;炼钢工艺1. 前言一般情况下,磷是钢材中的有害成分,使钢具有冷脆性。
磷能溶于a-Fe中(可达1. 2%),固溶并富集在晶粒边界的磷原子使铁素体在晶粒问的强度大大增高,从而使钢材的室温强度提高而脆性增加,称为冷脆。
但含磷铁水的流动性好,充填性好,对制造畸形复杂铸件有利。
此外,磷可改善钢的切削性能、易切削钢中磷含量可达0.08%一0.15%。
2.转炉的脱磷2.1转炉脱磷的基本原理通常认为,磷在钢中是以[Fe3P]或[Fe_2P]的形式存在,为方便起见,均用[P]表示。
炼钢过程中的脱磷反应是在金属液与熔渣界面进行,首先是[P]被氧化成(P2O5),然后与(CaO)结合成稳定的磷酸钙,其反应式可表示为:2.2影响脱磷的因素磷的氧化在钢渣界面进行,按炉渣分子理论的观点,反应式如下:2.3回磷现象所谓的回磷现象,就是磷从熔渣中又返回到钢液中。
成品钢中磷含量高于终点钢中的磷含量也属于回磷现象。
熔渣的碱度或氧化亚铁含量降低,或石灰划渣不好,或温度过高等,均会引起回磷现象。
出钢过程中,由于脱氧合金加入不当,或出钢下渣,或合金中磷含量较高等因素,也有导致成品钢中磷高于终点钢[P]含量。
通常采用避免钢水回磷措施:挡渣出钢,尽量避免下渣;适当提高脱氧前碱度;出钢后向钢包渣面加一定量石灰,增加炉渣碱度;尽可能采取钢包脱氧,而不采取炉内脱氧;加入钢包改质剂。
3 钢渣在微波场中还原脱磷微波技术在加热高电介质耗损原料方面是一种简单而有效的方法,在冶金还原领域有着广阔的应用前景。
相较于传统加热还原工艺需要较高的温度和损耗,具有体积性加热、选择性加热、非接触性加热、即时性等加热特性的微波场在较低温度下能够提供更多的热量。
一、磷在钢中的存在形式通常认为是以磷化物〔Fe2P〕的形式存在,在液态钢中,一般以〔P〕表示,磷使钢产生“冷脆”。
1转炉炼钢磷的变化规律在吹炼的最初阶段(约4分钟),由于硅、锰与氧的结合力大,所以要等硅锰氧化到较低时磷才开始氧化,而且磷的氧化速度也不大,约0.007-0.016%/分,此时脱碳速度也不大,吹炼中期,硅锰已基本氧化,此时进入碳、磷氧化阶段,磷的氧化速度约0.0013-0.021%/分,一般吹炼到一定时间,磷可达到规格之下,而且由于炉内温度还不太高,所以只要化渣良好,脱磷速度大于脱碳速度。
到吹炼后期,钢液中磷含量已比较低,在加上碳、磷的反应使炉温升高,脱碳速度加快,脱磷速度明显放慢,甚至回出现回磷现象,一直到吹炼末期,炉渣碱度提高且化渣良好,才有可能再次使磷下降,但此时脱磷速度只有0.002-0.010%/分。
2脱磷反应方程式反应式: 一般认为磷的氧化是在钢渣界面上进行的,主要是与炉渣中的氧化铁进行反应2[P]+5(FeO)+4(CaO)=(4 CaO··P2O5)+5[Fe]脱磷反应是放热反应脱磷条件(三高一低)高R、高FeO、大渣量、低温,增大渣量的目的是稀释(4 CaO··P2O5)的浓度。
另:造粘度较大的泡沫渣有利于脱磷,但粘度不宜过大。
在一般情况下当炉渣碱度2.5-3.0,(FeO)控制在0.15-0.20%脱磷最佳。
为实现炼钢中的脱磷目的,以FeO为氧化剂,以CaO为磷氧化产物的稳定剂,在酸性炉渣条件下是不可能进行脱磷操作的。
二:去P有三个条件,即:高碱,高氧低温所以在炼钢过程中去鳞一般在前期,温度大概控制在1350度以下,碱度控制住3.2~3.5左右。
脱P效果比较好,一般能达到90%。
另外脱磷中,氧的控制是一个比较关键的问题,必须保证熔池的高氧化性。
抢位控制一般为,高抢位,低的氧流量。
原理就是在高温条件下,用氧气或铁的氧化物把生铁中所含的过量的碳和其它杂质转为气体或炉渣而除去。