matlab仿真自动控制原理
- 格式:docx
- 大小:36.52 KB
- 文档页数:1
第5章频率特性法频域分析法是一种图解分析法,可以根据系统的开环频率特性去判断闭环系统的性能,并能较方便地分析系统参量对系统性能的影响,从而指出改善系统性能的途径,已经发展成为一种实用的工程方法,其主要内容是:1)频率特性是线性定常系统在正弦函数作用下,稳态输出与输入的复数之比对频率的函数关系。
频率特性是传递函数的一种特殊形式,也是频域中的数学模型。
频率特性既可以根据系统的工作原理,应用机理分析法建立起来,也可以由系统的其它数学模型(传递函数、微分方程等)转换得到,或用实验法来确定。
2)在工程分析和设计中,通常把频率特性画成一些曲线。
频率特性图形因其采用的坐标不同而分为幅相特性(Nyquist图)、对数频率特性(Bode图)和对数幅相特性(Nichols图)等形式。
各种形式之间是互通的,每种形式有其特定的适用场合。
开环幅相特性在分析闭环系统的稳定性时比较直观,理论分析时经常采用;波德图可用渐近线近似地绘制,计算简单,绘图容易,在分析典型环节参数变化对系统性能的影响时最方便;由开环频率特性获取闭环频率指标时,则用对数幅相特性最直接。
3)开环对数频率特性曲线(波德图)是控制系统分析和设计的主要工具。
开环对数幅频特性L(ω)低频段的斜率表征了系统的型别(v),其高度则表征了开环传递系数的大小,因而低频段表征系统稳态性能;L(ω)中频段的斜率、宽度以及幅值穿越频率,表征着系统的动态性能;高频段则表征了系统抗高频干扰的能力。
对于最小相位系统,幅频特性和相频特性之间存在着唯一的对应关系,根据对数幅频特性,可以唯一地确定相应的相频特性和传递函数。
4)奈奎斯特稳定性判据是利用系统的开环幅相频率特性G(jω)H(jω)曲线,又称奈氏曲线,是否包围GH平面中的(-l,j0)点来判断闭环系统的稳定性。
利用奈奎斯特稳定判据,可根据系统的开环频率特性来判断闭环系统的稳定性,并可定量地反映系统的相对稳定性,即稳定裕度。
稳定裕度通常用相角裕量和幅值裕量来表示。
自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。
二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。
特征根的实部决定了系统的稳定性,实部小于零时系统稳定。
2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。
三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。
2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。
四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。
根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。
2.连接模拟输入信号。
在搭建的二阶系统的输入端接入一个阶跃信号发生器。
3.连接模拟输出信号。
在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。
4.调整增益和特征根。
通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。
记录实际调整参数的数值。
5.使用MATLAB进行仿真绘制。
根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。
6.对比分析实际曲线与仿真曲线。
通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。
五、实验结果与分析1.实际曲线的绘制结果。
根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。
2.仿真曲线的绘制结果。
利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。
3.实际曲线与仿真曲线的对比分析。
通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。
六、实验讨论与结论1.实验过程中遇到的问题。
HEBEINONGJI摘要:“自动控制原理”是电气与自动化专业重要的专业基础课,内容抽象、复杂,学生理解困难。
近年来,随着MATLAB引入自动控制原理教学实践中,利用其强大的数值计算及绘图功能,对教学形式和内容进行了有力改革,从而有效地提高了课堂教学效率及教学效果。
关键词:自动控制原理;MATLAB;教学改革MATLAB在“自动控制原理力课程中的应用研究河北农业大学李珊珊孔德刚弋景刚袁永伟刘江涛引言自动控制原理是电气与自动化专业一门重要的专业技术基础课,该课程在内容体系中起着承上启下的作用。
主要介绍讨论了单输入一单输出定常系统的控制问题,讲授经典控制理论的三大分析方法一时域分析法、根轨迹分析法和频域分析法,自动控制系统综合与校正的一般方法和非线性系统等内容,课程具有一定的抽象性,包含大量的数学内容和复杂计算。
通过学习,要求学生系统掌握自动控制的基本原理和基本方法,并能对控制系统进行定性分析、定量计算和综合设计。
学生普遍反映难以理解,内容枯燥。
基于此,需要对教学内容及教学方法进行更新,在教学中引入了MATLAB编程语言。
1现代教育理念1.1以学生为中心美国人本主义心理学家卡尔•罗杰斯于1952年提出“以学生为本”的教育理念,主张促进学生个性发展、人格完善和潜能发挥,使他们能够愉快地、创造性地学习和工作。
目前,这种教育理念仍然作为一种基本的现代教育理念。
1.2创新发展的理念党的十八届五中全会提出“创新、协调、绿色、开放、共享”五大发展理念,其中创新被置于首位。
随着互联网技术的迅速发展,知识更新换代速度加快,对复合创新型人才的需求愈发强烈,人才培养要摒弃传统的知识灌溉模式,应将教学重点转移到重视研究方法学习、培养创新精神上。
1.3OBE教育理念OBE为"Outcomes-based Education"的缩写,OBE教育理念即基于成果导向的教育理念。
美国的Spady在《基于产出的教育模式:争议与答案》一书中把OBE定义为“关注和组织教育体系,以确保学生在未来的生活中获得实质性的成功经验”。
自动控制原理实验实验一 控制系统的数学模型一、 实验目的1. 熟悉Matlab 的实验环境,掌握Matlab 建立系统数学模型的方法。
2. 学习构成典型环节的模拟电路并掌握典型环节的软件仿真方法。
3. 学习由阶跃响应计算典型环节的传递函数。
二、 实验内容1. 已知图1.1中()G s 和()H s 两方框相对应的微分方程分别是:()610()20()()205()10()dc t c t e t dtdb t b t c t dt+=+=且满足零初始条件,用Matlab 求传递函数()()C s R s 和()()E s R s 。
图1.1 系统结构图2. 构成比例环节、惯性环节、积分环节、比例-积分环节、比例-微分环节和比例-积分-微分环节的模拟电路并用Matlab 仿真;3. 求以上各个环节的单位阶跃响应。
三、 实验原理1. 构成比例环节的模拟电路如图1.2所示,该电路的传递函数为:21().R G s R =-图1.2 比例环节的模拟电路原理图2. 构成惯性环节的模拟电路如图1.3所示,该电路的传递函数为:221(),,.1R KG s K T R C Ts R =-==+图1.2 惯性环节的模拟电路原理图3. 构成积分环节的模拟电路如图1.3所示,该电路的传递函数为:1(),.G s T RC Ts==图1.3 积分环节的模拟电路原理图4. 构成比例-积分环节的模拟电路如图1.4所示,该电路的传递函数为:2211()1,,.R G s K K T R C Ts R ⎛⎫=-+== ⎪⎝⎭图1.4 比例-积分环节的模拟电路原理图5. 构成比例-微分环节的模拟电路如图1.5所示,该电路的传递函数为:221()(1),,.R G s K Ts K T R C R =-+==图1.5 比例-微分环节的模拟电路原理图6. 构成比例-积分-微分环节的模拟电路如图1.6所示,该电路的传递函数为:121211212121121()1(1)()()()()()p d i f p i i ff i f f f f f d f f G s K T s T s R R R R C K R R C T R CT R R C R R C R R R R R R CC T R R C R R C⎛⎫=++ ⎪⎝⎭++=+==+++++=+++图1.6 比例-积分-微分环节的模拟电路原理图四、实验要求1.画出各环节的模拟电路图。
摘要MATLAB语言是一种十分有效的工具,能容易地解决在系统仿真及控制系统计算机辅助设计领域的教学与研究中遇到的问题,它可以将使用者从繁琐的底层编程中解放出来,把有限的宝贵时间更多地花在解决科学问题上。
MATLAB GUI 是MATLAB的人机交互界面。
由于GUI本身提供了windows基本控件的支持,并且具有良好的事件驱动机制,同时提供了MATLAB数学库的接口,所以GUI 对于控制系统仿真的平台设计显得十分合适。
GUI对于每个用户窗口生成.fig和.m 文件。
前者负责界面的设计信息,后者负责后台代码的设计。
本文所做的研究主要是基于MATLAB GUI平台,结合控制系统基础理论和MATLAB控制系统工具箱,实现了用于控制系统计算机辅助分析与设计的软件。
本软件主要功能:实现传递函数模型输入、状态方程模型输入、模型装换、控制系统稳定性分析、系统可观性可控性判断,绘制系统奈奎斯特图、波特图、根轨迹图以及零极点分布图。
在继续完善的基础上能够用于本科自动控制原理教程的教学实验和一般的科学研究。
关键词:控制系统;MATLAB GUI;计算机辅助设计AbstractMATLAB language is a very effective tool,and can be easily resolved in the system simulation and control system of teaching in the field of computer-aided design and research problems,it could be the bottom of the user from tedious programming liberate the limited spend more valuable time to solve scientific problems.The MATLAB GUI is the interactive interface.As the GUI itself provides the basic control windows support,and has a good mechanism for event-driven,while providing the MATLAB Math Library interface,the GUI for control system simulation platform for the design of it is suitable. GUI window generated for each user. Fig and.M file. The former is responsible for the design of the interface information,which is responsible for the design of the background code.Research done in this article is mainly based on MATLAB GUI platform,the basis of combination of control system theory and MATLAB Control System Toolbox,the realization of control systems for computer-aided analysis and design software. The main functions of the software: the realization of transfer function model input,the state equation model input,the model fitted for the control system stability analysis,system observability controllability judgments、rendering the system Nyquist diagram、Bode plots、root locus and Pole-zero distribution. While continuing to improve based on the principle of automatic control can be used for undergraduate teaching course experiments and scientific research in general.Key words:Control System;MATLAB GUI; Computer-assistant design目录第1章概述 (1)1.1 论文选题背景和意义 (1)1.2 计算机辅助分析与设计在控制系统仿真中的发展现状 (1)1.3 本文主要内容 (3)第2章控制系统与MATLAB语言 (4)2.1 控制系统理论基础 (4)2.2 MATLAB语言与控制系统工具箱 (5)第3章 MATLAB GUI简介及应用 (9)3.1 MATLAB GUI (9)3.2 软件设计步骤 (10)第4章仿真系统测试与演示 (16)4.1 控制系统的模型输入 (16)4.2 控制系统的稳定性分析 (19)4.3 控制系统可控可观性分析 (20)4.4 控制系统频率响应 (23)4.5 控制系统时域响应 (27)4.6 控制系统根轨迹绘制 (28)结论 (31)参考文献 (32)致谢 (33)第1章概述1.1 论文选题背景和意义自动控制原理是自动控制专业和自动化专业的主要课程之一,是研究自动控制技术的基础理论课,是必修的专业基础课程。
自动控制原理上机实验报告班级:车辆工程1201学号:201223147065姓名:倪茂分数:实验一MATLAB初步认识在matlab的help中的Demos里找一个例子如下为由matlab制作的小游戏——扫雷(有木有发现通关了!)实验二利用MATLAB分析时间响应现以G(s)=50/[0.05s^2+(1+50taos)s+50]系统传递函数为例,来求系统在实践常熟tao取不同取值时的单位脉冲响应、单位阶跃响应和任意输入响应。
1>.令tao=0、tao=0.0125、tao=0.025,应用impulse函数,可以得到系统单位脉冲响应。
同样,应用step函数,可以得到系统单位阶跃响应,输入的matlab程序及运行结果如下图所示t=[0:0.01:0.8];nG=[50];tao=0;dG=[0.051+50*tao50];G1=tf(nG,dG);tao=0.0125;dG=[0.051+50*tao50];G2=tf(nG,dG);tao=0.025;dG=[0.051+50*tao50];G3=tf(nG,dG)[y1,T]=impulse(G1,t);[y1a,T]=step(G1,t);[y2,T]=impulse(G2,t);[y2a,T]=step(G2,t);[y3,T]=impulse(G3,t);[y3a,T]=step(G3,t);Subplot(121),plot(T,y1,'--',T,y2,'-.',T,y3,'-')Legend('tao=0','tao=0.0125','tao=0.025')xlabel('t(sec)'),ylabel('x(t)');grid on;Subplot(122),plot(T,y1a,'--',T,y2a,'-.',T,y3a,'-')Legend('tao=0','tao=0.0125','tao=0.025')grid on;xlabel('t(sec)'),ylabel('x(t)');单位脉冲响应曲线单位阶跃响应曲线2>.对于任意输入,例如郑玄输入,应用lsim函数可求得tao=0.025时系统的时间响应及误差曲线。
matlab仿真自动控制原理
MATLAB仿真自动控制原理
自动控制原理是研究自动调节系统的基本理论和方法,MATLAB作为一款强大的数学仿真软件,为自动控制原理的研究提供了良好的平台。
MATLAB在自动控制原理的研究中,主要包括以下内容:
1. 系统动态模型的建立:根据自动调节系统的特性及其输入输出关系,建立数学模型,并进行仿真。
2. 系统稳态性能分析:计算系统的稳态误差和静态增益等指标,确定系统的增益校正和调节参数。
3. 系统动态性能分析:分析系统的过渡过程、阻尼比和动态特性,确定系统的控制参数。
4. 设计控制器:根据系统模型和目标性能要求,设计合适的控制器,如比例积分控制器、比例积分微分控制器等。
5. 仿真验证:通过MATLAB仿真,验证控制器的性能和控制效果。
通过MATLAB仿真自动控制原理,不仅可以方便地进行各种控制系统的设计与分析,同时也可以通过仿真验证的方法,快速评估和分析不同控制策略的优劣,提高控制系统的稳定性和性能。