[推荐学习]九年级数学上册第二十四章圆24.2点和圆直线和圆的位置关系24.2.2直线和圆的位置关系
- 格式:doc
- 大小:442.24 KB
- 文档页数:10
点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。
九年级数学上册第二十四章圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系(拓展提高)同步检测(含解析)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第二十四章圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系(拓展提高)同步检测(含解析)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第二十四章圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系(拓展提高)同步检测(含解析)(新版)新人教版的全部内容。
24.2。
2 直线和圆的位置关系基础闯关全练拓展训练1。
(2016海南五指山中学模拟)如图,∠ABC=80°,O为射线BC上一点,以点O为圆心,OB长为半径作☉O,要使射线BA与☉O相切,应将射线BA绕点B 按顺时针方向旋转()A.40°或80°B。
50°或100°C.50°或110°D.60°或120°2.如图,△ABC是一张周长为17 cm的三角形纸片,BC=5 cm,☉O是它的内切圆,小明准备用剪刀在☉O的右侧沿着与☉O相切的任意一条直线MN剪下△AMN,则剪下的三角形的周长为()A。
12 cmB。
7 cmC。
6 cmD.随直线MN的变化而变化3。
☉O的半径为1,正方形ABCD的对角线长为6,OA=4。
若将☉O绕点A按顺时针方向旋转360°,则在旋转过程中,☉O与正方形ABCD的边只有一个公共点的情况一共出现( )A.3次B.4次C。
24.2.2 直线和圆的位置关系基础闯关全练拓展训练1.(2016海南五指山中学模拟)如图,∠ABC=80°,O为射线BC上一点,以点O为圆心,OB长为半径作☉O,要使射线BA与☉O相切,应将射线BA绕点B按顺时针方向旋转( )A.40°或80°B.50°或100°C.50°或110°D.60°或120°2.如图,△ABC是一张周长为17 cm的三角形纸片,BC=5 cm,☉O是它的内切圆,小明准备用剪刀在☉O的右侧沿着与☉O相切的任意一条直线MN剪下△AMN,则剪下的三角形的周长为( )A.12 cmB.7 cmC.6 cmD.随直线MN的变化而变化3.☉O的半径为1,正方形ABCD的对角线长为6,OA=4.若将☉O绕点A按顺时针方向旋转360°,则在旋转过程中,☉O与正方形ABCD的边只有一个公共点的情况一共出现( )A.3次B.4次C.5次D.6次4.如图,△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,点O为△AC D的内切圆圆心,则∠AOB=.能力提升全练拓展训练1.(2016贵州遵义中考)如图,矩形ABCD中,AB=4,BC=3,连接AC,☉P和☉Q分别是△ABC和△ADC的内切圆,则PQ的长是( )A. B. C. D.22.(2016四川德阳中考)如图,在△ABC中,AB=3,AC=,点D是BC边上的一点,AD=BD=2DC,设△ABD与△ACD的内切圆半径分别为r1,r2,那么=( )A.2B.C.D.3.(2017江苏泰兴二模)如图,平面直角坐标系中,点P的坐标为(1,0),☉P的半径为1,点A 的坐标为(-3,0),点B在y轴的正半轴上,且OB=.若直线l:y=x+m从点B开始沿y轴向下平移,线段AB与线段A'B'关于直线l对称.若线段A'B'与☉P只有一个公共点,则m的值为.4.(2017甘肃兰州中考)如图,在平面直角坐标系xOy中,▱ABCO的顶点A,B的坐标分别是A(3,0),B(0,2).动点P在直线y=x上运动,以点P为圆心,PB长为半径的☉P随点P运动,当☉P与▱ABCO的边相切时,P点的坐标为.三年模拟全练拓展训练1.(2018湖北武汉江岸期中,9,★★☆)如图,等腰Rt△ABC中,点O为斜边AC上一点,作☉O 与AB相切于点D,交BC于点E、F.已知AB=25,BE=8,则EF的长度为( )A.13B.10C.8D.72.(2016江苏宿迁泗阳新阳中学月考,8,★★☆)如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在y轴、x轴上,以AB为弦的☉M与x轴相切,若点A的坐标为(0,-4),则圆心M的坐标为( )A.(-2,2.5)B.(2,-1.5)C.(2.5,-2)D.(2,-2.5)3.(2018江苏宿迁泗阳期中,17,★★☆)如图,正方形ABCD的边长为9,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的☉O相切,则折痕CE的长为.4.(2017山东聊城莘县期末,15,★★☆)如图,☉O是△ABC的内切圆,切点分别为D、E、F,∠A=80°,点P为☉O上任意一点(不与E、F重合),则∠EPF=.5.(2017北京昌平期末,15,★★☆)《九章算术》是中国古代数学最重要的著作,包括246个数学问题,分为九章.在第九章“勾股”中记载了这样一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”这个问题可以描述为:如图所示,在Rt△ABC中,∠C=90°,勾为AC长8步,股为BC长15步,问△ABC的内切圆☉O直径是多少步?”根据题意可得☉O的直径为步.五年中考全练拓展训练1.(2017山东济南中考,10,★★☆)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6 cm,则圆形螺母的外直径是( )A.12 cmB.24 cmC.6 cmD.12 cm2.(2016湖北襄阳中考,8,★★☆)如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是( )A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合3.(2017浙江衢州中考,15,★★☆)如图,在直角坐标系中,☉A的圆心A的坐标为(-1,0),半径为1,点P为直线y=-x+3上的动点,过点P作☉A的切线,切点为Q,则切线长PQ的最小值是.核心素养全练拓展训练1.(2016浙江台州中考)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( )A.6B.2+1C.9D.2.如图,在Rt△OAB中,∠AOB=90°,OA=4,OB=3.☉O的半径为2,点P是线段AB上的一个动点,过点P作☉O的一条切线PQ,Q为切点.设AP=x,PQ2=y,则y与x的函数图象大致是( )24.2.2 直线和圆的位置关系基础闯关全练拓展训练1.答案 C 如图,①当BA1与☉O相切,且BA1位于BC上方时,设切点为P,连接OP,则∠OPB=90°,在Rt△OPB中,OB=2OP,∴∠A1BO=30°,又∠ABC=80°,∴∠ABA1=50°;②当BA2与☉O相切,且BA2位于BC下方时,同①,可求得∠A2BO=30°,又∠ABC=80°,∴∠ABA2=80°+30°=110°.故旋转角的度数为50°或110°.故选C.2.答案 B 如图,设D、E、F分别是☉O的切点,∵△AB C是一张三角形纸片,AB+BC+AC=17 cm,☉O是它的内切圆,BC=5 cm,∴BD+CE=BC=5 cm,AD+AE=7 cm.易知DM=MF,FN=EN,∴AM+AN+MN=AD+AE=7 cm.故选B.3.答案 B 如图,∵☉O的半径为1,正方形ABCD的对角线长为6,边长为3与正方形ABCD的边AB、AD只有一个公共点的情况各有1次,与边BC、CD只有一个公共点的情况各有1次.∴在旋转过程中,☉O与正方形ABCD的边只有一个公共点的情况一共出现4次.故选B.4.答案135°解析如图.连接CO,并延长AO交BC于点F,∵CD为AB边上的高,∴∠ADC=90°,∴∠BAC+∠ACD=90°.又∵O为△ACD的内切圆圆心,∴AO、CO分别是∠BAC和∠ACD的角平分线,∴∠OAC+∠OCA=(∠BAC+∠ACD)=×90°=45°,∴∠AOC=135°.在△AOB和△AOC中,∴△AOB≌△AOC,∴∠AOB=∠AOC=135°.能力提升全练拓展训练1.答案 B ∵四边形ABCD为矩形,∴△ACD≌△CAB,∴☉P和☉Q的半径相等.在Rt△ABC 中,AB=4,BC=3,∴AC=的半径r=-=-=1.如图,连接PQ,过点Q作QE∥BC,过点P作PE∥AB交QE于点E,则∠QEP=90°.在Rt△QEP 中,QE=BC-2r=3-2=1,EP=AB-2r=4-2=2,∴PQ===.故选B.2.答案 C 如图,设☉O与△ABD内切于E、F、G.∵DA=DB,DG=DF,∴BF=AG=BE=AE.∵AB=3,∴AE=BE=BF=AG=.设DF=DG=m,∵AD=2DC,∴DC=.∵S△ABD∶S△ADC=BD∶DC=2∶1,∴(3+3+2m)·r1∶m·r2=2∶1,∴(6+2m)·r1∶34(6+2m)·r2=2∶1,∴12=32.故选C.3.答案或-解析如图,∵直线y=x+m与y轴的夹角为30°,∠ABO=60°,∴当直线l经过点B时,线段A'B'与☉P相切于点O,把B(0,代入y=得到m=易知直线AB的解析式为y=x+,设☉P与x轴的另一个交点为E,作EF⊥x轴交AB于F,易知F,当直线l经过点F时,线段A'B'与☉P相切于点E,把代入y=x+m,得到=2+m,m=-.综上所述,满足条件的m的值为或-.4.答案(0,0)或或--解析设P,☉P的半径为r,依题意知BC⊥y轴,直线OP的解析式为y=x,直线AB的解析式为y=-x+2,可知OP⊥AB,∴OP⊥OC.分类讨论☉P与▱ABCO的边相切的情况:(1)当☉P与BC相切时,∵动点P在直线y=x上运动,∴点P与点O重合,此时P点的坐标为(0,0);(2)当☉P与OC相切时,OP=BP,∴△OBP为等腰三角形,过点P作PE⊥y轴于点E,如图①,根据等腰三角形“三线合一”的性质可得E为OB的中点,此时,P点的坐标为(x,1),将(x,1)代入y=x,得x=,即P点的坐标为;(3)当☉P与OA相切时,点P到点B的距离与点P到x轴的距离相等,过点P作PF⊥x轴于点F,如图②,则PB=PF,即--=x,解得x=3+(舍去)或x=3-将x=3-y=x,可得y=-,即P点的坐标为--;(4)当☉P与AB相切时,设线段AB与直线OP的交点为G,如图③,此时有PB=PG,又∵OP⊥AB,∴在Rt△PBG中,∠BGP=∠GBP=90°不成立,∴不存在这样的☉P.三年模拟全练1.答案B如图,连接OD、OE,过O作OG⊥EF于G.∵△ABC是等腰直角三角形,∴∠B=90°,∠A=∠C=45°.∵AB是☉O的切线,∴∠ODB=90°,又OG⊥EF,∴四边形BGOD 是矩形,易知△ADO与△CGO是等腰直角三角形.设OD=BG=OE=x,则BD=OG=CG=25-x,EG=FG=x-8.在Rt△OEG中,∵EG2+OG2=OE2,即(x-8)2+(25-x)2=x2,解得x=13,或x=53(不合题意,舍去),∴EG=13-8=5,∴EF=2EG=10.故选B.2.答案 D ∵四边形ABCO是正方形,A(0,-4),∴AB=OA=CO=BC=4,过M作MN⊥AB于N,连接MA,由垂径定理得AN=AB=2,设☉M的半径是R,则MN=4-R,AM=R,由勾股定理得AM2=MN2+AN2,即R2=(4-R)2+22,解得R=2.5.∵AN=2,四边形ABCO是正方形,☉M与x轴相切,∴M的横坐标是2,即M(2,-2.5).故选D.3.答案6解析如图,连接AC,∵四边形ABCD为正方形,∴∠ACB=45°.∵△BCE沿CE折叠至△FCE,∴∠ECB=∠ECF.∵CF,CE与以正方形ABCD的中心为圆心的☉O相切,∴AC平分∠ECF,∴∠ECF=2∠ECA,∴∠ECB=2∠ECA,而∠ECB+∠ECA=45°,∴∠ECB=30°,∴CE=2BE.在Rt△BEC中,∵BE2+BC2=CE2,即BE2+92=(2BE)2,解得BE=3(舍负),∴CE=2BE=6.4.答案50°或130°解析如图,有两种情况:①当P在上时,在上任取一点N,连接EN,FN,则∠EPF=∠ENF,连接OE、OF,∵☉O是△ABC的内切圆,∴OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°.∵∠A=80°,∴∠EOF=360°-∠AEO-∠AFO-∠A=100°,∴∠ENF=∠EPF=∠EOF=50°.②当P在劣弧上时,在劣弧上任取一点M,连接EM,FM,则∠EPF=∠EMF,又四边形EMFN内接于☉O,∴∠EPF=∠EMF=180°-50°=130°.故答案为50°或130°.解析∵∠C=90°,AC=8,BC=15,∴AB==17,设△ABC的内切圆的半径为r,则S△ABC=(AB+BC+CA)·r,∴AC·BC=(AB+BC+CA)·r,即×8×15=×(8+15+17)·r,解得r=3,∴☉O的直径是6步.五年中考全练拓展训练1.答案 D 如图,设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA.∵AD,AB分别为圆O 的切线,∴AO为∠DAB的平分线,OD⊥AC,OE⊥AB,又∠CAB=60°,∴∠OAE=∠OAD=∠DAB=60°.在Rt△AOD中,∠OAD=60°,AD=6cm,∴∠AOD=30°,AO=12 cm,∴OD=-=-=6(cm),则圆形螺母的外直径为12cm.故选D.2.答案 D ∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠IBC,C正确;∵∠BAD=∠CAD,∴=,∴BD=CD,A正确;∵∠DAC=∠DBC,∴∠BAD=∠DBC,∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠IBD=∠BID,∴BD=DI,B正确.故选D.3.答案2解析连接AP,易知当AP⊥直线y=-x+3时,切线长PQ最小.如图,A的坐标为(-1,0),直线y=-x+3与坐标轴交于B(4,0),C(0,3),设P-,过P作PH⊥x轴,易证△APH∽△PBH,∴=,即-=--,解得a=.∴P,∴AP==3, ∴PQ=-=2.核心素养全练拓展训练1.答案 C 如图,设☉O与AC相切于点E,连接OE,作OP1⊥BC(垂足为P1),交☉O于Q1,易知P1Q1为PQ的最小值.∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,又∵∠OP1B=90°(垂线的性质),∠OEA=90°(切线的性质),∴OP1∥AC,OE∥BC.又∵O为AB的中点,∴AO=OB=5,∴P1C=P1B,AE=EC,∴OP1=AC=4,OE=BC=3.∴P1Q1=OP1-OQ1=OP1-OE=4-3=1.如图,当Q2在OA上且P2与B重合时,P2Q2为PQ的最大值,P2Q2=5+3=8.∴PQ长的最大值与最小值的和是9.故选C.2.答案 A 连接OP,作OM⊥AB于M,∵∠AOB=90°,OA=4,OB=3,∴AB=5,OM===.在Rt△AOM中,AM=-=-=.∵PQ是☉O的切线,∴∠PQO=90°,∴PQ2=OP2-OQ2=PM2+OM2-OQ2=-+-4,即y=x2-x+12.又P是线段AB上的动点,∴0≤x≤5.故选A.。