江苏省苏州市高新区第一初级中学2019-2020年第二学期苏科版七年级下数学期中复习试卷
- 格式:doc
- 大小:2.70 MB
- 文档页数:18
2018—2019学年第二学期七年级数学期末检测试题之七年级数学期末考试重组10套【江苏版】01第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知,下列不等式中,变形正确的是A.B.C.D.2.下列计算正确的是()A.3x+5y=8xy B.(﹣x3)3=x6C.x6÷x3=x2D.x3•x5=x83.如图,与是同位角的为A.B.C.D.4.下列命题是真命题的是( )A.如果,则B.如果|a|=|b|,那么a=bC.两个锐角的和是钝角D.如果一点到线段两端的距离相等,那么这点是这条线段的中点5.世界上最小的开花结果植物是出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076g,将数0.000000076用科学记数法表示为()A.0.76×10﹣7B.7.6×10﹣8C.7.6×10﹣9D.76×10﹣106.下列各式能用平方差公式计算的是A.B.C.D.7.一个多边形的内角和等于,这个多边形的边数为A.9 B.6 C.7 D.88.已知不等式组有解,则的取值范围是()A.B.C.D.9.已知是方程组的解,则a﹣b的值是()A.B.C.D.10我们知道:、、、、……,通过计算,我们可以得出的计算结果中个位上的数字为()A.3 B.9 C.7 D.1第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分)11.不等式的解集为______.12直接写出计算结果:______;________.13将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为.14如图,,,则=____°.15已知代数式与是同类项,则_______,________.16若三角形三条边分别是2,x,其中x为整数,则x可取的值有______个17已知,,则2x3y+4x2y2+2xy3=_________.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).三、解答题(本大题共8小题,共96分)19计算:;.20解不等式:,并把解集表示在数轴上.21因式分解:(1);(2)25(a+b)2-9(a-b)2 .22请将下列证明过程补充完整:已知:如图,AB∥CD,CE平分∠ACD.求证:∠1=∠2.证明:∵CE平分∠ACD (),∴∠=∠(),∵AB∥CD(),∴(),∴∠1=∠2().23解方程组:(1);(2)24如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是A,B、C的对应点,试画出.连接、,则线段、的位置关系为______,线段、的数量关系为______;平移过程中,线段AB扫过部分的面积为______平方单位25某隧道长1200米,现有一列火车从隧道通过,测得该火车从开始进隧道到完全出隧道共用了70秒,整列火车完全在隧道里的时间是50秒,求火车的速度和长度.26已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图△;、分别是和的三等分线(即,),如图△;依此画图,、分别是和的n等分线(即,),,且为整数.(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出+与的数量关系.2018—2019学年第二学期七年级数学期末检测试题之七年级数学期末考试重组10套【江苏版】01第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知,下列不等式中,变形正确的是A.B.C.D.【来源】江苏省扬州市高邮市2017-2018学年期末【答案】C【解析】【分析】根据不等式的两边都加(或减)同一个数,不等号的方向不变;不等式的两边都乘以(或除以)同一个正数,不等式的方向不变;不等式的两边都乘以(或除以)同一个负数,不等式的方向改变,可得答案.【详解】、不等式的两边同时减去,不等式仍成立,即,故本选项错误;、不等式的两边同时乘以再减去,不等式仍成立,即,故本选项错误;、不等式的两边同时乘以,不等式的符号方向改变,即,故本选项正确;、不等式的两边同时除以,不等式仍成立,即,故本选项错误.故选:.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等式的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2.下列计算正确的是()A.3x+5y=8xy B.(﹣x3)3=x6C.x6÷x3=x2D.x3•x5=x8【来源】江苏省常州市2016-2017学年期末【答案】D【解析】A、3x+5y,无法计算,故此选项错误;B、(﹣x3)3=﹣x9,故此选项错误;C、x6÷x3=x3,故此选项错误;D、x3•x5=x8,故此选项正确.故选:D.3.如图,与是同位角的为A.B.C.D.【来源】江苏省扬州市高邮市2017-2018学年期末【答案】C【解析】【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【详解】解:根据同位角的定义得与是同位角,故选:D.【点睛】本题考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.下列命题是真命题的是( )A.如果,则B.如果|a|=|b|,那么a=bC.两个锐角的和是钝角D.如果一点到线段两端的距离相等,那么这点是这条线段的中点【来源】江苏省丹阳市2017-2018学年下学期期末【答案】A【解析】分析:根据不等式的性质对A进行判断;根据绝对值的意义对B进行判断;根据锐角在大小对C进行判断;根据中点的定义对D进行判断.【解答】解:A、因为,所以,所以A选项正确;B、|a|=|b|,则a=b或a=-b,所以B选项错误;B、三角形的一个外角大于与之不相邻的任何一个内角,所以B选项错误;C、两个锐角的和有可能是锐角,有可能是直角,也有可能是钝角,所以C选项错误;D、线段上一点到该线段两端的距离相等,那么这点是这条线段的中点,所以D选项错误.故选:A.点睛:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5.世界上最小的开花结果植物是出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076g,将数0.000000076用科学记数法表示为()A.0.76×10﹣7B.7.6×10﹣8C.7.6×10﹣9D.76×10﹣10【来源】江苏省常州市2016-2017学年期末【答案】B【解析】根据科学记数法的书写规则,,a只含有一位整数,易得:0.000 0000 76=7.6×10﹣8,故选:B.6.下列各式能用平方差公式计算的是A.B.C.D.【来源】江苏省淮安市淮安区2017-2018学年期末【答案】B【解析】【分析】运用平方差公式时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】中不存在互为相同或相反的项,不能用平方差公式计算,故本选项错误;中是相同的项,互为相反项是与,符合平方差公式的要求,故本选项正确;中不存在相反的项,不能用平方差公式计算,故本选项错误;中符合完全平方公式,不能用平方差公式计算,故本选项错误.故选:.【点睛】考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.7.一个多边形的内角和等于,这个多边形的边数为A.9 B.6 C.7 D.8【来源】江苏省淮安市淮安区2017-2018学年期末【答案】D【解析】【分析】多边形的内角和可以表示成,依次列方程可求解.设这个多边形边数为,则,解得.故选:.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要回根据公式进行正确运算、变形和数据处理.8.已知不等式组有解,则的取值范围是()A.B.C.D.【来源】江苏省盐城市射阳县2016年期末【答案】C【解析】∵不等式组有解,∴,故选:C点睛:本题是反向考查不等式组的解集,也就是在不等式组有实数解的情况下确定不等式中字母的取值范围,解答本题时,把不等式的解集在数轴上表示出来,利用数轴可以直观地表示不等式组的解集.9.已知是方程组的解,则a﹣b的值是()A.B.C.D.【来源】江苏省泗阳县2016-2017学年期末考试【答案】D【解析】试题分析:根据方程组解的定义将代入方程组,得到关于a,b的方程组.两方程相减即可得出答案:∵是方程组的解,∵.两个方程相减,得a﹣b=4.考点:1.二元一次方程组的解;2.求代数式的值;3.整体思想的应用.10我们知道:、、、、……,通过计算,我们可以得出的计算结果中个位上的数字为()A.3 B.9 C.7 D.1【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】C【解析】分析:由、、、、……可知3n的个位数分别是3,9,7,1,…,四个数依次循环,用的指数2019除以4得到的余数是几就与第几个数字的个位数字相同,由此解答即可.详解:由题意可知,3的乘方的末位数字以3、9、7、1四个数字为一循环,∵2019÷4=504…3,∵的末位数字与33的末位数字相同是7.故选C..点睛:此题考查了尾数特征及规律探究:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分)11.不等式的解集为______.【来源】江苏省丹阳市2017-2018学年下学期期末【答案】x>-1 ,【解析】分析:不等式移项合并,将x系数化为1,即可求出解集.【解答】解:不等式1-x<2,移项合并得:-x<1,解得:x>-1.故答案为:x>-1点睛:此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.请在此填写本题解析!12直接写出计算结果:______;________.【来源】江苏省南京玄武区2016年期末考试【答案】【解析】,.故答案为:,.13将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为.【来源】江苏省南京玄武区2016年期末考试【答案】如果两条直线平行于同一条直线,那么这两条直线平行.【解析】试题分析:命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.考点:命题的改写点评:任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.14如图,,,则=____°.【来源】江苏省扬州市江都区2016-2017学年期末【答案】【解析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.连接AC并延长,标注点E,∵∠DCE=∠D+∠DAC, ∠BCE=∠B+∠BAC, ∠BCE+∠DCE=106°,∠A+∠B=47°, ∴∠BCE+∠DCE=∠D+∠DAB+∠B=106°,∴∠D=106°-47°-47°=12°.故答案为:12.15已知代数式与是同类项,则_______,________.【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】3 1【解析】分析:根据同类项的定义列方程组求解即可.详解:由题意得,,解之得,.故答案为:3,1.点睛:本题考查了利用同类项的定义求字母的值,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.16若三角形三条边分别是2,x,其中x为整数,则x可取的值有______个【来源】江苏省淮安市淮安区2017-2018学年期末【答案】3【解析】【分析】根据已知边长求第三边的取值范围为:,进而解答即可.【详解】设第三边长为,则,,故取、、.故答案为:.【点睛】本题考查了三角形三边关系定理:三角形两边之和大于第三边,两边之差小于第三边.17已知,,则2x3y+4x2y2+2xy3=_________.【来源】江苏省宿迁市宿豫区2017-2018学年期末【答案】-25【解析】分析:先用提公因式法和完全平方公式法把2x3y+4x2y2+2xy3因式分解,然后把,代入计算即可.详解:∵,,∴2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2=2×() ×52=-25.故答案为:-25.点睛:此题主要考查了提取公因式法以及公式法分解因式,整体代入法求代数式的值,,熟练掌握因式分解的方法是解答本题的关键.18.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).【答案】ab【解析】试题解析:设大正方形的边长为x1,小正方形的边长为x2,由图∵和∵列出方程组得,解得,∵的大正方形中未被小正方形覆盖部分的面积=()2-4×()2=ab.考点:平方差公式的几何背景.三、解答题(本大题共8小题,共96分)19计算:;.【来源】江苏省常州市2017-2018年第二学期期末联考【答案】;.【解析】分析:(1)先根据零指数幂、绝对值的意义、负整数指数幂的意义逐项化简,然后合并同类项即可;(2)第一项根据完全平方公式计算,第二项根据平方差公式计算,然后合并同类项即可. 详解:原式;原式.点睛:本题考查了实数的运算和整式的运算,熟练掌握完全平方公式和平方差公式是解答本题的关键.20解不等式:,并把解集表示在数轴上.【来源】江苏省泰州市姜堰区2016-2017学下学期期末【答案】x≤﹣2【解析】【试题分析】不等式的两边同时乘以6,去分母得:;去括号得:移项得:系数化为1得:解集在数轴上表示见解析.【试题解析】去分母得:;去括号得:移项及合并得:系数化为1得:不等式的解集为x≥-2,在数轴上表示如图所示:21因式分解:(1);(2)25(a+b)2-9(a-b)2 .【来源】江苏省兴化市2017-2018学年期末【答案】(1) 6ab(2bc-1);(2)4(4a+b)(a+4b)【解析】分析:(1)根据本题特点,直接使用“提公因式法”分解即可;(2)根据本题特点,先用“平方差公式”分解,再提公因式即可.详解:(1)原式=6ab·2bc-6ab·1=6ab(2bc-1);(2)原式=[5(a+b)]2-[3(a-b)]2=(5a+5b+3a-3b)(5a+5b-3a+3b)=(8a+2b)(2a+8b)=4(4a+b)(a+4b).点睛:熟练掌握“综合提公因式法和公式法分解因式的方法”是解答本题的关键.22请将下列证明过程补充完整:已知:如图,AB∥CD,CE平分∠ACD.求证:∠1=∠2.证明:∵CE平分∠ACD (),∴∠=∠(),∵AB∥CD(),∴(),∴∠1=∠2().【来源】江苏省盐城市射阳县2016年期末【答案】已知,2,ECD ,角平分线的性质或定义,已知,∠1=∠ ECD ,两直线平行,内错角相等,等量代换【解析】试题分析:由角平分线定义和平行线的性质及等量代换即可证明.试题解析:证明:∵CE平分∠ACD (已知),∴∠2 =∠ECD (角平分线的性质或定义),∵AB∥CD(已知),∴∠1= ∠ECD (两直线平行,内错角相等),∴∠1=∠2(等量代换).23解方程组:(1);(2)【来源】江苏省盐城市射阳县2016年期末【答案】(1);(2)【解析】试题分析:(1)方程组利用加减消元法求出解即可(2)先①+③得x与y的方程④,然后将②④联立求出x和y的值,最后将x和y的值代入①中求出z即可;试题解析:(1),①7得,③②2得,④③④得,,∴,将代入方程①,解得.∴原方程组的解为.(2)①+③得,,②2得,⑤,+⑤得,将代入方程②,解得,将,代入方程①,解得,∴原方程组的解为.24如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是A,B、C的对应点,试画出.连接、,则线段、的位置关系为______,线段、的数量关系为______;平移过程中,线段AB扫过部分的面积为______平方单位【来源】江苏省扬州市高邮市2017-2018学年期末【答案】(1)作图见解析,(2)平行;相等;(3)15【解析】【分析】直接利用平移的性质分别得出对应点位置进而得出答案;利用平移的性质得出线段、的位置与数量关系;利用三角形面积求法进而得出答案.【详解】解:如图所示:,即为所求;线段、的位置关系为平行,线段、的数量关系为:相等.故答案为:平行,相等;平移过程中,线段AB扫过部分的面积为:.故答案为:15.【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.25某隧道长1200米,现有一列火车从隧道通过,测得该火车从开始进隧道到完全出隧道共用了70秒,整列火车完全在隧道里的时间是50秒,求火车的速度和长度.【来源】江苏省南京玄武区2016年期末考试【答案】火车速度20m/s, 长度200m【解析】试题分析: 设火车的车身长为x米,速度是ym/s,根据行程问题的数量关系路程=速度×时间建立方程组求出其解即可.试题解析:设火车的车身长为x米,速度是ym/s,根据题意可得:,解得,答:火车的车身长为200米,速度是20m/s.26已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图△;、分别是和的三等分线(即,),如图△;依此画图,、分别是和的n等分线(即,),,且为整数.(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出+与的数量关系.【来源】江苏省盐城市射阳县2016年期末【答案】(1);(2),过程见解析;(3)【解析】(1)先根据三角形内角和定理求出,根据角平分线求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出+,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可(3)试题分析:试题解析:(1),∵、分别是和的角平分线,∴∴.(2)在△中,+,,(3)点睛:本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.。
2019-2020学年湖北省武汉市东湖高新区七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题平台上勾选.1.(3分)100的平方根是()A.±50B.50C.±10D.102.(3分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠44.(3分)如图,数轴上点A表示的数可能是()A.B.C.D.π5.(3分)下列六个实数:0,,,,,,3.14159265,0.101001000100001…,其中无理数的个数是()A.2 个B.3 个C.4 个D.5 个6.(3分)下列各式中正确的是()A.=±6B.=﹣3C.=4D.()3=﹣8 7.(3分)如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=20°,那么∠2的度数是()A.100°B.105°C.110°D.120°8.(3分)A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km B.750km C.765km D.780km9.(3分)下列命题中:①若mn=0,则点A(m,n)在原点处;②点(2,﹣m2)一定在第四象限;③已知点A(m,n)与点B(﹣m,n),m,n均不为0,则直线AB平行x轴;④已知点A(2,﹣3),AB∥y轴,且AB=5,则B点的坐标为(2,4),是真命题的有()A.1个B.2个C.3个D.4个10.(3分)若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(3,﹣4))的值为()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,﹣4)二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上11.(3分)比较大小:8(填<,=或>).12.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠AOE=55°,则∠BOD的度数为.13.(3分)已知点P在第四象限,距离x轴4个单位,距离y轴3个单位,则点P的坐标为.14.(3分)如图,将某动物园中的猴山,狮虎山,熊猫馆分别记为M,N,P,若建立平面直角坐标系,将猴山M,狮虎山N用坐标分别表示为(2,1)和(8,2),则熊猫馆P 用坐标表示为.15.(3分)已知等式y=ax2+bx+c,a≠0,当x=﹣3时,y=0;当x=4时,y=0,则关于x的式子a(x﹣1)2=﹣4b﹣c中x的值为.16.(3分)已知m为整数,方程组有正整数解,则m=.三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程13 17.(8分)计算:(1)+﹣(2)(+)18.(8分)计算:(1)(2)19.(8分)如图,∠ABC=∠ADC,BE,DF分别是∠ABC,∠ADC的角平分线,且∠2=∠3,求证:BC∥AD.20.(8分)已知正实数x的平方根是a和a+b.(1)当b=6时,求a;(2)若a2x+(a+b)2x=6,求x的值.21.(8分)如图,△ABC中任意一点P(x0,y0)经平移后对应点为P′(x0+3,y0+4),将△ABC作同样的平移得到△DEF,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:(1)直接写出点D、E、F的坐标;(2)画出△DEF,若AB=2,AC=BC=,AD=5,DF=,CF=.(3)若将线段BC沿某个方向进行平移得到线段MN,点B(﹣1,﹣2)的对应点为M (m,0),则点C(0,1)的对应点N的坐标为.(用含m的式子表示)22.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨2000元的原料运回工厂,制成每吨5000元的产品运到B地,已知公路运价为2元/(吨•千米),铁路运价为1.5元/(吨•千米),且这两次运输共支出公路运输费14000元,铁路运输费87000元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?23.(10分)已知:两直线l1,l2满足l1∥l2,点C,点D在直线l1上,点A,点B在直线l2上,点P是平面内一动点,连接CP,BP,(1)如图1,若点P在l1、l2外部,则∠DCP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(2)如图2,若点P在l1、l2外部,连AC,则∠CAB、∠ACP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(不能用三角形内角和为180°)(3)若点P在l1、l2内部,且在AC的右侧,则∠ACP、∠ABP、∠CAB、∠CPB之间满足什么数量关系?(不需证明)24.(12分)如图1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接AC,交y轴于D,且a=,()2=5.(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得△ACP的面积与△ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.(3)如图3,若Q(m,n)是x轴上方一点,且△QBC的面积为20,试说明:7m+3n 是否为定值,若为定值,请求出其值,若不是,请说明理由.2019-2020学年湖北省武汉市东湖高新区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题平台上勾选.1.(3分)100的平方根是()A.±50B.50C.±10D.10【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:100的平方根是±10.故选:C.【点评】本题考查了平方根的定义.解题的关键是掌握平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(3分)在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选:B.【点评】本题考查了点的坐标,四个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.3.(3分)如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4【分析】熟悉平行线的性质,能够根据已知的平行线找到构成的内错角.【解答】解:A、∠1与∠2不是两平行线AB、CD形成的角,故A错误;B、∠3与∠2不是两平行线AB、CD形成的内错角,故B错误;C、∠1与∠4是两平行线AB、CD形成的内错角,故C正确;D、∠3与∠4不是两平行线AB、CD形成的角,无法判断两角的数量关系,故D错误.故选:C.【点评】正确运用平行线的性质.这里特别注意AD和BC的位置关系不确定.4.(3分)如图,数轴上点A表示的数可能是()A.B.C.D.π【分析】设A点表示的数为x,则1<x<2,再根据每个选项中的范围进行判断.【解答】解:如图,设A点表示的数为x,则1<x<2,∵1<<1.5,1.5<<2,2<<3,3<π<4,∴符合x取值范围的数为.故选:A.【点评】本题考查了实数与数轴的对应关系.关键是明确数轴上的点表示的数的大小,估计无理数的取值范围.5.(3分)下列六个实数:0,,,,,,3.14159265,0.101001000100001…,其中无理数的个数是()A.2 个B.3 个C.4 个D.5 个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0、、是整数,属于有理数;是分数,属于有理数;3.14159265是有限小数,属于有理数,∴无理数有:、和0.101001000100001…共3个.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.(3分)下列各式中正确的是()A.=±6B.=﹣3C.=4D.()3=﹣8【分析】根据二次根式的性质:=|a|进行化简即可.【解答】解:A、=6,故原题计算错误;B、=3,故原题计算错误;C、=2,故原题计算错误;D、()3=﹣8,故原题计算正确;故选:D.【点评】此题主要考查了二次根式的性质与化简,关键是掌握二次根式的性质.7.(3分)如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=20°,那么∠2的度数是()A.100°B.105°C.110°D.120°【分析】根据矩形性质得出AD∥BC,推出∠2=∠DEF,求出∠DEF即可.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠DEF,∵∠1=20°,∠GEF=90°,∴∠2=20°+90°=110°,故选:C.【点评】本题考查了矩形的性质和平行线的性质的应用,关键是运用:两直线平行,内错角相等.8.(3分)A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km B.750km C.765km D.780km【分析】根据题意可知,顺风的速度为飞机无风时的速度与风速之和,逆风的速度为飞机无风时的速度与风速之差,然后即可列出相应的方程组,从而可以求得飞机无风时的平均速度.【解答】解:设飞机无风时的平均速度是akm/h,风速为bkm/h,,解得,,即飞机无风时的速度为750km/h,故选:B.【点评】本题考查二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组.9.(3分)下列命题中:①若mn=0,则点A(m,n)在原点处;②点(2,﹣m2)一定在第四象限;③已知点A(m,n)与点B(﹣m,n),m,n均不为0,则直线AB平行x轴;④已知点A(2,﹣3),AB∥y轴,且AB=5,则B点的坐标为(2,4),是真命题的有()A.1个B.2个C.3个D.4个【分析】利用有理数的性质和坐标轴上点的坐标特征可对①进行判断;利用m=0或m ≠0可对②进行判断;利用A、B点的纵坐标相同可对③进行判断;通过把A点坐标向上或向下平移5个单位得到B点坐标可对④进行判断.【解答】解:若mn=0,则m=0或n=0,所以点A(m,n)坐标轴上,所以①为假命题;点(2,﹣m2)在第四象限或x轴,所以②为假命题;已知点A(m,n)与点B(﹣m,n),m,n均不为0,则直线AB平行x轴,所以③为真命题;已知点A(2,﹣3),AB∥y轴,且AB=5,则B点的坐标为(2,2)或(2,﹣8),所以④为假命题.故选:A.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.(3分)若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(3,﹣4))的值为()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,﹣4)【分析】根据f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),可得答案.【解答】解:g(f(3,﹣4))=g(﹣3,﹣4)=(﹣3,4),故选:B.【点评】本题考查了点的坐标,利用f(a,b)=(﹣a,b),g(m,n)=(m,﹣n)是解题关键.二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上11.(3分)比较大小:>8(填<,=或>).【分析】比较出两个数的平方的大小关系,即可判断出原来两个数的大小关系.【解答】解:=65,82=64,∵65>64,∴>8.故答案为:>.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是比较出两个数的平方的大小关系.12.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠AOE=55°,则∠BOD的度数为145°.【分析】根据垂直定义可得∠EOC=90°,然后求出∠AOC的度数,再利用对顶角相等可得答案.【解答】解:∵EO⊥CD,∴∠EOC=90°,∵∠AOE=55°,∴∠AOC=145°,∴∠BOD=145°.故答案为:145°.【点评】此题主要考查了垂线,关键是掌握对顶角相等.13.(3分)已知点P在第四象限,距离x轴4个单位,距离y轴3个单位,则点P的坐标为(3,﹣4).【分析】根据到x轴的距离即为纵坐标的绝对值、到y轴的距离即为横坐标的绝对值,再由第四象限点的坐标符号特点可得答案.【解答】解:∵点P位于第四象限,且距离x轴4个单位长度,距离y轴3个单位长度,∴点P的纵坐标为﹣4,横坐标为3,即点P的坐标为(3,﹣4),故答案为:(3,﹣4).【点评】本题主要考查点的坐标,解题的关键是掌握到x轴的距离即为纵坐标的绝对值、到y轴的距离即为横坐标的绝对值及四个象限内点的坐标的符号特点.14.(3分)如图,将某动物园中的猴山,狮虎山,熊猫馆分别记为M,N,P,若建立平面直角坐标系,将猴山M,狮虎山N用坐标分别表示为(2,1)和(8,2),则熊猫馆P 用坐标表示为(6,6).【分析】由猴山M,狮虎山N的位置确定x轴和y轴的位置,由猴山M(2,1)可知M 的下一横线为x轴,左第二个列是y轴,据此即可用数对表示出熊猫馆P的位置.【解答】解:如图所示,点P的坐标为(6,6)故答案为:(6,6).【点评】解答此题的关键是根据已知条件弄清x轴和y轴的位置,从而确定P的坐标.15.(3分)已知等式y=ax2+bx+c,a≠0,当x=﹣3时,y=0;当x=4时,y=0,则关于x的式子a(x﹣1)2=﹣4b﹣c中x的值为5或﹣3.【分析】把x=﹣3时,y=0;x=4时,y=0代入y=ax2+bx+c求得b=﹣a,c=﹣12a,然后代入a(x﹣1)2=﹣4b﹣c,解方程即可得到结论.【解答】解:当x=﹣3时,y=0;当x=4时,y=0,∴,解得:b=﹣a,c=﹣12a,∵a(x﹣1)2=﹣4b﹣c,∴a(x﹣1)2=﹣4(﹣a)﹣(﹣12a)=16a,∵a≠0,∴(x﹣1)2=16,∴x=5或﹣3,故答案为:5或﹣3.【点评】本题考查了解二元一次方程组,一元二次方程,正确的理解题意是解题的关键.16.(3分)已知m为整数,方程组有正整数解,则m=4或﹣4.【分析】首先将m看作已知量,解二元一次方程组,用m表示出x与y,根据方程组有正整数解即可求出m的值.【解答】解:,②×2﹣①×3得:(2m+9)y=34,解得:y=,将y=代入①得:x=(+6)=,∵方程组有正整数解,∴2m+9=1,2,17,34,解得:m=﹣4,﹣3.5,4,12.5,代入x=中,检验,得到m的值为4或﹣4.故答案为:4或﹣4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程13 17.(8分)计算:(1)+﹣(2)(+)【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式乘法法则计算即可求出值.【解答】解:(1)原式=﹣2+4﹣=;(2)原式=3+1=4.【点评】此题考查了实数的运算,熟练掌握各自的性质是解本题的关键.18.(8分)计算:(1)(2)【分析】(1)方程组利用加减消元法求出解即可.(2)首先化简方程组,然后方程组利用加减消元法求出解即可.【解答】解:(1),①×4+②得,11x=22,∴x=2,把x=2代入①得,4﹣y=5,∴y=﹣1,∴;(2)原方程组可化为:,①×3﹣②得,2v=4,∴v=2,把v=2代入①得,u=﹣,∴.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(8分)如图,∠ABC=∠ADC,BE,DF分别是∠ABC,∠ADC的角平分线,且∠2=∠3,求证:BC∥AD.【分析】欲证明BC∥AD,只要证明∠1=∠3即可.【解答】证明:∵BE、DF分别是∠ABC和∠ADC的平分线,∴∠1=∠ABC,∠2=∠ADC,∵∠ABC=∠ADC,∴∠1=∠2,∵∠2=∠3,∴∠1=∠3,∴BC∥AD.【点评】本题考查平行线的性质和判定,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(8分)已知正实数x的平方根是a和a+b.(1)当b=6时,求a;(2)若a2x+(a+b)2x=6,求x的值.【分析】(1)利用正实数平方根互为相反数即可求出a的值;(2)利用平方根的定义得到(a+b)2=x,a2=x,代入式子a2x+(a+b)2x=6即可求出x值.【解答】解:(1)∵正实数x的平方根是a和a+b,∴a+a+b=0,∵b=6,∴2a+6=0∴a=﹣3;(2)∵正实数x的平方根是a和a+b,∴(a+b)2=x,a2=x,∵a2x+(a+b)2x=6,∴x2+x2=6,∴x2=3,∵x>0,∴x=.【点评】本题考查了平方根的定义及平方根的性质,熟练掌握这两个知识点是解题的关键.21.(8分)如图,△ABC中任意一点P(x0,y0)经平移后对应点为P′(x0+3,y0+4),将△ABC作同样的平移得到△DEF,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:(1)直接写出点D、E、F的坐标;(2)画出△DEF,若AB=2,AC=BC=,AD=5,DF=,CF=5.(3)若将线段BC沿某个方向进行平移得到线段MN,点B(﹣1,﹣2)的对应点为M (m,0),则点C(0,1)的对应点N的坐标为(m+1,3).(用含m的式子表示)【分析】(1)根据平面直角坐标系中点的坐标的平移规律“右加左减,上加下减”求解可得;(2)画出平移后的对应点,首尾顺次连接可得△DEF,再根据平移变换的性质可得DF 和CF的长;(3)由点B(﹣1,﹣2)的对应点为M(m,0)知平移的方式为右移m+1个单位,上移2个单位,据此利用点的坐标的平移规律【解答】解:(1)点D的坐标是(﹣3+3,0+4),即(0,4),点E的坐标是(﹣1+3,﹣2+4),即(2,2),点F的坐标为(0+3,1+4),即(3,5);(2)△DEF即为所求,DF=AC=,CF=AD=5,故答案为:,5;(3)由点B(﹣1,﹣2)的对应点为M(m,0)知平移的方式为右移m+1个单位,上移2个单位,∴点C(0,1)的对应点N的坐标为(0+m+1,1+2),即(m+1,3),故答案为:(m+1,3).【点评】本题主要考查作图﹣平移变换,解题的关键是掌握平移变换的定义与性质及点的坐标的平移规律.22.(10分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨2000元的原料运回工厂,制成每吨5000元的产品运到B地,已知公路运价为2元/(吨•千米),铁路运价为1.5元/(吨•千米),且这两次运输共支出公路运输费14000元,铁路运输费87000元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【分析】(1)设该工厂从A地购买了x吨原料,制成运往B地的产品y吨,根据“这两次运输共支出公路运输费14000元,铁路运输费87000元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据销售款比原料费与运输费的和多的钱数=销售收入﹣进货成本﹣运输费,即可求出结论.【解答】解:(1)设该工厂从A地购买了x吨原料,制成运往B地的产品y吨,依题意,得:,解得:.答:该工厂从A地购买了300吨原料,制成运往B地的产品200吨.(2)5000×200﹣2000×300﹣14000﹣87000=299000(元).答:这批产品的销售款比原料费与运输费的和多299000元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.(10分)已知:两直线l1,l2满足l1∥l2,点C,点D在直线l1上,点A,点B在直线l2上,点P是平面内一动点,连接CP,BP,(1)如图1,若点P在l1、l2外部,则∠DCP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(2)如图2,若点P在l1、l2外部,连AC,则∠CAB、∠ACP、∠CPB、∠ABP之间满足什么数量关系?请你证明的这个结论;(不能用三角形内角和为180°)(3)若点P在l1、l2内部,且在AC的右侧,则∠ACP、∠ABP、∠CAB、∠CPB之间满足什么数量关系?(不需证明)【分析】(1)过P作PM∥AB,根据平行线的性质可得∠ABP=∠2,∠3=∠CPM,再利用等量代换可得答案;(2)过A作AE∥PB,过C作CF∥BP,根据平行线的性质可得∠1=∠2,∠3=∠P,∠ABP=∠1+∠4,再利用等量代换可得答案;(3)分别画出图形,再利用平行线的性质进行推理即可.【解答】解:(1)如图1,数量关系:∠DCP=∠CPB+∠ABP,理由:过P作PM∥AB,∴∠ABP=∠2,∠3=∠CPM,∵∠3=∠2+∠CPB,∴∠3=∠CPB+∠ABP,∵CD∥AB,∴∠1=∠3,∴∠DCP=∠CPB+∠ABP;(2)数量关系:∠CAB+∠ACP=∠CPB+∠ABP,理由:过A作AE∥PB,过C作CF∥BP,∴AE∥CF∥BP,∴∠1=∠2,∠3=∠P,∠ABP=∠1+∠4,∴∠CAB+∠ACP=∠4+∠2+∠3,∴∠CPB+∠ABP=∠3+∠1+∠4=∠3+∠2+∠4,∴∠CAB+∠ACP=∠CPB+∠ABP;(3)如图3,数量关系:∠CPB=∠CAB+∠ACP+∠ABP;理由:过P作PM∥CD,∵CD∥AB,∴CD∥PM∥AB,∴∠DCA=∠CAB,∠DCP=∠CPM,∠MPB=∠PBA,∴∠CPB=∠DCA+∠ACP=∠CAB+∠ACP,∵∠CPB=∠CPM+∠MPB,∴∠CPB=∠CAB+∠ACP+∠ABP;如图4,数量关系:∠CAB+∠ACP+∠CPB+∠ABP=360°,理由:过P作PM∥CD,∵CD∥AB,∴CD∥PM∥AB,∴∠CAB=∠DCA,∠DCP+∠CPM=180°,∠ABP+∠MPB=180°,∴∠CAB+∠ACP+∠CPB+∠ABP=∠DCA+∠ACP+∠CPM+∠MPB+∠ABP=360°.【点评】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握平行线的性质.24.(12分)如图1,在平面直角坐标系中,已知点A(a,0),B(b,0),C(2,7),连接AC,交y轴于D,且a=,()2=5.(1)求点D的坐标.(2)如图2,y轴上是否存在一点P,使得△ACP的面积与△ABC的面积相等?若存在,求点P的坐标,若不存在,说明理由.(3)如图3,若Q(m,n)是x轴上方一点,且△QBC的面积为20,试说明:7m+3n 是否为定值,若为定值,请求出其值,若不是,请说明理由.【分析】(1)由立方根及算术平方根的定义求出a,b的值,得出A,B两点的坐标,连接OC,设OD=x,根据三角形AOC的面积可求出x的值,则答案可求出;(2)求出三角形ABC的面积为35,设点P的坐标为(0,y),根据S△ACP=S△ADP+S△CDP,可求出y的值,则点P的坐标可求出;(3)当点Q在直线BC的左侧时,过点Q作QH⊥x轴,垂足为H,连接CH,由△QBC 的面积为20可得出7m+3n的值;当点Q在直线BC的右侧时,过点Q作QH⊥x轴,垂足为H,连接CH,根据△QBC的面积为20,可得出答案.【解答】解:(1)∵a=,()2=5,∴a=﹣5,b=5,∵A(a,0),B(b,0),∴A(﹣5,0),B(5,0),∴OA=OB=5.如图1,连接OC,设OD=x,∵C(2,7),∴S△AOC=×5×7=17.5,∵S△AOC=S△AOD+S△COD,∴5x•=17.5,∴x=5,∴点D的坐标为(0,5);(2)如图2,∵A(﹣5,0),B(5,0),C(2,7),∴S△ABC=×(5+5)×7=35,∵点P在y轴上,∴设点P的坐标为(0,y),∵S△ACP=S△ADP+S△CDP,D(0,5),∴5×|5﹣y|×+2×|5﹣y|×=35,解得:y=﹣5或15,∴点P的坐标为(0,﹣5)或(0,15);(3)7m+3n是定值.∵点Q在x轴的上方,∴分两种情况考虑,如图3,当点Q在直线BC的左侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC=S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴,∴7m+3n=﹣5.如图4,当点Q在直线BC的右侧时,过点Q作QH⊥x轴,垂足为H,连接CH,∵S△QBC=S△QHC+S△HBC﹣S△QHB,且S△QBC=20,∴=20,∴7m+3n=75,综上所述,7m+3n的值为﹣5或75.【点评】本题是三角形综合题,考查了立方根及算术平方根,三角形的面积,坐标与图形的性质,正确进行分类讨论是解题的关键.。
2019-2020学年七年级数学下册第七章《小结与思考》导学案苏科版【学习目标】1.回顾、思考本章所学的知识及思想方法,并能用自己喜欢的方式进行梳理,使所学知识系统化.2.丰富对图形的认识,能有条理地、清晰地阐述自己的观点.3通过“小结与思考”的学习,培养学生归纳、反思的意思.学习重、难点:重点:系统梳理本章知识以及运用所学知识解决简单问题.难点:所学知识的实际应用.【预习指导】☼阅读全章内容,并把主要知识点圈注出来仔细体会,然后,独立完成下列问题、检测部分,组长组织本组对子之间互查互批,并用红色笔互批补充,小组长复查。
一、已学知识回顾:1.同学们,本章通过操作实践等活动,探索了两直线平行的条件:⑴ , .⑵ , .⑶ , .两直线平行的性质:⑴ , .⑵ , .⑶ , .了解了图形经过平移,连接各组对应点所得的线段 (或在同一条直线上)并且;体会了两条平行线之间距离的意义,你会度量两条平行线之间的距离吗?请写出度量的步骤:。
2. 本章初步研究了三角形,其知识结构可以归纳如下:二、课本知识补充:3. 的线段叫做多边形的对角线.如上图①,、就是五边形ABCDE的两条对角线.思考下列问题:⑴如图②,n边形A1A2A3…A n中,过顶点A1可以画条对角线,它们分别是:;过顶点A2可以画条对角线;过顶点A3可以画条对角线.⑵过顶点A1的对角线与过顶点A3的对角线有相同的吗? 过顶点A1的对角线与过顶点A4的对角线有相同的吗?⑶试猜想:n边形一共有多少条对角线?请简单说明理由.三、预习自测:1.一测量员从点A出发,行走100m到B,然后向左转120°,走50m到C ,再左转60°,走120m到D. AB与 DC平行吗?为什么?2.如图,AD∥BC,∠BAD﹦∠BCD,试说明:AB∥CD3.如图④在⊿ABC中,BE与CD相交于点E,∠1﹦30°,∠2﹦40°,∠A﹦50°,求∠BEC的度数.4.选择题:⑴已知三角形的两边分别为3cm和8cm,则此三角形的第三边的长可能是()A.4cmB.5cmC.6cmD.13cm⑵如图⑤,直线l1∥l2 ,则∠α的度数为( )A.150°B.140°C.130°D.120°⑶已知⊿ABC,现将∠A的度数增加1倍,∠B的度数增加2倍,刚好使∠C ﹦90°,则∠A的度数可能是( )A..75°B..60°C.30°D.45°⑷如图⑥,直线l1∥l2, ∠1 ﹦120°,∠2 ﹦100°,则∠3等于( )A.20°B.40°C.50°D.60°【课内探究】☼学法指导:(1)再阅读课本,独立完成课内探究.(2)同层次学生对学,解决自学时遇到的疑难问题。
2018-2019学年【区级联考】江苏省苏州市工业园区第二学期七年级数学期中教学调研卷1.在下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.2.下列各式中计算正确的是()B. (x 4 ) 3 = x 7C. b 5 ·b 5 = b 25D. a 6 ÷a 2 =a 3 A. (-a 2 ) 5 =-a103.下列各式从左边到右边的变形是因式分解的是()A.( a+1)( a-1)=a2-1 B.a2-6 a+9=( a-3) 2C.x2+2 x+1=x ( x+2)+1 D.=-6 x2y2 ·3 x2y4.如图,七年级(下)教材第6页给出了利用三角尺和直尺画平行线的一种方法,能说明AB∥DE的条件是()A.∠CAB=∠FDE B.∠ACB=∠DFEC.∠ABC=∠DEF D.∠BCD=∠EFG5.在中作边上的高,下列画法正确的是()A.B.C.D.6.若,,,,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b 7.如图,在△ABC中,E、F分别是AD、CE边的中点,且S△BEF=2 cm2,则S△ABC为 ( )A.4 cm 2B.6 cm 2C.8 cm 2D.10 cm 28.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为 ( )A.75°B.76°C.77°D.78°9.将数0.000000076用科学记数法表示为_____.10.已知,则________.11.一个多边形的每一个外角都等于36°,则这个多边形的边数为____________.12.如果要使的乘积中不含x2,则a=_.13.如果是一个完全平方式,那么m的值为________.14.如图,等于 ________15.已知:,则________.16.若(x-3)x=1,则满足条件的x的值是 _____________.17.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若S四边形AEOH=4,S四边形BFOE=5,S四边形CGOF=6,则S四边形DHOG=_____.18.如图,长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒1cm的速度沿A→B→C→E运动,最终到达点E.若点P运动的时间为x秒,那么当x=____时,△APE的面积等于10cm2.19.计算或化简:(1)(2)(3)(2a﹣3b)2﹣4a(a﹣3b)(4) (3﹣2x)(3+2x) + 4 (2﹣x)2 ,本题先化简,再求值,其中x=﹣0.25.20.因式分解:(2)+6+921.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)22.填写证明的理由:已知,如图AB∥CD,EF、CG分别是∠ABC、∠ECD的角平分线.求证:EF∥CG证明:∵AB∥CD(已知)∴∠AEC=∠ECD()又EF平分∠AEC、CG平分∠ECD(已知)∴∠1=∠,∠2=∠(角平分线的定义)∴∠1=∠2()∴EF∥CG()23.(1)已知=2,,求①的值;②的值.(2)若x、y满足,求下列各式的值.①(x+y)2②x4+y424.如图,∠1=70°,∠2=110°,∠C=∠D,试探索∠A与∠F有怎样的数量关系,并说明理由.25.如图,已知△ABC中,AD是高,AE是角平分线.(1)若∠B=20°,∠C=60°,则∠EAD=_______°;(2)若∠B=a°,∠C=b°(b>a),试通过计算,用a、b的代数式表示∠EAD的度数;(3)特别地,当△ABC为等腰三角形(即∠B=∠C)时,请用一句话概括此时AD和AE的位置关系:______________________________.26.阅读材料:若m2-2mn+2n2-8n+16=0,求m、n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a-b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长;(3)已知x+y=2,xy-z2-4z=5,求xyz的值.27.如图,直线m与直线n相交于点O,A、B两点同时从点O出发,点A以每秒x个单位长度沿直线n向左运动,点B以每秒y个单位长度沿直线m向上运动.(1)若运动1s时,点B比点A多运动1个单位;运动2s时,点B与点A运动的路程和为6个单位,则x=_________,y=___________.(2)如图,当直线m与直线n垂直时,设∠BAO和∠ABO的角平分线相交于点P.在点A、B在运动的过程中,∠A PB的大小是否会发生变化?若不发生变化,请求出其值(写出主要过程);若发生变化,请说明理由.(3)如图,将(2)中的直线n不动,直线m绕点O按顺时针方向旋转α(0<ɑ<90),其他条件不变.ⅰ)用含有α的式子表示∠APB的度数____________.ⅱ)如果再分别作△ABO的两个外角∠BAC,∠ABD的角平分线相交于点Q,并延长BP、QA交于点M.则下列结论正确的是___________(填序号) .①APB与∠Q互补;②∠Q与∠M互余;③∠APB-∠M为定值;④∠M-∠Q为定值.。
2019-2020学年江苏省南通市海安市十校联考七年级第二学期期中数学试卷一、选择题(共10小题).1.点P(﹣2,3)在第()象限A.一B.二C.三D.四2.下列命题是真命题的是()A.相等的角是对顶角B.过一点有且只有一条直线平行于已知直线C.同位角相等D.平面内,垂直于同一直线的两直线平行3.在,,1.732,,,3.1010010001……,中无理数有()A.1B.2C.3D.44.已知是mx+2y=4的解,则m的值是()A.3B.﹣3C.2D.﹣25.如图,四个实数m,n,p,q在数轴上对应的点分别是M,N,P,Q.若n+q=0,则m,n,p,q四个实数中,绝对值最大的是()A.m B.n C.p D.q6.下列说法:①±3都是27的立方根;②的算术平方根是±;③﹣=2;④的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有()A.1个B.2个C.3个D.4个7.的整数部分是a,小数部分是b,则a﹣b的值是()A.B.6+C.6﹣D.﹣68.若y=﹣6,则xy的值为()A.﹣2B.2C.﹣3D.39.在平面直角坐标系中,平行于坐标轴的线段PQ=5,若点P坐标是(﹣2,1),则点Q 不在第()象限.A.一B.二C.三D.四10.如图,一个粒子在第一象限内及x、y轴上运动,在第一分钟内它从原点O运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个长度单位,那么1989分钟后这个粒子所处的位置是()A.(35,44)B.(36,45)C.(37,45)D.(44,35)二、填空题:(本题共10小题,11~16每小题3分,17~20每小题3分,共34分.把最后的结果填在答题卡中横线上.)11.点Q(4,﹣3)到x轴的距离是.12.若方程x a﹣2+3y b+1=4是关于x,y的二元一次方程,则a﹣b=.13.把命题“对顶角相等”改写成“如果…那么…”的形式:.14.正数的两个平方根是2a+1和4﹣3a,则这个正数是.15.写出方程3x+2y=11的正整数解是.16.已知点P(2﹣x,3x+6)到两坐标轴的距离相等,则点P的坐标为.17.在平面直角坐标系中,已知A(1,4),B(5,2)将线段AB平移后得线段CD,若C (3,﹣1),则D的坐标是.18.已知点4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则=.19.实数a、b在数轴上的位置如图,则化简=.20.某校数学课外小组,在坐标纸上为某湿地公园的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,且k≥2时,,[a]表示非负实数a的整数部分,例如[2.3]=2,,[0.5]=0.按此方案,第2019棵树种植点的坐标应为.三、解答题:(本题共7小题,共86分.解答时应写出必要文字说明、证明过程或演算步骤)21.计算:(1)+3﹣5;(2);(3).22.解下列方程组:(1)(用代入法);(2);(3).23.如图,△ABC在直角坐标系中,(1)请写出△ABC各顶点的坐标;(2)若把△ABC向上平移3个单位,再向右平移2个单位得到△A'B'C',写出A'、B'、C'的坐标,并在图中画出平移后图形;(3)求出三角形ABC的面积.(4)若线段AB交y轴与点P,直接写出点P的坐标.24.(1分)已知:如图,点B,E分别在直线AC和DF上,若∠AGB=∠EHF,∠C=∠D求证:∠A=∠F证明:∵∠AGB=∠EHF(已知)∠AGB=∠FGD()∴∠EHF=(等量代换)∴DB∥EC()∴∠=∠DBA()∵∠C=∠D∴()∴∥()∴∠A=∠F()25.如图,已知四边形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC =70°.(1)AD与BC平行吗?试写出推理过程;(2)求∠DAC和∠EAD的度数.26.温州苍南马站四季柚,声名远播,今年又是一个丰收年.某经销商为了打开销路,对1000个四季柚进行打包优惠出售.打包方式及售价如图.假设用这两种打包方式恰装完全部柚子.(1)若销售a箱纸盒装和a袋编织袋装四季柚的收入共950元,求a的值.(2)当销售总收入为7280元时.①若这批四季柚全部售完,请问纸盒装共包装了多少箱,编织袋共包装了多少袋?②若该经销商留下b(b>0)箱纸盒装送人,其余柚子全部售出,求b的值.27.阅读材料并回答下列问题:当m,n都是实数,且满足2m=8+n,就称点P(m﹣1,)为“爱心点”.(1)判断点A(5,3),B(4,8)哪个点为“爱心点”,并说明理由;(2)若点A(a,﹣4)是“爱心点”,请求出a的值;(3)已知p,q为有理数,且关于x,y的方程组解为坐标的点B(x,y)是“爱心点”,求p,q的值.参考答案一、选择题:(每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号写在答题纸相应位置上)1.点P(﹣2,3)在第()象限A.一B.二C.三D.四【分析】根据各象限内点的坐标的符号,结合P的纵横坐标的符号可得答案.解:已知P点坐标(﹣2,3),横坐标﹣2<0,纵坐标3>0,故点P在第二象限.故选:B.2.下列命题是真命题的是()A.相等的角是对顶角B.过一点有且只有一条直线平行于已知直线C.同位角相等D.平面内,垂直于同一直线的两直线平行【分析】根据对顶角、平行线的判定和性质进行判断即可.解:A、相等的角不一定是对顶角,原命题是假命题;B、过直线外一点有且只有一条直线平行于已知直线,原命题是假命题;C、两直线平行,同位角相等,原命题是假命题;D、平面内,垂直于同一直线的两直线平行,是真命题;故选:D.3.在,,1.732,,,3.1010010001……,中无理数有()A.1B.2C.3D.4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.解:=﹣2,=7,=3,,,3.1010010001…是无理数,共有3个,故选:C.4.已知是mx+2y=4的解,则m的值是()A.3B.﹣3C.2D.﹣2【分析】把x与y的值代入方程计算即可求出m的值.解:把代入方程得:2m﹣2=4,解得:m=3.故选:A.5.如图,四个实数m,n,p,q在数轴上对应的点分别是M,N,P,Q.若n+q=0,则m,n,p,q四个实数中,绝对值最大的是()A.m B.n C.p D.q【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的是点P表示的数p.故选:C.6.下列说法:①±3都是27的立方根;②的算术平方根是±;③﹣=2;④的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有()A.1个B.2个C.3个D.4个【分析】根据平方根,算术平方根,立方根的定义找到错误选项即可.解:①3是27的立方根,原来的说法错误;②的算术平方根是,原来的说法错误;③﹣=2是正确的;④=4,4的平方根是±2,原来的说法错误;⑤9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A.7.的整数部分是a,小数部分是b,则a﹣b的值是()A.B.6+C.6﹣D.﹣6【分析】估算无理数的大小方法得出答案.解:∵9<13<16,∴3<<4,∴的整数部分是3,小数部分是﹣3,即a=3,b=﹣3,可得:a﹣b=,故选:C.8.若y=﹣6,则xy的值为()A.﹣2B.2C.﹣3D.3【分析】根据二次根式的被开方数是非负数得到x=,则y=﹣6,代入求值即可.解:由题意,得x﹣≥0且﹣x≥0,所以x﹣=0.所以x=,则y=﹣6,故xy=×(﹣6)=﹣3,故选:C.9.在平面直角坐标系中,平行于坐标轴的线段PQ=5,若点P坐标是(﹣2,1),则点Q 不在第()象限.A.一B.二C.三D.四【分析】在平面直角坐标系中画出过点P且平行于坐标轴的直线,分别截取线段PQ1=PQ2=PQ3=PQ4=5,则可知点Q不在第四象限.解:如图所示,过点P(﹣2,1)作平行于坐标轴的直线,分别取线段PQ1=PQ2=PQ3=PQ4=5,点Q不在第四象限.故选:D.10.如图,一个粒子在第一象限内及x、y轴上运动,在第一分钟内它从原点O运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个长度单位,那么1989分钟后这个粒子所处的位置是()A.(35,44)B.(36,45)C.(37,45)D.(44,35)【分析】要弄清粒子的运动规律,先观察横坐标和纵坐标的相同点:(0,0),粒子运动了0分钟.(1,1)就是运动了2=1×2分钟,将向左运动!(2,2)粒子运动了6=2×3分钟,将向下运动!(3,3),粒子运动了12=3×4分钟.将向左运动 (44)44)点处粒子运动了44×45=1980分钟!此时粒子会将向下移动,进而得出答案.解:要弄清粒子的运动规律,先观察横坐标和纵坐标的相同点:(0,0),粒子运动了0分钟.(1,1)就是运动了2=1×2分钟,将向左运动!(2,2)粒子运动了6=2×3分钟,将向下运动!(3,3),粒子运动了12=3×4分钟.将向左运动…于是会出现:(44,44)点处粒子运动了44×45=1980分钟,此时粒子会将向下移动.从而在运动了1989分钟后,粒子所在位置为(44,35).故选:D.二、填空题:(本题共10小题,11~16每小题3分,17~20每小题3分,共34分.把最后的结果填在答题卡中横线上.)11.点Q(4,﹣3)到x轴的距离是3.【分析】根据点的坐标可得答案.解:点Q(4,﹣3)到x轴的距离是3,故答案为:3.12.若方程x a﹣2+3y b+1=4是关于x,y的二元一次方程,则a﹣b=3.【分析】先根据二元一次方程的定义得出a﹣2=1,b+1=1,据此可得a、b的值,再代入计算可得.解:∵方程x a﹣2+3y b+1=4是关于x,y的二元一次方程,∴a﹣2=1,b+1=1,∴a=3,b=0,则a﹣b=3﹣0=3.故答案为:3.13.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么这两个角相等.【分析】命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.正数的两个平方根是2a+1和4﹣3a,则这个正数是121.【分析】根据正数的平方根有两个,且互为相反数,求出a的值,即可确定出这个正数.解:根据题意得:2a+1+4﹣3a=0,解得:a=5,可得这个正数的两个平方根为11和﹣11,则这个正数为121.故答案为:121.15.写出方程3x+2y=11的正整数解是或.【分析】直接利用二元一次方程的解法得出符合题意的答案.解:当x=1时,y=4;当x=3时,y=1.故方程3x+2y=11的正整数解是:或.故答案为:或.16.已知点P(2﹣x,3x+6)到两坐标轴的距离相等,则点P的坐标为(3,3),(6,﹣6).【分析】根据点P到两坐标轴的距离相等,则横坐标与纵坐标相等或互为相反数列出方程求出x的值,然后即可得解.解:∵点P(2﹣x,3x+6)到两坐标轴的距离相等,则①2﹣x+3x+6=0解得:x=﹣4,∴点P的坐标为(6,﹣6)②2﹣x=3x+6,解得:x=﹣1,∴点P的坐标为(3,3),综上:点P的坐标为(3,3),(6,﹣6),故答案为:(6,﹣6),(3,3).17.在平面直角坐标系中,已知A(1,4),B(5,2)将线段AB平移后得线段CD,若C (3,﹣1),则D的坐标是(7,﹣3)或(﹣1,1).【分析】利用点平移的坐标变化规律分两种情形分别求解.解:若A与C对应,则D(7,﹣3),若B与C对应,则D(﹣1,1).故答案为(7,﹣3)或(﹣1,1).18.已知点4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则=.【分析】根据题意用z表示出x与y,代入原式计算即可得到结果.解:由4x﹣3y﹣6z=0,x+2y﹣7z=0,得到x=3z,y=2z,则原式==.故答案为.19.实数a、b在数轴上的位置如图,则化简=﹣2a.【分析】利用数轴得出a+b<0,b﹣a>0,进而化简各式得出即可.解:如图所示:a+b<0,b﹣a>0,故=﹣a﹣b+(b﹣a)=﹣2a.故答案为:﹣2a.20.某校数学课外小组,在坐标纸上为某湿地公园的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,且k≥2时,,[a]表示非负实数a的整数部分,例如[2.3]=2,,[0.5]=0.按此方案,第2019棵树种植点的坐标应为P(404,4).【分析】根据已知分别求出1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),当6≤k≤10时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通过观察得到点的坐标特点,进而求解.解:由题可知1≤k≤5时,P点坐标为(1,1)、(1,2)、(1,3)、(1,4)、(1,5),当6≤k≤10时,P点坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5),……通过以上数据可得,P点的纵坐标5个一组循环,∵2019÷5=403…4,∴当k=2019时,P点的纵坐标是4,横坐标是403+1=404,∴P(404,4),故答案为P(404,4).三、解答题:(本题共7小题,共86分.解答时应写出必要文字说明、证明过程或演算步骤)21.计算:(1)+3﹣5;(2);(3).【分析】首先利用绝对值的性质和二次根式的性质化简,然后再计算加减即可.解:(1)原式=(1+3﹣5)=;(2)原式=4+3﹣2=5;(3)原式=﹣3+3﹣+4=.22.解下列方程组:(1)(用代入法);(2);(3).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可;(3)方程组利用加减消元法求出解即可.解:(1),由②得:y=﹣2x+3③,把③代入①得:3x﹣2(﹣2x+3)=8,解得:x=2,把x=2代入②得:y=﹣1,则方程组的解为;(2),①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:y=﹣,则方程组的解为;(3),①+②得:5x+2y=16④,②+③得:3x+4y=18⑤,④×2﹣⑤得:7x=14,解得:x=2,把x=2代入④得:y=3,把x=2,y=3代入③得:z=1,则方程组的解为.23.如图,△ABC在直角坐标系中,(1)请写出△ABC各顶点的坐标;(2)若把△ABC向上平移3个单位,再向右平移2个单位得到△A'B'C',写出A'、B'、C'的坐标,并在图中画出平移后图形;(3)求出三角形ABC的面积.(4)若线段AB交y轴与点P,直接写出点P的坐标.【分析】(1)根据网格即可写出△ABC各顶点的坐标;(2)根据平移的性质即可把△ABC向上平移3个单位,再向右平移2个单位得到△A'B'C',进而写出A'、B'、C'的坐标,画出平移后图形;(3)根据网格即可求出三角形ABC的面积;(4)若线段AB交y轴与点P,直接写出点P的坐标.解:(1)A(﹣2,﹣2),B(3,1),C(0,2);(2)如图,△A'B'C'即为所求;A'(0,1),B'(5,4),C'(2,5);(3)三角形ABC的面积为:5×4﹣1×3﹣2×4﹣3×5=7.(4)P(0,﹣).24.(1分)已知:如图,点B,E分别在直线AC和DF上,若∠AGB=∠EHF,∠C=∠D求证:∠A=∠F证明:∵∠AGB=∠EHF(已知)∠AGB=∠FGD(对顶角相等)∴∠EHF=∠FGD(等量代换)∴DB∥EC(同位角相等,两直线平行)∴∠C=∠DBA(两直线平行,同位角相等)∵∠C=∠D∴∠D=∠DBA(等量代换)∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)【分析】根据已知条件和对顶角相等可得∠EHF=∠FGD,再根据平行线的判定与性质即可证明结论.【解答】证明:∵∠AGB=∠EHF(已知),又∠AGB=∠FGD(对顶角相等),∴∠EHF=∠FGD(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠C=∠DBA(两直线平行,同位角相等),∵∠C=∠D,∴∠D=∠DBA(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:对顶角相等;∠FGD;同位角相等,两直线平行;C;两直线平行,同位角相等;∠D=∠DBA,等量代换;DF,AC,内错角相等,两直线平行;两直线平行,内错角相等.25.如图,已知四边形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC =70°.(1)AD与BC平行吗?试写出推理过程;(2)求∠DAC和∠EAD的度数.【分析】(1)根据角平分线定义求出∠BCD,求出∠D+∠BCD=180°,根据平行线的判定推出即可.(2)根据平行线的性质求出∠DAC,代入∠EAD=180°﹣∠DAC﹣∠BAC求出即可.解:(1)AD∥BC,理由是:∵AC平分∠BCD,∠ACB=40°,∴∠BCD=2∠ACB=80°,∵∠D=100°,∴∠D+∠BCD=180°,∴AD∥BC.(2)∵AD∥BC,∠ACB=40°,∴∠DAC=∠ACB=40°,∵∠BAC=70°,∴∠DAB=∠DAC+∠BAC=40°+70°=110°,∴∠EAD=180°﹣∠DAB=180°﹣110°=70°.26.温州苍南马站四季柚,声名远播,今年又是一个丰收年.某经销商为了打开销路,对1000个四季柚进行打包优惠出售.打包方式及售价如图.假设用这两种打包方式恰装完全部柚子.(1)若销售a箱纸盒装和a袋编织袋装四季柚的收入共950元,求a的值.(2)当销售总收入为7280元时.①若这批四季柚全部售完,请问纸盒装共包装了多少箱,编织袋共包装了多少袋?②若该经销商留下b(b>0)箱纸盒装送人,其余柚子全部售出,求b的值.【分析】(1)根据收入共950元,可得出一元一次方程,解出即可;(2)①纸盒装共包装了x箱,则编织袋装共包装y袋,根据等量关系可得出方程组,解出即可;②根据①的关系可以y表示出x,减去留下的b箱纸盒装,再由销售总收入为7280元,可得出方程,解出即可.解:(1)由题意,得64a+126a=950,解得:a=5,答:a的值为5.(2)①设纸盒装共包装了x箱,则编织袋装共包装y袋,由题意,得,解得:答:纸盒装共包装了35箱.②由8x+18y=1000,可得,由题意得,64×(125﹣﹣b)+126y=7280,解得:y=40﹣,∵x,y,b都是整数,且x≥0,y≥0,b>0,∴b=9,x=107,y=8,∴b的值为9.答:b的值为9.27.阅读材料并回答下列问题:当m,n都是实数,且满足2m=8+n,就称点P(m﹣1,)为“爱心点”.(1)判断点A(5,3),B(4,8)哪个点为“爱心点”,并说明理由;(2)若点A(a,﹣4)是“爱心点”,请求出a的值;(3)已知p,q为有理数,且关于x,y的方程组解为坐标的点B(x,y)是“爱心点”,求p,q的值.【分析】(1)根据“爱心点”的定义,列出方程组计算即可求解;(2)根据“爱心点”的定义,可得方程组,先求得n,再求得m,进一步得到a的值;(3)解方程组用q和p表示x和y,代入2m=8+n,得到关于p和q的等式,再根据p,q为有理数,求出p,q的值.解:(1)∵,∴,∵2×6=8+4,∴点A是爱心点;∵,∴,∵2×5≠8+14,∴点B不是爱心点;(2)∵,∴n=﹣10,又∵2m=8+n,∴2m=8+(﹣10),解得m=﹣1,∴﹣1﹣1=a,即a=﹣2;(3)解方程组得,又∵点B是“爱心点”满足:,∵2m=8+n,∴,整理得:,∵p,q是有理数,p=0,﹣6q=4,∴.。
2019-2020学年江苏省常州市七年级第二学期期末数学试卷一、选择题(共8小题).1.数学课本一张纸的厚度大约是()A.0.1mm B.1cm C.1dm D.1m2.下列计算中,正确的是()A.a3×a=a4B.(a3)2=a5C.a+a=a2D.a6÷a2=a33.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2cm,2cm,4cm B.3cm,4cm,5cmC.1cm,2cm,3cm D.2cm,3cm,6cm4.如果a<b,那么下列不等式中,成立的是()A.a+5>b+5B.﹣2a<﹣2b C.b﹣a<0D.1﹣a>1﹣b 5.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为()A.4B.6C.8D.106.在下列命题中,假命题的是()A.平行于同一直线的两条直线平行B.过一点有无数条直线与已知直线垂直C.两直线平行,同旁内角互补D.有两个角互余的三角形是直角三角形7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.8.4张长为a,宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2,若S1=S2,则a,b满足的关系式是()A.a=1.5b B.a=2b C.a=2.5b D.a=3b二.填空题(本大题共8小题,每小题2分,共16分)9.计算:2x(x﹣3y+1)=.10.因式分解:x2﹣4=.11.某球形病毒颗粒直径约为0.0000001,将0.0000001用科学记数法表示为.12.请写出命题“互为相反数的两个数和为零”的逆命题:.13.如图,点D是∠AOB的平分线OC上的任意一点,DE∥OB,交OA于点E,若∠AED =50°,则∠1=°.14.已知关于x的不等式2x﹣a>﹣3的解集是x>1,则a的值为.15.已知2x﹣6y+6=0,则2x÷8y=.16.如图,AB∥CD,∠GAF:∠FAE:∠EAB=∠GCF:∠FCE:∠ECD=1:2:4,若∠AEC=80°,则∠AGC=°.三、解答题(本大题共9小题,共68分.第17、19、20、22.24题每题8分,第18、21、23题每题6分,第25题10分)17.计算:(1)(π﹣3.14)0﹣()﹣3+(﹣3)2;(2)(a﹣2b)2﹣(3a+2b)(2b﹣3a).18.因式分解:(1)a2b﹣ab;(2)12m3n﹣3mn.19.解方程组或不等式组:(1);(2).20.已知a﹣b=5,ab=1,求下列各式的值:(1)(a+b)2;(2)a3b+ab3.21.如图,CF⊥AB于点F,ED⊥AB于点D,∠BED=∠CFG,请问:FG与BC平行吗?说明理由.22.2020年初,由于新冠病毒的蔓延,口罩市场出现热销,小明的爸爸用18000元购进甲、乙两种型号的口罩,在自家药店销售,销售完后共获利3900元,进价和售价如表所示:甲种型号口罩乙种型号口罩价格型号进价(元/袋)2030售价(元/袋)2536(1)小明爸爸的药店购进甲、乙两种型号的口罩各多少袋?(2)由于需求量大,口罩很快售完,小明的爸爸决定再一次购进甲、乙两种型号的口罩共800袋.如果要使这800袋口罩全部售完后所得利润不低于4500元,那么至少需购进多少袋乙种型号的口罩?23.(1)比较x2+4与4x的大小:(用“>”或“=”或“<”或“≥”或“≤”号填空)①当x=1时,x2+44x;②当x=2时,x2+44x;③当x=﹣1时,x2+44x;④自己再任意取一些x的值,计算后猜想:x2+44x.(2)无论x取什么值,x2+4与4x总有这样的大小关系吗?请说明理由.24.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x﹣6=0的解为x=3,不等式组的解集为1<x<4,因为1<3<4,所以称方程2x﹣6=0为不等式组的关联方程.(1)在方程①3x﹣3=0;②x+1=0;③x﹣(3x+1)=﹣9中,不等式组的关联方程是.(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是.(写出一个即可)(3)若方程2x﹣1=x+2,x+5=2(x+)都是关于x的不等式组的关联方程,求m的取值范围.25.【基本模型】:如图1,BO平分△ABC的内角∠ABC,CO平分△ABC的外角∠ACD,试证明:∠BOC=∠A;【变式应用】:(1)如图2,直线PQ⊥MN,垂足为点O,作∠PON的角平分线OE,在OE上任取一点A,在ON上任取一点B,连接AB,作∠BAE的角平分线AC,AC的反向延长线与∠ABO的平分线相交于点F,请问:∠F的大小是否随着点A,B位置的变化而变化?若发生变化,请说明理由;若不发生变化,请求出其度数;(2)在(1)的基础上,若FC∥MN,则AB与OE有何位置关系?请说明理由.参考答案一、选择题(共8小题).1.数学课本一张纸的厚度大约是()A.0.1mm B.1cm C.1dm D.1m解:∵0.1mm<1cm<1dm<1m,且经测算数学课本的厚度约为10mm,∴数学课本一张纸的厚度大约是0.1mm.故选:A.2.下列计算中,正确的是()A.a3×a=a4B.(a3)2=a5C.a+a=a2D.a6÷a2=a3解:A.a3•a=a4,故本选项符合题意;B.(a3)2=a6,故本选项不合题意;C.a+a=2a,故本选项不合题意;D.a6÷a2=a4,故本选项不合题意.故选:A.3.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2cm,2cm,4cm B.3cm,4cm,5cmC.1cm,2cm,3cm D.2cm,3cm,6cm解:A、2+2=4,不能组成三角形,故本选项不合题意;B、3+4>5,能组成三角形,故本选项符合题意;C、1+2=3,不能组成三角形,故本选项不合题意;D、2+3<6,不能组成三角形,故本选项不合题意.故选:B.4.如果a<b,那么下列不等式中,成立的是()A.a+5>b+5B.﹣2a<﹣2b C.b﹣a<0D.1﹣a>1﹣b 解:A、不等式a<b两边都加上5可得a+5<b+5,故本选项不合题意;B、不等式a<b两边都乘以﹣2可得﹣2a>﹣2b,故本选项不合题意;C、不等式a<b两边都减去b可得a﹣b<0,不等式a﹣b<0都乘以﹣1可得b﹣a>0,故本选项不合题意;D、不等式a<b两边都都乘以﹣1可得﹣a>﹣b,不等式﹣a>﹣b两边都加上1可得1﹣a>1﹣b,故本选项符合题意.故选:D.5.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为()A.4B.6C.8D.10解:多边形的内角和是:3×360=1080°.设多边形的边数是n,则(n﹣2)•180=1080,解得:n=8.即这个多边形的边数是8.故选:C.6.在下列命题中,假命题的是()A.平行于同一直线的两条直线平行B.过一点有无数条直线与已知直线垂直C.两直线平行,同旁内角互补D.有两个角互余的三角形是直角三角形解:A、平行于同一直线的两条直线平行,正确,是真命题,不符合题意;B、过直线外一点有且只有一条直线与已知直线垂直,故原命题错误,是假命题,符合题意;C、两直线平行,同旁内角互补,正确,是真命题,不符合题意;D、有两个角互余的三角形是直角三角形,正确,是真命题,不符合题意;故选:B.7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.解:设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.8.4张长为a,宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2,若S1=S2,则a,b满足的关系式是()A.a=1.5b B.a=2b C.a=2.5b D.a=3b解:由题意可得:S2=4×b(a+b)=2b(a+b);S1=(a+b)2﹣S2=(a+b)2﹣(2ab+2b2)=a2+2ab+b2﹣2ab﹣2b2=a2﹣b2;∵S1=S2,∴2b(a+b)=a2﹣b2,∴2b(a+b)=(a﹣b)(a+b),∵a+b>0,∴2b=a﹣b,∴a=3b.故选:D.二.填空题(本大题共8小题,每小题2分,共16分)9.计算:2x(x﹣3y+1)=2x2﹣6xy+2x.解:2x(x﹣3y+1)=2x2﹣6xy+2x.故答案为:2x2﹣6xy+2x.10.因式分解:x2﹣4=(x+2)(x﹣2).解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).11.某球形病毒颗粒直径约为0.0000001,将0.0000001用科学记数法表示为1×10﹣7.解:0.0000001=1×10﹣7,故答案为:1×10﹣7.12.请写出命题“互为相反数的两个数和为零”的逆命题:和为零的两数互为相反数.解:“互为相反数的两个数和为零”的逆命题:和为零的两数互为相反数,故答案为:和为零的两数互为相反数.13.如图,点D是∠AOB的平分线OC上的任意一点,DE∥OB,交OA于点E,若∠AED =50°,则∠1=25°.解:∵DE∥OB,∴∠AED=∠AOB=50°,∵点D是∠AOB的平分线OC上的任意一点,∴∠1=∠AOC=×50°=25°.故答案为:25.14.已知关于x的不等式2x﹣a>﹣3的解集是x>1,则a的值为a=5.解:由2x﹣a>﹣3,得x>,∵不等式2x﹣a>﹣3的解集是x>1,∴=1,解得,a=5,故答案为:5.15.已知2x﹣6y+6=0,则2x÷8y=.解:2x﹣6y+6=0,2(x﹣3y)=﹣6,x﹣3y=﹣2,∴2x÷8y=2x÷23y=2x﹣3y=2﹣3=.故答案为:.16.如图,AB∥CD,∠GAF:∠FAE:∠EAB=∠GCF:∠FCE:∠ECD=1:2:4,若∠AEC=80°,则∠AGC=140°.解:过G作GM∥AB,过E作EN∥AB,∵AB∥CD,∴AB∥CD∥GM,EN∥AB∥CD,∴∠BAG=∠AGM,∠MGC=∠DCG,∠BAE=∠AEN,∠DCE=∠NEC,∵∠GAF:∠FAE:∠EAB=∠GCF:∠FCE:∠ECD=1:2:4,∴设∠GAF=x°,∠FAE=2x°,∠EAB=4x°,∠GCF=x°,∠FCE=2x°,∠ECD =4x°,∴∠BAG=7x°,∠GCD=7x°,∠AEN=4x°,∠NEC=4x°,∴∠AGM=7x°,∠MGC=7x°,∠AEC=8x°,∵∠AEC=80°,∴8x=80,∴x=10,∴∠AGC=14x°=140°,故答案为:140.三、解答题(本大题共9小题,共68分.第17、19、20、22.24题每题8分,第18、21、23题每题6分,第25题10分)17.计算:(1)(π﹣3.14)0﹣()﹣3+(﹣3)2;(2)(a﹣2b)2﹣(3a+2b)(2b﹣3a).解:(1)(π﹣3.14)0﹣()﹣3+(﹣3)2=1﹣8+9=2;(2)(a﹣2b)2﹣(3a+2b)(2b﹣3a)=a2﹣4ab+4b2﹣(4b2﹣9a2)=a2﹣4ab+4b2﹣4b2+9a2=10a2﹣4ab.18.因式分解:(1)a2b﹣ab;(2)12m3n﹣3mn.解:(1)原式=ab(a﹣1);(2)原式=3mn(4m2﹣1)=3mn(2m+1)(2m﹣1).19.解方程组或不等式组:(1);(2).解:(1),①×2得:2x+4y=0③,③﹣②得:7y=﹣7,解得:y=﹣1,把y=﹣1代入①得:x﹣2=0,解得:x=2,方程组的解为;(2),解不等式①得:x<2,解不等式②得:x>1,不等式组的解集为:1<x<2.20.已知a﹣b=5,ab=1,求下列各式的值:(1)(a+b)2;(2)a3b+ab3.解:(1)原式=(a﹣b)2+4ab=52+4=29;(2)原式=ab(a2+b2)=ab[(a﹣b)2+2ab]=1×(25+2)=27.21.如图,CF⊥AB于点F,ED⊥AB于点D,∠BED=∠CFG,请问:FG与BC平行吗?说明理由.解:FG∥BC,理由是:∵CF⊥AB,ED⊥AB,∴DE∥CF,∴∠BED=∠BCF,∵∠BED=∠CFG,∴∠CFG=∠BCF,∴FG∥BC.22.2020年初,由于新冠病毒的蔓延,口罩市场出现热销,小明的爸爸用18000元购进甲、乙两种型号的口罩,在自家药店销售,销售完后共获利3900元,进价和售价如表所示:甲种型号口罩乙种型号口罩价格型号进价(元/袋)2030售价(元/袋)2536(1)小明爸爸的药店购进甲、乙两种型号的口罩各多少袋?(2)由于需求量大,口罩很快售完,小明的爸爸决定再一次购进甲、乙两种型号的口罩共800袋.如果要使这800袋口罩全部售完后所得利润不低于4500元,那么至少需购进多少袋乙种型号的口罩?解:(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,则,解得:,答:小明爸爸的药店购进甲种型号口罩300袋,乙种型号口罩400袋;(2)设需购进a袋乙种型号的口罩,根据题意得,(25﹣20)(800﹣a)+(36﹣30)a≥4500.解这个不等式,得a≥500.答:至少需购进500袋乙种型号的口罩.23.(1)比较x2+4与4x的大小:(用“>”或“=”或“<”或“≥”或“≤”号填空)①当x=1时,x2+4>4x;②当x=2时,x2+4=4x;③当x=﹣1时,x2+4>4x;④自己再任意取一些x的值,计算后猜想:x2+4≥4x.(2)无论x取什么值,x2+4与4x总有这样的大小关系吗?请说明理由.解:(1)①当x=1时,x2+4=1+4=5,4x=4,∴x2+4>4x;②当x=2时,x2+4=4+4=8,4x=8,∴x2+4=4x;③当x=﹣1时,x2+4=1+4=5,4x=﹣4,∴x2+4>4x;④再任意取一些x的值,计算后可以得到:x2+4≥4x,故答案为:①>;②=;③>;④≥;(2)x2+4﹣4x=(x﹣2)2,∵(x﹣2)2≥0,∴x2+4≥4x.24.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x﹣6=0的解为x=3,不等式组的解集为1<x<4,因为1<3<4,所以称方程2x﹣6=0为不等式组的关联方程.(1)在方程①3x﹣3=0;②x+1=0;③x﹣(3x+1)=﹣9中,不等式组的关联方程是①.(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是x ﹣3=0.(写出一个即可)(3)若方程2x﹣1=x+2,x+5=2(x+)都是关于x的不等式组的关联方程,求m的取值范围.解:(1)解不等式组得﹣1<x<4,解①得:x=1,﹣1<1<4,故①是不等式组的关联方程;解②得:x=﹣,不在﹣1<x<4内,故②不是不等式组的关联方程;解③得:x=4,不在﹣1<x<4内,故③是不不等式组的关联方程;故答案为:①;(2)解不等式组得:<x<因此不等式组的整数解可以为x=3,则该不等式的关联方程为x﹣3=0.故答案为:x﹣3=0.(3)解方程2x﹣1=x+2得,x=3,解方程x+5=2(x+)得,x=4,不等式组,得:,由题意,x=3和x=4是不等式组的解,∴,解得m<﹣10,∴m的取值范围为m<﹣10.25.【基本模型】:如图1,BO平分△ABC的内角∠ABC,CO平分△ABC的外角∠ACD,试证明:∠BOC=∠A;【变式应用】:(1)如图2,直线PQ⊥MN,垂足为点O,作∠PON的角平分线OE,在OE上任取一点A,在ON上任取一点B,连接AB,作∠BAE的角平分线AC,AC的反向延长线与∠ABO的平分线相交于点F,请问:∠F的大小是否随着点A,B位置的变化而变化?若发生变化,请说明理由;若不发生变化,请求出其度数;(2)在(1)的基础上,若FC∥MN,则AB与OE有何位置关系?请说明理由.【解答】【基本模型】证明:∵∠OCD=∠OBC+∠BOC,∠ACD=∠ABC+∠A,∴∠BOC=∠OCD﹣∠OBC,∠A=∠ACD﹣∠ABC,又∵CO平分∠ACD,BO平分∠ABC,∴∠OCD=∠ACD,∠OBC=∠ABC,∴∠OCD﹣∠OBC=(∠ACD﹣∠ABC),∴∠BOC=∠A;【变式应用】解:(1)∠F的大小不变;理由如下:∵PQ⊥MN,∴∠PON=90°,∵OE是∠PON的平分线,∴∠AOB=∠PON=45°,∵∠BAC=∠ABF+∠F,∠BAE=∠ABO+∠AOB,∴∠F=∠BAC﹣∠ABF,∠AOB=∠BAE﹣∠ABO,∵AC、BF分别平分∠BAE、∠ABO,∴∠BAC=∠BAE,∠ABF=∠ABO,∴∠BAC﹣∠ABF=(∠BAE﹣∠ABO),∴∠F=∠AOB=22.5°;(2)AB⊥OE,理由如下:∵FC∥MN,∴∠FBO=∠F=22.5°,∵BF平分∠ABO,∴∠ABO=2∠FBO=45°,∴∠OAB=180°﹣∠AOB﹣∠ABO=90°,∴AB⊥OE.。
济南市高新区2019-2020学年第二学期七年级期末考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在一个不透明的袋中,装有1个白球、2个红球、2个黄球、3个黑球,它们除颜色外都相同,从袋中任意摸出一个球,可能性最大的是( )A .白球B .红球C .黄球D .黑球2.汉字书法博大精深,下列汉字“行“的不同书写字体中,是轴对称图形的是( )A .B .C .D .3.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A .太阳光强弱B .水的温度C .所晒时间D .热水器的容积4.下列各图中,∠1与∠2是对顶角的是( )A .B .C .D .5.在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .6.下列计算正确的是( )A .5a ﹣2a =3B .a 2+4a 2=5a 4C .(x 2)3=x 6D .x 6÷x 3=x 27.下列各组数据不是勾股数的是( )A .2,3,4B .3,4,5C .5,12,13D .6,8,108.如图,将一张矩形纸片折叠,若∠1=78°,则∠2的度数是( )A .51°B .56°C .61°D .78°9.小红到文具店买彩笔,每打彩笔是12支,售价18元,那么买彩笔所需的钱数y (元)与购买彩笔的支数x (支)之间的关系式为( )A .y =23xB .y =32xC .y =12xD .y =18x10.如图是用4个相同的小长方形与1个小正方形镶嵌而成的正方形图案,已知图案的面积为25,小正方形的面积为9,若用x ,y 长示小长方形的两边长(x >y ),请观察图案,以下关系式中不正确的是( )A .4xy +9=25B .x +y =5C .x ﹣y =3D .x 2+y 2=16第10题图 第11题图11.如图,圆柱的底面半径是4,高是5,一只在A 点的蚂蚁想吃到B 点的食物,需要爬行的最短路径是(π取3)( )A .9B .13C .14D .2512.如图,在等腰△ABC 中,AB =AC ,AB >BC ,点D 在边BC 上,且41 BC BD ,点E 、F 在线段AD 上,满足∠BED =∠CFD =∠BAC ,若S △ABC =20,则S △ABE +S CDF 是多少?( )A .9B .12C .15D .18二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:(m ﹣n )(m +n )= .14.袋中装有6个黑球和若干个白球,每个球除颜色外都相同.现进行摸球试验,每次随机摸出一个球记下颜色后放回.经过大量的试验,发现摸到黑球的频率稳定在附近,则袋中白球约有 个.15.如图,是一个测量工件内槽宽的工具,点O 既是AA '的中点,也是BB '的中点,若测得AB =5cm ,则该内槽A 'B '的宽为 cm .第15题图 第16题图16.如图所示正五角星是轴对称图形,它有 条对称轴.17.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶,在行使过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)0123y(升)100928476由表格中y与t的关系可知,当汽车行驶小时,油箱的余油量为40升.18.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,已知S1+S2+S3=10,则S2的值是.三、解答题:(本大题共12个小题,共102分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)计算:(x+3)(x﹣4)20.(本题4分)运算:(x+2)221.(本题4分)已知:如图,直线AB,CD被直线GH所截,∠1=112°,∠2=68°,求证:AB∥CD.完成下面的证明.证明:∵AB被直线GH所截,∠1=112°,∴∠1=∠=112°∵∠2=68°,∴∠2+∠3=,∴AB∥()(填推理的依据)22.(本题5分)某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中的所走路程s (米)与时间t(分)之间的关系.(1)学校离他家米,从出发到学校,王老师共用了分钟;王老师吃早餐用了分钟?(2)观察图形直接回答王老师吃早餐以前的速度快还是吃完早餐以后的速度快?23.(本题5分)如图所示,在边长为1的小正方形组成的网格中,△ABC的三个顶点分别在格点上,请在网格中按要求作出下列图形,并标注相应的字母.(1)作△A1B1C1,使得△A1B1C1与△ABC关于直线l对称;(2)△A1B1C1的面积是.24.(本题6分)先化简,再求值:(x﹣1)2﹣x(x﹣3),其中x=2.25.(本题6分)把下面的说理过程补充完整:已知:如图,BC∥EF,BC=EF,AF=DC线段AB和线段DE平行吗?请说明理由.答:AB∥DE理由:∵AF=DC(已知)∴AF+FC=DC+∴AC=DF()(填推理的依据)∵BC∥EF(已知)∴∠BCA=∠(两直线平行,内错角相等)又∵BC=EF(已知)∴△ABC≌△DEF()(填推理的依据)∴∠A=∠(全等三角形的对应角相等)∴AB∥(内错角相等,两直线平行)26.(本题6分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,AD=16,求AB的长.27.(本题8分)如图,现有一块长为(3a+b)米,宽为(a+2b)米的长方形地块,规划将阴影部分进行绿化,中间预留部分是边长为a米的正方形.(1)求绿化的面积(用含a,b的代数式表示);(2)若a=3,b=1,绿化成本为50元/平方米,则完成绿化共需要多少元?28.(本题8分)如图,小明将升旗的绳子拉到旗杆底端点B处,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米的点C处,发现此时绳子底端距离打结处约3米,请算出旗杆AB的高度.29.(本题10分)甲口袋中放有3个红球和5个白球,乙口袋中放有7个红球和9个白球,所有球除颜色外都相同.充分搅匀两个口袋,分别从两个口袋中任意摸出一个球,设从甲中摸出红球的概率是P甲(红),从乙中摸出红球的概率是P乙(红)(1)求P甲(红)与P乙(红)的值,并比较它们的大小.(2)将甲、乙两个口袋的球都倒入丙口袋,充分搅匀后,设从丙中任意摸出一球是红球的概率为P丙(红).小明认为:P丙(红)=P甲(红)+P乙(红).他的想法正确吗?请说明理由.30.(本题12分)已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD=DE.(1)如图1,当E在AC的延长线上且CE=CD时,AD是△ABC的中线吗?请说明理由;(2)如图2,当E在AC的延长线上时,AB+BD等于AE吗?请说明理由;(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系.。
2019-2020学年七年级第二学期期中数学试卷一、选择题(共10小题).1.如图所示的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.2.下列各式中计算正确的是()A.(﹣a5)2=a10B.(x6)2=x8C.b3•b3=b9D.a8÷a2=a4 3.下列三条线段不能构成三角形的是()A.2,3,4B.1,2,3C.,,D.20,30,40 4.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.内角和增加180°D.对角线增加一条5.下列各式从左边到右边的变形是因式分解的是()A.﹣18x4y3=﹣6x2y2•3x2y B.(a+2)(a﹣2)=a2﹣4C.x2+2x+1=x(x+2)+1D.a2﹣8a+16=(a﹣4)26.如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE 7.下列方程组中,是二元一次方程组的是()A.B.C.D.8.若a m=3,a n=2,则a m﹣2n的值是()A.1B.C.D.129.已知x+y=3,xy=2,则|x﹣y|的值为()A.±1B.1C.﹣1D.010.如图,△ABC中,∠A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C 落在BE上的C′处,此时∠C′DB=74°,则原三角形的∠C的度数为()A.27°B.59°C.69°D.79°二、填空题(本大题8小题,每题2分,共16分)11.2020年肆虐全球的新冠病毒的大小为0.000000125米,用科学记数法表示为.12.已知:是方程4x﹣ay=3的解,则a=.13.如果一个多边形的每一个外角都等于60°,则它的内角和是.14.如图:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=26°,则∠2=°.15.如果(x+1)(x2﹣2ax+a2)的乘积中不含x2项,则a=.16.若x=2m+1,y=3+4m,则用x的代数式表示y为.17.一机器人以2m/s的速度在平地上按如下要求行走,则该机器人从开始到停止所需时间为s.18.如图,点C是线段AB上的一点,分别以AC、BC为边在AB的同侧作正方形ACDE 和正方形CBFG,连接EG、BG、BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2,……,以此类推,当BC=n时,△BEG的面积记为S n,则S2020﹣S2019的值为.三、解答题(本大题共8小题,共54分)19.计算与化简:(1);(2)(﹣2x)3+x2•x5÷x4;(3)(x﹣3)2+(x﹣2)(x﹣1).20.因式分解:(1)x2﹣2x+1;(2)a2(1﹣m)+4(m﹣1);(3)(x﹣y)2﹣4(x﹣y﹣1).21.解二元一次方程组:(1);(2).22.先化简,再求值:(x﹣2)2+2(x﹣2)(x+4)+(3﹣x)(3+x),其中.23.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△A′B′C′的高C′D′,并求出△ABC在整个平移过程中线段AC扫过的面积为.(3)能使S△MBC=S△ABC的格点M共有个.(点M异于点A)24.如图,在△ABC中,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)若∠1=∠2,试说明DG∥BC;(2)若CD平分∠ACB,∠A=60°,求∠B的度数.25.(1)如图1,∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数;若发生变化,求出变化范围.(2)如图2,两条相交的直线OX、OY,使∠XOY=n°,在射线OX、OY上分别再任意取A、B两点,作∠ABY的平分线BD,BD的反向延长线交∠OAB的平分线于点C,随着点A、B位置的变化,∠C的大小是否会变化?若保持不变,请求出∠C的度数;若发生变化,求出变化范围.26.如图,在长方形ABCD中,AB=4cm,BE=5cm,点E是AD边上的一点,AE、DE 分别长acm、bcm,满足(a﹣3)2+|2a+b﹣9|=0.动点P从B点出发,以2cm/s的速度沿B→C→D运动,最终到达点D.设运动时间为ts.(1)a=cm,b=cm;(2)t为何值时,EP把四边形BCDE的周长平分?(3)另有一点Q从点E出发,按照E→D→C的路径运动,且速度为1cm/s,若P、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t为何值时,△BPQ 的面积等于6cm2.参考答案一、选择题(本大题10小题,每题3分,共30分)(2020.5)1.如图所示的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,进而判断即可.解:观察图形可知,图案D可以看作由“基本图案”经过平移得到.故选:D.2.下列各式中计算正确的是()A.(﹣a5)2=a10B.(x6)2=x8C.b3•b3=b9D.a8÷a2=a4【分析】根据同底数幂的乘法运算法则、同底数幂的除法运算法则以及幂的乘方与积的乘方运算法则逐项分析即可.解:A、(﹣a5)2=a10,故本选项正确;B、(x6)2=x12,故本选项错误;C、b3•b3=b6,故本选项错误;D、a8÷a2=a6,故本选项错误.故选:A.3.下列三条线段不能构成三角形的是()A.2,3,4B.1,2,3C.,,D.20,30,40【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析即可.解:A、2+3>4,能够组成三角形;B、1+2=3,不能够组成三角形;C、+=>,能组成三角形;D、20+30>40,能够组成三角形.故选:B.4.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.内角和增加180°D.对角线增加一条【分析】利用n边形的内角和公式即可解决问题.解:根据n边形的内角和可以表示成(n﹣2)•180°,可以得到增加一条边时,边数变为n+1,则内角和是(n﹣1)•180°,因而内角和增加:(n﹣1)•180°﹣(n﹣2)•180°=180°.故选:C.5.下列各式从左边到右边的变形是因式分解的是()A.﹣18x4y3=﹣6x2y2•3x2y B.(a+2)(a﹣2)=a2﹣4C.x2+2x+1=x(x+2)+1D.a2﹣8a+16=(a﹣4)2【分析】根据因式分解的定义逐个判断即可.解:A、从左边到右边的变形不属于因式分解,故本选项不符合题意;B、从左边到右边的变形不属于因式分解,故本选项不符合题意;C、从左边到右边的变形不属于因式分解,故本选项不符合题意;D、从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.6.如图,能判定EB∥AC的条件是()A.∠A=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠C=∠ABE 【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解:A、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确.B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误;D、∠C=∠ABE不能判断出EB∥AC,故本选项错误;故选:A.7.下列方程组中,是二元一次方程组的是()A.B.C.D.【分析】根据二元一次方程组的定义逐个判断即可.解:A、含有三个未知数,不是二元一次方程组,故本选项不符合题意;B、是二元二次方程组,不是二元一次方程组,故本选项不符合题意;C、是二元一次方程组,故本选项符合题意;D、是二元二次方程组,不是二元一次方程组,故本选项不符合题意;故选:C.8.若a m=3,a n=2,则a m﹣2n的值是()A.1B.C.D.12【分析】根据同底数幂的除法法则:底数不变,指数相减,及同底数幂的乘方与积的乘方运算,然后即可作出判断.解:∵a m﹣2n=a m÷a2n,a2n=(a n)2,∴a m﹣2n=3÷22=,故选:C.9.已知x+y=3,xy=2,则|x﹣y|的值为()A.±1B.1C.﹣1D.0【分析】根据完全平方公式的变形来a2+b2=(a+b)2﹣2ab和(a﹣b)2=(a+b)2﹣4ab 求解.解:∵x+y=3,xy=2,∴(x﹣y)2=(x+y)2﹣4xy=32﹣4×2=1.∴x﹣y=±1,∴|x﹣y|=1.故选:B.10.如图,△ABC中,∠A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C 落在BE上的C′处,此时∠C′DB=74°,则原三角形的∠C的度数为()A.27°B.59°C.69°D.79°【分析】先根据折叠的性质得∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,则∠1=∠2=∠3,即∠ABC=3∠3,根据三角形内角和定理得∠3+∠C=106°,在△ABC中,利用三角形内角和定理得∠A+∠ABC+∠C=180°,则20°+2∠3+106°=180°,可计算出∠3=27°,即可得出结果.【解答】解如图,∵△ABC沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,∴∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,∴∠1=∠2=∠3,∴∠ABC=3∠3,在△BCD中,∠3+∠C+∠CDB=180°,∴∠3+∠C=180°﹣74°=106°,在△ABC中,∵∠A+∠ABC+∠C=180°,∴20°+2∠3+(∠3+∠C)=180°,即20°+2∠3+106°=180°,∴∠3=27°,∴∠ABC=3∠3=81°,∠C=106°﹣27°=79°,故选:D.二、填空题(本大题8小题,每题2分,共16分)11.2020年肆虐全球的新冠病毒的大小为0.000000125米,用科学记数法表示为 1.25×10﹣7米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000000125米用科学记数法表示为1.25×10﹣7米.故答案是:1.25×10﹣7米.12.已知:是方程4x﹣ay=3的解,则a=9.【分析】将代入方程4x﹣ay=3得到关于a的方程,解之可得.解:根据题意,将代入方程4x﹣ay=3,得:12﹣a=3,解得a=9,故答案为:9.13.如果一个多边形的每一个外角都等于60°,则它的内角和是720°.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,因而代入公式就可以求出内角和.解:多边形边数为:360°÷60°=6,则这个多边形是六边形;∴内角和是:(6﹣2)•180°=720°.故答案为:720°.14.如图:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=26°,则∠2=34°.【分析】过C作CM∥直线l1,证明CM∥直线l1∥直线l2,根据平行线的性质得出∠1=∠MCB=26°,∠2=∠ACM,即可求出答案.解:如图,过C作CM∥直线l1,∵直线l1∥l2,∴CM∥直线l1∥直线l2,∵∠ACB=60°,∠1=26°,∴∠1=∠MCB=26°,∴∠2=∠ACM=∠ACB﹣∠MCB=60°﹣26°=34°,故答案为:34.15.如果(x+1)(x2﹣2ax+a2)的乘积中不含x2项,则a=.【分析】先利用多项式乘法的运算法则展开求它们的积,并且把a看作常数合并关于x2的同类项,令x2的系数为0,求出a的值.解:原式=x3﹣2ax2+a2x+x2﹣2ax+a2=x3+(1﹣2a)x2+(a2﹣2a)x+a2,∵不含x2项,∴1﹣2a=0,解得a=,故答案为:.16.若x=2m+1,y=3+4m,则用x的代数式表示y为y=(x﹣1)2+3.【分析】把y=3+4m化为y=3+22m求解即可.解:∵x=2m+1,y=3+4m,∴x=2m+1,y=3+22m,∴y=(x﹣1)2+3.故答案为:y=(x﹣1)2+3.17.一机器人以2m/s的速度在平地上按如下要求行走,则该机器人从开始到停止所需时间为16s.【分析】该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.解:360°÷45°=8,则所走的路程是:4×8=32(m),则所用时间是:32÷2=16(s).故答案是:16.18.如图,点C是线段AB上的一点,分别以AC、BC为边在AB的同侧作正方形ACDE 和正方形CBFG,连接EG、BG、BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2,……,以此类推,当BC=n时,△BEG的面积记为S n,则S2020﹣S2019的值为.【分析】作辅助线,构建同底等高三角形,根据等腰直角三角形面积公式可得结论.解:连接EC,∵正方形ACDE和正方形CBFG,∴∠ACE=∠ABG=45°,∴EC∥BG,∴△BCG和△BEG是同底(BG)等高的三角形,即S△BCG=S△BEG,∴当BC=n时,S n=n2,∴S2020﹣S2019=×20202﹣×20192=(2020+2019)(2020﹣2019)=;故答案为:.三、解答题(本大题共8小题,共54分)19.计算与化简:(1);(2)(﹣2x)3+x2•x5÷x4;(3)(x﹣3)2+(x﹣2)(x﹣1).【分析】(1)根据负整数指数幂、零指数幂和有理数的乘方可以解答本题;(2)根据积的乘方和同底数幂的乘除法可以解答本题;(3)根据完全平方公式、多项式乘以多项式可以解答本题.解:(1)=4+1﹣1=4;(2)(﹣2x)3+x2•x5÷x4=﹣8x3+x2+5﹣4=﹣8x3+x3=﹣7x3;(3)(x﹣3)2+(x﹣2)(x﹣1)=x2﹣6x+9+x2﹣3x+2=2x2﹣9x+11.20.因式分解:(1)x2﹣2x+1;(2)a2(1﹣m)+4(m﹣1);(3)(x﹣y)2﹣4(x﹣y﹣1).【分析】(1)原式利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可;(3)原式整理后,利用完全平方公式分解即可.解:(1)原式=(x﹣1)2;(2)原式=a2(1﹣m)﹣4(1﹣m)=(1﹣m)(a2﹣4)=(1﹣m)(a+2)(a﹣2);(3)原式=(x﹣y)2﹣4(x﹣y)+4=(x﹣y﹣2)2.21.解二元一次方程组:(1);(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.解:(1),①×2﹣②得:﹣x=﹣6,解得:x=6,把x=6代入①得:y=﹣3,则方程组的解为;(2),①+②×2得:13x=13,解得:x=1,把x=1代入①得:y=,则方程组的解为.22.先化简,再求值:(x﹣2)2+2(x﹣2)(x+4)+(3﹣x)(3+x),其中.【分析】先根据整式的乘法法则和乘法公式算乘法,再合并同类项,最后代入求出即可.解:原式=x2﹣4x+4﹣2x2+8x﹣4x﹣16+9﹣x2=2x2﹣3,当时,原式=2×()2﹣3=﹣.23.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△A′B′C′的高C′D′,并求出△ABC在整个平移过程中线段AC扫过的面积为32.(3)能使S△MBC=S△ABC的格点M共有4个.(点M异于点A)【分析】(1)利用网格特点和平移的性质分别画出A、B、C的对应点A′、B′、C′即可;(2)利用网格特点和三角形高的定义画出C′D′,根据平移的性质得到线段AC扫过的部分为平行四边形,然后计算两个三角形的面积可得到此平行四边形的面积;(3)根据三角形面积公式,把直线BC平行使它经过点A,然后找出此直线上的格点即可.解:(1)如图,△A′B′C′为所作;(2)如图,C′D′为所作;线段AC扫过的面积=S△AA′C+S△C′A′C=×8×4+×4×8=32;(3)如图,过A点作BC的平行线,此直线的格点有4个(A点除外),即能使S△MBC =S△ABC的格点M共有4个.故答案为32,4.24.如图,在△ABC中,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)若∠1=∠2,试说明DG∥BC;(2)若CD平分∠ACB,∠A=60°,求∠B的度数.【分析】(1)欲证明DG∥BC,只要证明∠BCD=∠2即可.(2)求出∠ACB,利用三角形内角和定理即可解决问题.【解答】(1)证明:∵CD⊥AB,EF⊥AB,∴∠EFB=90°,∠CDB=90°,∴∠EFB=∠CDB,∴EF∥CD,∴∠1=∠BCD,∵∠1=∠2,∴∠2=∠BCD,∴DG∥BC.(2)解:∵CD⊥AB,∴∠CDA=90°,∵∠A=60°,∴∠ACD=30°,∵CD平分∠ACB,∴∠ACD=∠ACB,∴∠ACB=60°,∵∠A=60°,∴∠B=60°.25.(1)如图1,∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数;若发生变化,求出变化范围.(2)如图2,两条相交的直线OX、OY,使∠XOY=n°,在射线OX、OY上分别再任意取A、B两点,作∠ABY的平分线BD,BD的反向延长线交∠OAB的平分线于点C,随着点A、B位置的变化,∠C的大小是否会变化?若保持不变,请求出∠C的度数;若发生变化,求出变化范围.【分析】(1)先根据三角形内角和定理及角平分线的性质求出∠APB的度数,再根据三角形内角和是180°即可求解;(2)令∠OAC=∠CAB=x,∠ABD=∠BDY=y,再根据三角形的外角性质即可求解.【解答】(1)解:∵在△AOB中,∠MON=80°,∴∠OAB+∠OBA=100°,又∵AC、BD为角平分线,∴∠PAB+∠PBA=∠OAB+∠OBA=×100°=50°,∴∠APB=180°﹣(∠PAB+∠PBA)=130°,即随着点A、B位置的变化,∠APB的大小始终不变,为130°.(2)解:由题意,不妨令∠OAC=∠CAB=x,∠ABD=∠BDY=y,∵∠ABY是△AOB的外角,∴2y=n+2x,同理,∠ABD是△ABC的外角,有y=∠C+x,于是,显然有∠C=.26.如图,在长方形ABCD中,AB=4cm,BE=5cm,点E是AD边上的一点,AE、DE 分别长acm、bcm,满足(a﹣3)2+|2a+b﹣9|=0.动点P从B点出发,以2cm/s的速度沿B→C→D运动,最终到达点D.设运动时间为ts.(1)a=3cm,b=3cm;(2)t为何值时,EP把四边形BCDE的周长平分?(3)另有一点Q从点E出发,按照E→D→C的路径运动,且速度为1cm/s,若P、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t为何值时,△BPQ 的面积等于6cm2.【分析】(1)由非负性可求a,b的值;(2)先求出C四边形BCDE=18cm,可得BE+BP=9cm,可求BP=4cm,即可求解;(3)分三种情况讨论,由三角形的面积公式可求解.解:(1)∵(a﹣3)2+|2a+b﹣9|=0,∴a﹣3=0,2a+b﹣9=0,∴a=3,b=3;故答案为:3,3;(2)∵AE=3cm,DE=3cm,∴AD=6cm=BC,∴C四边形BCDE=BC+CD+DE+EB=18cm,∵EP把四边形BCDE的周长平分,∴BE+BP=9cm,∴点P在BC上,BP=4cm,∴t==2s;(3)解:①点P在BC上(0<t≤3),∵S△BPQ=×2t×4=6,∴t=;②相遇前,点P在CD上(3<t≤),∵S△BPQ=×[(4﹣(t﹣3)﹣(2t﹣6)]×6=6,∴t=;③相遇后,点P在CD上(<t≤5),∵S△BPQ=×[((t﹣3)+(2t﹣6)﹣4]×6=6,∴t=5;∴综上所述,当t=s或s或5s时,△BPQ的面积等于6cm2.。
2019-2020年七年级数学下册 第10章 10.4 三元一次方程组同步练习(含解析)(新版)苏科版一、单选题(共10题;共20分)1、某班级为准备毕业联欢会,想购买价格分别为2元、元、44元和10元的三种物品,每种物品至少购买一件,共16件,恰好用50元,若2元的奖品购买x 件,则符合要求的x 的值为(的值为( )A 、10或12 12B 、10或13C 、10或11或12D 、10或11或12或132、若方程组的解中x 的值比y 的值的相反数大1,则k 为(为( )A 、3B 、-3C 、2D 、-23、有甲、乙、丙三种货物,若购买甲3件,乙7件,丙1件,共需63元,若购甲4件,乙10件,丙1件共需84元.现在购买甲、乙、丙各一件,共需(元.现在购买甲、乙、丙各一件,共需( )元.)元.A 、21B 、23C 、25D 、274、某兴趣小组决定去市场购买A ,B ,C 三种仪器,其单价分别为3元,元,55元,元,77元,购买这批仪器需花62元;经过讨价还价,最后以每种单价各下降1元成交,结果只花50元就买下了这批仪器.那么A 种仪器最多可买(最多可买( )A 、8件B 、7件C 、6件D 、5件5、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、元、55元、元、66元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买(能购买( )A 、11支B 、9支C 、7支D 、4支6、若方程组的解x 与y 相等.则a 的值等于(的值等于( )A 、4B 、10C 、11D 、127、已知x+4y x+4y﹣﹣3z=03z=0,且,且4x 4x﹣﹣5y+2z=05y+2z=0,,x :y :z 为(为() A 、1:2:3B 、1:3:2C 、2:1:3D 、3:1:28、若购买甲商品3件,乙商品2件,丙商品1件,共需140元;购买甲商品1件,乙商品2件,丙商品3件,共需100元;那么购买甲商品1件,乙商品1件,丙商品1件,共需(件,共需()元.)元. A 、50B 、60C 、70D 、809、如果方程组、如果方程组 的解使代数式kx+2y kx+2y﹣﹣3z 的值为8,则k=k=(( )A 、B 、﹣、﹣C 、3D 、﹣、﹣3 31010、若二元一次方程组、若二元一次方程组、若二元一次方程组 的解也是二元一次方程3x 3x﹣﹣4y=6的解,则k 的值为(的值为() A 、4B 、8C 、6D 、﹣、﹣6 6二、填空题(共8题;共8分)1111、若、若, 则x+y+z=________ x+y+z=________ ..1212、如果方程组的解与方程组的解相同,则、如果方程组的解与方程组的解相同,则a+b=________ a+b=________ ..1313、若、若x+2y+3z=10x+2y+3z=10,,4x+3y+2z=154x+3y+2z=15,则,则x+y+z 的值是的值是________ ________ ________1414、已知、已知、已知|x |x |x﹣﹣z+4|+|z z+4|+|z﹣﹣2y+1|+|x+y 2y+1|+|x+y﹣﹣z+1|=0z+1|=0,则,则x+y+z=________ x+y+z=________1515、若方程组、若方程组、若方程组 的解也是方程3x+ky=10的一个解,则k=________k=________..1616、方程组、方程组、方程组 的解是的解是________ ________1717、若、若3x 3x﹣﹣y ﹣7=2x+3y 7=2x+3y﹣﹣1=y 1=y﹣﹣kx+9=0kx+9=0,则,则k 的值为的值为________________________..1818、若方程组、若方程组、若方程组 的解满足方程x+y+a=0x+y+a=0,则,则a 的值为的值为________ ________三、计算题(共1题;共5分)1919、解方程组:、解方程组:、解方程组: .四、解答题(共6题;共30分)2020、组装甲、乙、丙、组装甲、乙、丙3种产品,需用A 、B 、C3种零件.每件甲需用A 、B 各2个;每件乙需用B 、C 各1个;每件丙需用2个A 和1个C .用库存的A 、B 、C3种零件,如组装成p 件甲产品、件甲产品、q q 件乙产品、件乙产品、r r 件丙产品,则剩下2个A 和1个B ,C 恰好用完.求证:无论怎样改变生产甲、乙、丙的件数,也不能把库存的A 、B 、C3种零件都恰好用完.种零件都恰好用完.2121、某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由、某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、朵红花、2424朵黄花和25朵紫花搭配而成,配而成,乙种盆景由乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、朵红花、1818朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,朵红花,37503750朵紫花,求黄花一共用了多少朵?朵紫花,求黄花一共用了多少朵?2222、小明从家到学校的路程为、小明从家到学校的路程为3.3千米,其中有一段上坡路,平路,和下坡路.如果保持上坡路每小时行3千米.平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?2323、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:下表:家电名称家电名称空调空调 彩电彩电 冰箱冰箱 工 时产值(千元)产值(千元)4 3 2 问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少?(以千元为单位)2424、甲,乙,丙三人各有邮票若干枚,要求互相赠送.先由甲送给乙,丙,所给的枚数等于乙,丙原来各、甲,乙,丙三人各有邮票若干枚,要求互相赠送.先由甲送给乙,丙,所给的枚数等于乙,丙原来各有的邮票数;然后依同样的游戏规则再由乙送给甲,丙现有的邮票数,最后由丙送给甲,乙现有的邮票数.互相送完后,每人恰好各有64枚.你能知道他们原来各有邮票多少枚吗?说出你的思考过程.枚.你能知道他们原来各有邮票多少枚吗?说出你的思考过程.2525、解三元一次方程组:、解三元一次方程组:、解三元一次方程组: .答案解析部分一、单选题一、单选题1、【答案】B【考点】解三元一次方程组解三元一次方程组【解析】【解答】解:设分别购买2元、元、44元和10元的三种物品x ,y ,z 件,件,由题意得由题意得, 解得解得, 当z=1时,时,x=7+3=10x=7+3=10件,件,y=9y=9y=9﹣﹣4=5件,件,当z=2时,时,x=7+6=13x=7+6=13件,件,y=9y=9y=9﹣﹣8=1件;件;当z=3时,时,y=9y=9y=9﹣﹣12=12=﹣﹣3<0(不合题意).(不合题意).故选B .【分析】设分别购买2元、元、44元和10元的三种物品x ,y ,z 件,建立三元一次方程组,用z 表示出x ,y 的值,讨论后得出结论.的值,讨论后得出结论.2、【答案】A【考点】解三元一次方程组解三元一次方程组【解析】解:由题意,解:由题意,解得x=x=,, y=, ∵x 的值比y 的值的相反数大1,∴x+y=1x+y=1,即,即,即+=1 +=1解得k=3k=3,,故选A .【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.解出方程组的解,在列出关于两解的等式,求出k .3、【答案】A【考点】解三元一次方程组解三元一次方程组【解析】解:设购买甲、乙、丙各一件分别需要x ,y ,z 元,元,由题意得,由题意得,②﹣①得x+3y=21x+3y=21,,代入①得x+y+2x+y+2((x+3y x+3y))+z=63+z=63,,即x+y+z+2×21=63,x+y+z+2×21=63,∴x+y+z=63x+y+z=63﹣﹣42=2142=21..故选A .【分析】设购买甲、乙、丙各一件分别需要x ,y ,z 元,列出方程组,消去z 后,得到x+3y 的值,再代入①,即可求得x+y+z 的值,也即购买甲、乙、丙各一件的共需钱数.的值,也即购买甲、乙、丙各一件的共需钱数.4、【答案】D【考点】解三元一次方程组解三元一次方程组【解析】解:设分别购买A ,B ,C 三种仪器x 、y 、z 台,台,则有:,则有:,两式相减得:两式相减得:x+y+z=12 x+y+z=12 x+y+z=12 ①,①,又x+2y+3z=25 x+2y+3z=25 ②,②,∴②﹣①得:∴②﹣①得:y+2z=13y+2z=13y+2z=13,,当y=1y=1,,z=6时,时,x=5x=5x=5,此时,此时x 的值最大.的值最大.故A 种仪器最多可5台.台.故选D .【分析】设分别购买A ,B ,C 三种仪器x 、y 、z 台,根据“购买这批仪器需花62元,但经过讨价还价,最后以每种单价各下降1元成交,结果只花50元就买下了这批仪器”列方程组求解即可.元就买下了这批仪器”列方程组求解即可.5、【答案】D【考点】解三元一次方程组解三元一次方程组【解析】解:设甲种钢笔有x 支、乙种钢笔有y 支、丙种钢笔有z 支,则支,则,其中x=11x=11,,x=9x=9,,x=7时都不符合题意;时都不符合题意;x=4时,时,y=4y=4y=4,,z=4符合题意.符合题意.故选:故选:D D .【分析】购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,可知钢笔有12支,可设甲种钢笔有x 支、乙种钢笔有y 支、丙三种钢笔有z 支,可列方程,得到整数解即可.支,可列方程,得到整数解即可.6、【答案】C【考点】解三元一次方程组解三元一次方程组【解析】【解答】解:根据题意得:,把(把(33)代入()代入(11)解得:)解得:x=y=x=y=x=y=,,代入(代入(22)得:)得:a+a+a+((a ﹣1)=3=3,,解得:解得:a=11a=11a=11..故选C .【分析】理解清楚题意,运用三元一次方程组的知识,解出a 的数值.的数值.7、【答案】A【考点】解三元一次方程组解三元一次方程组【解析】【解答】解:联立得:【解答】解:联立得:, ①×5+②×4得:得:21x=7z 21x=7z 21x=7z,解得:,解得:,解得:x= z x= z ,代入①得:,代入①得:,代入①得:y= z y= z , 则x :y :z= z : z :z= : :1=11=1::2:3.故选A【分析】将两个方程联立构成方程组,然后把z 看作字母已知数,分别用含有z 的式子表示出x 与y ,然后求出比值即可.后求出比值即可.8、【答案】B【考点】解三元一次方程组解三元一次方程组【解析】【解答】解:设一件甲商品x 元,乙y 元,丙z 元.元.根据题意得:根据题意得:, ①+②得:①+②得:4x+4y+4z=2404x+4y+4z=2404x+4y+4z=240,,所以x+y+z=60x+y+z=60,,故选:故选:B B .【分析】先设一件甲商品x 元,乙y 元,丙z 元,然后根据题意列出方程,然后依据用加减法整体求解即可.可.9、【答案】A【考点】解三元一次方程组解三元一次方程组【解析】【解答】解:【解答】解: ①﹣②,得①﹣②,得x ﹣z=2④﹣z=2④③+④,得③+④,得2x=62x=6,,解得,解得,x=3 x=3将x=3代入①,得代入①,得y=5y=5,,将x=3代入③,得代入③,得z=1z=1,,故原方程组的解是故原方程组的解是, 又∵方程组又∵方程组 的解使代数式kx+2y kx+2y﹣﹣3z 的值为8,∴3k+2×5﹣3×1=8,∴3k+2×5﹣3×1=8,解得,解得,k= k=, 故选A .【分析】先求出方程组的解,再根据方程组【分析】先求出方程组的解,再根据方程组 的解使代数式kx+2y kx+2y﹣﹣3z 的值为8,可以求得k 的值,本题得以解决.以解决.1010、、【答案】D【考点】解三元一次方程组解三元一次方程组【解析】【解答】解:已知【解答】解:已知 , ① +②得+②得2x= k, ∴x= k ,代入①得y=2k y=2k﹣﹣ k, ∴y= k .将x= k ,y= k ,代入,代入3x 3x﹣﹣4y=64y=6,,得3× k﹣4× k=6,解得k=8k=8..故选D .【分析】理解清楚题意,运用三元一次方程组的知识,先用含k 的代数式表示x ,y ,即解关于x ,y 的方程组,再代入3x 3x﹣﹣4y=6中可得解出k 的数值.的数值.二、填空题二、填空题1111、、【答案】17 17【考点】解三元一次方程组解三元一次方程组【解析】【解答】解:(1)+(2)+(3)得:)得:x+y x+y x+y﹣﹣z+y+z z+y+z﹣﹣x+z+x x+z+x﹣﹣y=11+5+1即x+y+z=17x+y+z=17,,故答案为:故答案为:17 17【分析】方程组中的三个方程相加,即可得出答案.【分析】方程组中的三个方程相加,即可得出答案.1212、、【答案】1 1【考点】解三元一次方程组解三元一次方程组【解析】【解答】解:依题意,知是方程组的解,【解答】解:依题意,知是方程组的解,①+②,得7a+7b=77a+7b=7,,方程两边都除以7,得a+b=1a+b=1..【分析】两个方程组的解相同,意思是这两个方程组中的x 都等于4,y 都等于3,即是方程组的解,根据方程组的解的定义,即可求出a+b 的值.的值.1313、、【答案】5【考点】解三元一次方程组解三元一次方程组【解析】【解答】解:将x+2y+3z=10与4x+3y+2z=15相加得5x+5y+5z=255x+5y+5z=25,,即x+y+z=5x+y+z=5..故本题答案为:故本题答案为:55.【分析】把两个方程相加得到与x+y+z 有关的等式而整体求解.有关的等式而整体求解.1414、、【答案】9【考点】解三元一次方程组,绝对值的非负性解三元一次方程组,绝对值的非负性【解析】【解答】解:∵【解答】解:∵|x |x |x﹣﹣z+4|+|z z+4|+|z﹣﹣2y+1|+|x+y 2y+1|+|x+y﹣﹣z+1|=0z+1|=0,,∴②+③×2得:得:2x 2x 2x﹣﹣z=z=﹣3④,﹣3④,﹣3④,由①④组成方程组,由①④组成方程组,解得:解得:x=1x=1x=1,,z=5z=5,,把z=5代入②得:代入②得:y=3y=3y=3,,∴x+y+z=1+3+5=9x+y+z=1+3+5=9..故答案为:故答案为:99.【分析】根据绝对值的非负性得出方程组,求出方程组的解,即可得出答案.1515、、【答案】﹣【考点】解三元一次方程组解三元一次方程组【解析】【解答】解:由题意得组【解答】解:由题意得组 , 解得解得解得 , 代入3x+ky=103x+ky=10,,得9﹣2k=102k=10,,解得k=k=﹣﹣. 故本题答案为:﹣故本题答案为:﹣. 【分析】由题意求得x ,y 的值,再代入3x+ky=10中,求得k 的值.的值.1616、、【答案】【考点】解三元一次方程组解三元一次方程组【解析】【解答】解:【解答】解: . 由(由(由(22)、()、(33)分别得到:)分别得到:y=2y=2﹣﹣z ,x=3x=3﹣﹣z ,将其代入(将其代入(11),得),得2﹣z+3z+3﹣﹣z=1z=1,,解得z=2z=2,,所以y=2y=2﹣﹣2=02=0,,x=3x=3﹣﹣2=12=1..所以原方程组的解集为:所以原方程组的解集为:. 故答案是:故答案是:. 【分析】先用含z 的代数式表示x 、y ,即解关于x ,y 的方程组,再代入x+y=1中可得.中可得. 1717、、【答案】4【考点】解三元一次方程组解三元一次方程组【解析】【解答】解:根据题意可得:【解答】解:根据题意可得: , 解得:解得:解得: , 将x=2x=2、、y=y=﹣﹣1代入y ﹣kx+9=0kx+9=0,得:﹣,得:﹣,得:﹣11﹣2k+9=02k+9=0,,解得:解得:k=4k=4k=4,,故答案为:故答案为:44.【分析】根据题意得出【分析】根据题意得出 ,解方程组得x 、y 的值,再代入y ﹣kx+9=0即可求得k 的值.的值. 1818、、【答案】5【考点】解三元一次方程组解三元一次方程组【解析】【解答】解:【解答】解: , ①代入②,得:①代入②,得:①代入②,得:22(y+5y+5)﹣)﹣)﹣y=5y=5y=5,解得,解得y=y=﹣﹣5,将y=y=﹣﹣5代入①得,代入①得,x=0x=0x=0;;故x+y=x+y=﹣﹣5,代入方程x+y+a=0中,得:中,得:﹣5+a=05+a=0,即,即a=5a=5..故a 的值为5.【分析】首先解方程组求得x 、y 的值,然后代入方程中即可求出a 的值.的值.三、计算题三、计算题1919、、【答案】解:解: 把③代入①,得把③代入①,得5y+z=2④5y+z=2④把③代入②,得把③代入②,得6y+4z=6y+4z=﹣6⑤﹣6⑤﹣6⑤④×4﹣⑤,得④×4﹣⑤,得14y=14解得,解得,y=1y=1y=1,,把y=1代入④,得z=z=﹣﹣3,把y=1代入③,得x=4x=4,,故原方程组的解是故原方程组的解是【考点】解三元一次方程组解三元一次方程组【解析】【分析】根据解三元一次方程组的方法可以解答本题.【分析】根据解三元一次方程组的方法可以解答本题.四、解答题四、解答题2020、、【答案】解:由已知,库存的A 、B 、C3种零件的个数分别为:种零件的个数分别为:A 种2p+2r+2件,件,B B 种2p+q+1件,件,C C 种q+r 件.件.假设生产甲x 件,乙y 件,丙z 件恰好将3种零件都用完,则由题意得:种零件都用完,则由题意得:(1)+(3)﹣()﹣(22)得:)得:3z=3r+13z=3r+1它的左边是3的倍数,而右边却是3的倍数加1,矛盾,不成立,,矛盾,不成立, 所以不能把库存的A 、B 、C3种零件都恰好用完.种零件都恰好用完.【考点】解三元一次方程组解三元一次方程组【解析】【分析】易得库存的A ,B ,C 的零件个数,假设生产甲x 件,乙y 件,丙z 件恰好将3种零件都用完,等量关系为:甲的零件个数×2+丙的零件个数×2=A 的零件总数;甲的零件个数×2+乙的零件个数×1=B 的零件总数;乙的零件个数×1+丙的零件个数×1=C 的零件总数;把所给式子整理,消去一个未知数,得到不存在的情况即可.数,得到不存在的情况即可.2121、、【答案】解:设有甲、乙、丙三种造型的盆景分别有x 盆、盆、y y 盆、盆、z z 盆,根据题意得:盆,根据题意得:,由①得,由①得,3x+2y+2z=5803x+2y+2z=5803x+2y+2z=580,,即x+2y+2x+2y+2((x+z x+z)=580③,)=580③,)=580③,由②得,x+z=150④,由②得,x+z=150④,③+④得:③+④得:4x+2y+3z=7304x+2y+3z=7304x+2y+3z=730,,∴黄花一共用了:∴黄花一共用了:24x+12y+18z=624x+12y+18z=624x+12y+18z=6((4x+2y+3z 4x+2y+3z)=6×730=4380.)=6×730=4380.)=6×730=4380.故黄花一共用了4380朵.朵.【考点】解三元一次方程组解三元一次方程组【解析】【分析】先设有甲、乙、丙三种造型的盆景分别有x 盆、盆、y y 盆、盆、z z 盆,根据甲种盆景所用红花的朵数朵数++乙种盆景所用红花的朵数乙种盆景所用红花的朵数++丙种盆景所用红花的朵数丙种盆景所用红花的朵数=2900=2900朵,甲种盆景所用黄花的朵数甲种盆景所用黄花的朵数++乙种盆景所用黄花的朵数用黄花的朵数++丙种盆景所用黄花的朵数丙种盆景所用黄花的朵数=4380=4380朵.据此可列出方程组,表示出(朵.据此可列出方程组,表示出(x+z x+z x+z),代入即可得出答),代入即可得出答案.案.2222、、【答案】解:设去时上坡路是x 千米,下坡路是y 千米,平路是z 千米.依题意得:千米.依题意得:解得.解得.答:上坡路2.25千米、平路0.8千米、下坡路0.25千米千米【考点】解三元一次方程组解三元一次方程组【解析】【分析】本题中需要注意的一点是:去时的上坡和下坡路与回来时的上坡和下坡路正好相反,平路路程不变.路路程不变.题中的等量关系是:题中的等量关系是:题中的等量关系是:从家到学校的路程为从家到学校的路程为3.3千米;去时上坡时间千米;去时上坡时间++下坡时间下坡时间++平路时间平路时间=1=1小时;回时上坡时间时;回时上坡时间++下坡时间下坡时间++平路时间平路时间=44=44分,据此可列方程组求解.分,据此可列方程组求解.2323、、【答案】解:设每周应生产空调、彩电、冰箱的数量分别为x 台、台、y y 台、台、z z 台,则有台,则有,①﹣②×4得3x+y=3603x+y=360,,总产值A=4x+3y+2z=2A=4x+3y+2z=2((x+y+z x+y+z))+(2x+y 2x+y))=720+=720+((3x+y 3x+y)﹣)﹣)﹣x=1080x=1080x=1080﹣﹣x ,∵z≥60,∵z≥60,∴x+y≤300,∴x+y≤300,而3x+y=3603x+y=360,,∴x+360x+360﹣3x≤300,﹣3x≤300,﹣3x≤300,∴x≥30,∴x≥30,∴A≤1050,∴A≤1050,即x=30x=30,,y=270y=270,,z=60z=60..最高产值:30×4+270×3+60×2=1050(千元)最高产值:30×4+270×3+60×2=1050(千元)【考点】解三元一次方程组解三元一次方程组【解析】【分析】设每周应生产空调、彩电、冰箱的数量分别为x 台、台、y y 台、台、z z 台,建立三元一次方程组,则总产值A=4x+3y+2z A=4x+3y+2z,由于每周冰箱至少生产,由于每周冰箱至少生产60台,即z ≥60,所以x+y≤300,又由于生产空调器、彩电、冰箱共360台,故有x≥30台,即可求得,具体的x ,y ,z 的值.的值.2424、、【答案】解:设甲原有邮票x 枚,乙原有邮票y 枚,丙原有邮票z 枚.枚.甲 乙 丙原有x y z第一次送后x﹣y ﹣z2y 2z第二次送后2(x ﹣y ﹣z )2y 2y﹣(﹣(﹣(x x ﹣y﹣z )﹣)﹣2z 2z 4z第三次送后4(x ﹣y ﹣z )2[2y 2[2y﹣(﹣(﹣(x x ﹣y ﹣z )﹣)﹣2z] 2z] 4z 4z﹣﹣2(x ﹣y ﹣z )﹣[2y [2y﹣﹣(x ﹣y ﹣z )﹣2z]根据第三次赠送后列方程组根据第三次赠送后列方程组,即,③﹣②得③﹣②得 2z ﹣y=8 y=8 ④,④,②+①得②+①得 y ﹣z=24 z=24 ⑤,⑤,④+⑤得④+⑤得 z=32,将z 代入⑤得代入⑤得 y=56, 将y 、z 代入①得代入①得 x=104, 答:甲原有邮票104枚,乙原有邮票56枚,丙原有邮票32枚.枚.【考点】解三元一次方程组解三元一次方程组【解析】【分析】假设甲原有邮票x 枚,乙原有邮票y 枚,丙原有邮票z 枚.根据题目说明列出三次赠送的过程如下表的过程如下表甲 乙丙原有x yz第一次送后x ﹣y ﹣z2y 2z第二次送后2(x﹣y ﹣z )2y 2y﹣(﹣(﹣(x x ﹣y ﹣z )﹣)﹣2z 2z4z第三次送后4(x﹣y ﹣z )2[2y 2[2y﹣(﹣(﹣(x x ﹣y ﹣z )﹣)﹣2z] 2z] 4z 4z﹣﹣2(x ﹣y ﹣z )﹣[2y [2y﹣﹣(x ﹣y ﹣z )﹣2z] 根据第三次赠送后的结果列出方程组先化简,最后代入消元法或加减消元法求出方程组的解即可.先化简,最后代入消元法或加减消元法求出方程组的解即可.2525、、【答案】解:解: ,①﹣②得2z=62z=6,解得,解得z=3z=3,, ①+②得2x+2y=62x+2y=6,,整理得x+y=3④,x+y=3④,③+④得2x=22x=2,解得,解得x=1x=1,,③﹣④得﹣③﹣④得﹣2y=2y=2y=﹣﹣4,解得y=2y=2,,所以方程组的解为所以方程组的解为【考点】解三元一次方程组解三元一次方程组【解析】【分析】先把第一个方程减去第二个方程可求出z 的值,再把第一个方程加去第二个方程得到x+y=3x+y=3,,然后把它与第三个方程组成二元一次方程组,然后利用加减消元法解此方程求出x 和y ,从而得到原方程的解.的解.2019-2020年七年级数学下册 第10章 10.5 用二元一次方程解决问题同步练习(含解析)(新版)苏科版一、单选题(共11题;共22分)1、今有鸡兔若干,它们共有24个头和74只脚,则鸡兔各有(只脚,则鸡兔各有() A 、鸡1010,兔,兔14B 、鸡1111,兔,兔13C 、鸡1212,兔,兔12D 、鸡1313,兔,兔112、甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追及乙,那么在乙出发后经4小时两人相遇,求甲、乙两人的速度.设甲的速度为x 千米千米//小时,乙的速度为y 千米千米//小时,则可列方程组为(小时,则可列方程组为() A 、B 、C 、D 、3、如图,宽为50cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为(个全等的小长方形拼成,其中一个小长方形的面积为()A 、400cm 22B 、500cm 22C 、600cm 22D 、4000cm 24、甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时,那么在乙出发后经4小时甲追上乙,求甲、乙两人的速度.设甲的速度为小时甲追上乙,求甲、乙两人的速度.设甲的速度为 千米千米//小时,乙的速度为 千米千米//小时,则可列方程组为小时,则可列方程组为( ( () A 、B 、C 、D 、5、《九章算术》是我国东汉初年编订的一部数学经典著作。
2019-2020学年江苏省常州二十四中教育集团七年级第二学期期中数学试卷一、填空题(共10小题).1.(2分)计算:x2•x3=;=.2.(2分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.3.(2分)已知等腰三角形的两边长分别为2、5,则三角形的周长为.4.(2分)一个多边形的每一个内角为108°,则这个多边形是边形.5.(2分)若a m=8,a n=2,则a m﹣n=.6.(2分)如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=.7.(2分)如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB=.8.(2分)若(x+k)(x﹣2)的积中不含有x的一次项,则k的值为.9.(2分)一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为s.10.(2分)已知两个完全相同的直角三角形纸片△ABC、△DEF,如图放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为s.二、选择题(共6小题).11.(2分)下列运算正确的是()A.a+2a2=3a2B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a6 12.(2分)下列各组数据中,能构成三角形的是()A.1cm、2cm、3cm B.2cm、3cm、4cmC.4cm、9cm、4cm D.2cm、1cm、4cm13.(2分)如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠4 14.(2分)若a=﹣0.32,b=3﹣2,c=,d=,则a、b、c、d的大小关系是()A.a<b<d<c B.b<a<d<c C.a<d<c<b D.c<a<d<b 15.(2分)下列各图中,正确画出△ABC中AC边上的高的是()A.①B.②C.③D.④16.(2分)如图,在△ABC中,已知点D、E、F分别是BC、AD、BE上的中点,且△ABC的面积为8cm2,则△BCF的面积为()A.0.5cm2B.1cm2C.2cm2D.4cm2三、计算、因式分解和解方程组(每小题16分,共16分)17.(16分)计算(1)a3•a5+(a2)4﹣3a8(2)|﹣2|﹣()﹣2+(π﹣3)0﹣(﹣1)2021(3)(x﹣2y+4)(x+2y﹣4)(4)(3x+1)2﹣(3x﹣1)218.(7分)先化简,再求值:(2a+b)2﹣4(a+b)(a﹣b)﹣b(3a+5b),其中a=﹣1,b=2.19.(7分)已知(a+b)2=19,(a﹣b)2=13,求a2+b2与ab的值.四、解答题(共40分,其中20题5分,21--22题每题6分,23--24题每题7分,25题9分)20.(5分)利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.21.(6分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.22.(6分)如图,在△ABC中,∠ABC=56°,∠ACB=44°,AD是BC边上的高,AE是△ABC的角平分线,你能求出∠DAE的度数吗?请试一试!23.(7分)如图,已知AD⊥BC,EF⊥BC,∠1=∠2,试问DG与BA是否平行?说明你的理由.24.(7分)探究:22﹣21=2×21﹣1×21=2()23﹣22==2(),24﹣23==2(),……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n个等式;(3)计算:21+22+23+…+22019﹣22020.25.(7分)在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C﹣∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.参考答案一、填空题.(每小题2分,共20分)1.(2分)计算:x2•x3=x5;=.解:x2•x3=x2+3=x5;==.故答案为:x5;.2.(2分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.3.(2分)已知等腰三角形的两边长分别为2、5,则三角形的周长为12.解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故答案为:12.4.(2分)一个多边形的每一个内角为108°,则这个多边形是五边形.解:∵多边形每个内角都为108°,∴多边形每个外角都为180°﹣108°=72°,∴边数=360°÷72°=5.故答案为:五.5.(2分)若a m=8,a n=2,则a m﹣n=4.解:a m﹣n==8÷2=4.故答案为:4.6.(2分)如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=15°.解:由一副常用的三角板的特点可知,∠EAD=45°,∠BFD=30°,∴∠ABF=∠EAD﹣∠BFD=15°,故答案为:15°.7.(2分)如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB=75°.解:过点E作EF∥AC,∵AC∥BD,∴AC∥EF∥BD,∴∠AEF=∠CAE=30°,∠BEF=∠DBE=45°,∴∠AEB=∠AEF+∠BEF=75°.故答案为:75°.8.(2分)若(x+k)(x﹣2)的积中不含有x的一次项,则k的值为2.解:(x+k)(x﹣2),=x2﹣2x+kx﹣﹣k,=x2+(k﹣2)x﹣2k,∵不含有x的一次项,∴k﹣2=0,解得k=2.故答案为:2.9.(2分)一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为160s.解:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.故答案是:160.10.(2分)已知两个完全相同的直角三角形纸片△ABC、△DEF,如图放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为3或12或15s.解:①当DE∥AC时,如图1中,易知∠BFD=30°∴旋转时间t==3s.②如图2中,当DE∥BC时,易知∠DFB=120°,∴旋转时间t==12s.③当DE∥AB时,如图3中,易知∠DFB=150°,∴旋转时间t==15s.综上所述,旋转时间为3s或12s或15s时,△ABC恰有一边与DE平行.故答案为3或12或15.二、选择题(每小题2分,共12分)11.(2分)下列运算正确的是()A.a+2a2=3a2B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a6解:A、a与2a2不是同类项不能合并,故本选项错误;B、应为a8÷a2=a8﹣2=a6,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、(a3)2=a6,正确.故选:D.12.(2分)下列各组数据中,能构成三角形的是()A.1cm、2cm、3cm B.2cm、3cm、4cmC.4cm、9cm、4cm D.2cm、1cm、4cm解:A、1+2=3,不能构成三角形;B、3+2>4,能构成三角形;C、4+4<9,不能构成三角形;D、1+2<4,不能构成三角形.故选:B.13.(2分)如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠4解:∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行).故选:B.14.(2分)若a=﹣0.32,b=3﹣2,c=,d=,则a、b、c、d的大小关系是()A.a<b<d<c B.b<a<d<c C.a<d<c<b D.c<a<d<b 解:∵a=﹣0.32=﹣0.09,b=3﹣2=,c==9,d==1,∴a、b、c、d的大小关系是:a<b<d<c.故选:A.15.(2分)下列各图中,正确画出△ABC中AC边上的高的是()A.①B.②C.③D.④解:根据三角形高线的定义,AC边上的高是过点B向AC作垂线垂足为E,纵观各图形,①②③都不符合高线的定义,④符合高线的定义.故选:D.16.(2分)如图,在△ABC中,已知点D、E、F分别是BC、AD、BE上的中点,且△ABC的面积为8cm2,则△BCF的面积为()A.0.5cm2B.1cm2C.2cm2D.4cm2解:连接CE,如图,∵点D为BC的中点,∴S△ADC=S△ABC,S△EDC=S△EBC,∵点E为AD的中点,∴S△EDC=S△ADC,∴S△EDC=S△ABC,∴S△EBC=2S△EDC=S△ABC,∵F点为BE的中点,∴S△BCF=S△EBC=×S△ABC=××8=2(cm2).故选:C.三、计算、因式分解和解方程组(每小题16分,共16分)17.(16分)计算(1)a3•a5+(a2)4﹣3a8(2)|﹣2|﹣()﹣2+(π﹣3)0﹣(﹣1)2021(3)(x﹣2y+4)(x+2y﹣4)(4)(3x+1)2﹣(3x﹣1)2解:(1)原式=a8+a8﹣3a8=﹣a8.(2)原式=2﹣+1﹣(﹣1)=4﹣=.(3)原式=[x﹣(2y﹣4)][x+(2y﹣4)]=x2﹣(2y﹣4)2=x2﹣(4y2﹣16y+16)=x2﹣4y2+16y﹣16.(4)原式=[(3x+1)+(3x﹣1)][(3x+1)﹣(3x﹣1)]=6x×2=12x.18.(7分)先化简,再求值:(2a+b)2﹣4(a+b)(a﹣b)﹣b(3a+5b),其中a=﹣1,b=2.解:(2a+b)2﹣4(a+b)(a﹣b)﹣b(3a+5b)=4a2+4ab+b2﹣4a2+4b2﹣3ab﹣5b2=ab,当a=﹣1,b=2时,原式=﹣2.19.(7分)已知(a+b)2=19,(a﹣b)2=13,求a2+b2与ab的值.解:∵(a+b)2=19,∴a2+b2+2ab=19,∵(a﹣b)2=13,∴a2+b2﹣2ab=13,∴2a2+2b2=32,4ab=6,∴a2+b2=16,ab=.四、解答题(共40分,其中20题5分,21--22题每题6分,23--24题每题7分,25题9分)20.(5分)利用直尺画图(1)利用图(1)中的网格,过P点画直线AB的平行线和垂线.(2)把图(2)网格中的三条线段通过平移使三条线段AB、CD、EF首尾顺次相接组成一个三角形.(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于 3.5.解:(1)、(2)如图所示;(3)S△EFH=3×3﹣×1×2﹣×2×3﹣×1×3=9﹣1﹣3﹣=3.5.故答案为:3.5.21.(6分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.22.(6分)如图,在△ABC中,∠ABC=56°,∠ACB=44°,AD是BC边上的高,AE 是△ABC的角平分线,你能求出∠DAE的度数吗?请试一试!解:∵∠BAC=180°﹣56°﹣44°=80°,又∵AE是△ABC的角平分线,∴∠CAE=40°,∵∠ABC=56°,AD是BC边上的高.∴∠BAD=90°﹣56°=34°,∴∠DAE=∠BAE﹣∠BAD=∠CAE﹣∠BAD=40°﹣34°=6°.23.(7分)如图,已知AD⊥BC,EF⊥BC,∠1=∠2,试问DG与BA是否平行?说明你的理由.解:DG与BA平行,理由:∵AD⊥BC,EF⊥BC,∴EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,∴DG∥BA.24.(7分)探究:22﹣21=2×21﹣1×21=2(1)23﹣22=2×22﹣1×22=2(2),24﹣23=2×23﹣1×23=2(3),……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n个等式;(3)计算:21+22+23+…+22019﹣22020.解:探究:22﹣21=2×21﹣1×21=21,23﹣22=2×22﹣1×22=22,24﹣23=2×23﹣1×23=23,(1)25﹣24=2×24﹣1×24=24;(2)2n+1﹣2n=2×2n﹣1×2n=2n;(3)原式=﹣(22020﹣22019﹣22018﹣22017﹣……﹣22﹣2)=﹣2.故答案为:1;2×22﹣1×22;2;2×23﹣1×23;325.(7分)在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图,当AE⊥BC时,写出图中所有与∠B相等的角:∠E、∠CAF;所有与∠C相等的角:∠CDE、∠BAF.(2)若∠C﹣∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.解:(1)∵∠BAC=90°,AE⊥BC,∴∠CAF+∠BAF=90°,∠B+∠BAF=90°,∴∠CAF=∠B,由翻折可知,∠B=∠E,∴∠B=∠CAF=∠E,同理∠CAF+∠BAF=90°,∠C+∠CAF=90°,∴∠C=∠BAF,∵∠CAF=∠E,∴AC∥DE,∴∠C=∠CDE,∴∠C=∠CDE=∠BAF.故答案为:∠E、∠CAF;∠CDE、∠BAF;(2)①∵∠C﹣∠B=50°,∠C+∠B=90°,∴∠C=70°,∠B=20°;②∠BAD=x°,则∠ADF=(20+x)°,∴∠ADB=∠ADE=(160﹣x)°,∴∠FDE=∠ADE﹣∠ADF=(140﹣2x)°,∵∠B=∠E=20°,∴∠DFE=180°﹣∠E﹣∠FDE=(2x+20)°,当∠EDF=∠DFE时,140﹣2x=2x+20,解得,x=30,当∠DFE=∠E=20°时,2x+20=20,解得,x=0,∵0<x≤45,∴不合题意,故舍去,当∠EDF=∠E=20°,140﹣2x=20,解得,x=60,∵0<x≤45,∴不合题意舍去.综上可知,存在这样的x的值,使得△DEF中有两个角相等,且x=30.。
2019-2020学年第二学期七年级数学期中复习卷(2) 一.选择题(本大题共10小题,每小题2分,共20分,每小题只有一个选项符合题意) 1.如图,下列结论中错误的是( ) A.1与2是同旁内角 B.1与6是内错角 C.2与5是内错角 D.3与5是同位角 2.下列计算正确的是( )
A.235abab B.325()aa C.642aa D.23aaag 3.若2(32)()2xxpmxnx,则下列结论正确的是( ) A.6m B.1n C.2p D.3mnp 4.下列运算结果最大的是( ) A.11()2 B.02 C.12 D.2(2) 5.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(2)ab,宽为(3)ab的大长方形,则需要C类卡片( )张.
A.5 B.6 C.7 D.8 6.下列因式分解正确的是( ) A.242(2)aa B.()ab mambm C.()(xxyy 2)()xyxy D.221()()1ababab 7.选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是( ) A.运用多项式乘多项式法则 B.运用平方差公式 C.运用单项式乘多项式法则 D.运用完全平方公式 8.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是( )
A. B. C. D. 9.4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b满足( )
A.2a=5b B.2a=3b C.a=3b D.a=2b 10.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC 外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ABC=2∠ADB;③∠ADC=90°﹣∠ABD;④BD
平分∠ADC;⑤∠ADC=∠BAC.其中正确的结论有( )
A.2个 B.3个 C.4个 D.5个 二.填空题(本大题共8小题,每小题2分,共16分,)
11.分解因式:2xyy . 12.如图,三角板的直角顶点落在矩形纸片的一边上.若135,则2的度数是 .
13.已知2ma,3(nam,n为正整数),则32mna . 14.2019新型冠状病毒(2019)nCoV,2020年1月12日被世命名.科学家借助比光学显微镜更加厉害的电子显微镜发现新型冠状病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示为 . 15.计算()(3)xax的结果中不含x的一次项,则a的值是 .
16.如果20(0)aaa,则2020201912aa . 17.在如图所示的草坪上,铺设一条宽为2的小路,则小路的面积为 . 18.如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=120°,则图1中的∠DEF的度数是 .
三.解答题(本大题共共11小题,共计64分) 19.计算: (1)1023(2020)||3. (2)24326()32aaaag
20. 化简: (1)24(1)(21)(21)xxx. (2)(3)(7)(1)xxxx.
21.先化简,再求值:2(4)(2)xxyxy,其中1x,1y. 22.因式分解: (1)249xyy (2)222(4)16aa
23.如图,已知//ABCD.若75ABE,60CDE,求E的度数. 24.已知:ABC在直角坐标平面内,三个顶点的坐标分别为(0,3)A,(3,4)B,(2,2)C(正方形网格中每个小正方形的边长是一个单位长度) (1)画出ABC向下平移4个单位长度得到的111ABC; (2)求111ABC的面积.
25.完成下列证明过程,并在括号内填上依据. 如图,点E在AB上,点F在CD上,12,BC求证//ABEF. 证明:12Q(已知),14( ), 2 (等量代换), //(BF )
,
3 ( ). 又BCQ(已知), 3(B )
,
//(ABCD )
.
26.实验证明,平面镜反射光线的规律是:照射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.
(1)如图,一束光线MA照射到平面镜CE上,被CE反射到平面镜CF上,又被CF反射.已知被CF反射出的光线BN与光线MA平行.若∠1=35°,则∠2= ,∠3= ;若∠1=50°,∠3= . (2)由(1)猜想:当两平面镜CE,CF的夹角∠3为多少度时,可以使任何射到平面镜CE上的光线MA,经过平面镜CE,CF的两次反射后,入射光线MA与反射光线BN平行,请你写出推理过程.
27.从边长为a的正方形剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2). (1)上述操作能验证的等式是 (请选择正确的一个)
A.2222()aabbab
B.22()()ababab C.2()aabaab (2)若22912xy,34xy,求3xy的值; (3)计算:2222211111(1)(1)(1)(1)(1)23420192020
28.如图(a),木杆EB与FC平行,木杆的两端B,C用一橡皮筋连接,现将图(a)中的橡皮筋拉成下列各图的形状,试解答下列各题: (1)探究图(b)、(c)、(d)、(e)中,A,B,C之间的数量关系,并填空: ①图(b)中,A,B,C之间的关系是 ; ②图(c)中,A,B,C之间的关系是 ; ③图(d)中,A,B,C之间的关系是 ; ④图(e)中,A,B,C之间的关系是 ;
(2)探究图()f、()g中,1A,2A,,nA,B,C之间的数量关系,并填空:
①图()f中,1A,2A,,nA,B,C之间的关系是 ; ②图()g中,1A,2A,,nA,B,C之间的关系是 ; 请对图(e)的结论加以证明.
29.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角
形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.
(1)根据上面的规律,写出(a+b)5的展开式. (2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1. 参考答案 一.选择题(本大题共10小题,每小题2分,共20分,每小题只有一个选项符合题意) 1.如图,下列结论中错误的是( )
A.1与2是同旁内角 B.1与6是内错角 C.2与5是内错角 D.3与5是同位角 【解答】A、1与2是同旁内角,正确,不合题意; B、1与6是内错角,正确,不合题意; C、2与5是内错角,错误,符合题意; D、3与5是同位角,正确,不合题意; 故选:C. 2.下列计算正确的是( )
A.235abab B.325()aa C.642aa D.23aaag 【解答】.2Aa与3b不是同类项,所以不能合并,故本选项不合题意; B.326()aa,故本选项不合题意; .642Caaa,故本选项不合题意; D.23aaag,正确. 故选:D.
3.若2(32)()2xxpmxnx,则下列结论正确的是( ) A.6m B.1n C.2p D.3mnp 【解答】2(32)()2xxpmxnxQ,
223(32)22xpxpmxnx,
故3m,32pn,22p, 解得:1p,1n, 故3mnp. 故选:D. 4.下列运算结果最大的是( )
A.11()2 B.02 C.12 D.2(2)
【解答】11()22,021,1122,2(2)4, 故选:D. 5.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(2)ab,宽为(3)ab的大长方形,则需要C类卡片( )张. A.5 B.6 C.7 D.8 【解答】(2)(3)ababQ22372aabb Q一张C类卡片的面积为ab 需要C类卡片7张.故选:C. 6.下列因式分解正确的是( ) A.242(2)aa B.()ab mambm
C.()(xxyy 2)()xyxy D.221()()1ababab 【解答】A、242(2)aa,正确; B、()ab mambm,是整式乘法,不是因式分解,故此选项错误; C、()(xxyy )()()xyxyxy,故此选项错误;
D、221()()1ababab,不符合因式分解的定义,故此选项错误. 故选:A. 7.选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是( ) A.运用多项式乘多项式法则 B.运用平方差公式 C.运用单项式乘多项式法则 D.运用完全平方公式 【解答】解:选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是:运用平方差公式. 故选:B. 8.某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是( )
A. B.
C. D. 【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元, 则所列方程组为, 故选:D. 9.4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b满足( )