同步辐射技术及其应用57页PPT
- 格式:ppt
- 大小:5.09 MB
- 文档页数:57
同步辐射及其应用(讲义)同步辐射因具有高亮度、光谱连续、频谱范围宽、高度偏振性、准直性好以及可用作辐射计量标准等一系列优异特性,已成为自X 光和激光诞生以来的又一种重要光源。
尤其是在真空紫外和X射线波段的性能,非其他光源可比,很多以往用普通X光和激光不能开展的研究工作,有了同步辐射光源以后才得以实现。
近几年来还发现,在红外波段同步辐射同样具有常规红外光源所无法比拟的优越特性。
同步辐射也因此在物理学、化学、生命科学和医药学、材料科学、信息科学、环境科学、地矿、力学、冶金等研究领域,以及深亚微米光刻和超微细加工等高新技术领域中得到广泛应用。
据统计,70年代以来,已有22个国家和地区,建成或正在建设同步辐射装置50余台,其中,超过40台已投入使用。
我国北京正负电子对撞机国家实验室(BEPC NL)的同步辐射装置(BSRF)和中国科技大学国家同步辐射实验室(NSRL)分别于1989年和1991年建成并投入使用。
1.什么是同步辐射1947年,美国通用电器公司的一个研究小组首次在同步加速器上观测到高能电子在作弯曲轨道运动时会产生一种电磁辐射,称其为同步加速器辐射,简称同步辐射。
其实,据《宋会要》记载,早在公元1054年,我国古代天文学家就观测到金牛座中天关星附近出现异象:“昼见如太白,芒角四出,色赤白,凡见二十三日。
”这是人类历史上第一次详细记载超新星爆炸。
这颗超新星爆炸后的遗迹形成今夜星空的蟹状星云。
现代天文学家确认该星云的辐射,包括红外线、可见光、紫外线和X射线的宽频谱,正是高能电子在星云磁场作用下产生的同步辐射。
1963年法国Orsay 建成世界上第一台电子储存环,高能物理学家在储存环上进行正负电子对撞实验的同时发现所产生的同步辐射是一种性能优良的光源,于是,开始了人类历史上第一次利用同步加速器上产生的同步辐射来做非高能物理的研究工作。
这种在做高能物理研究的加速器上,利用同步辐射作为光源的工作模式为寄生模式或兼用模式。
同步辐射光源 及其应用 简介高 琛2008.12.20什么是同步辐射光束线磁场 电子轨道 电子束团HLS实验站相对论电子在磁场 中转向时,沿切线 方向辐射的电磁波v aPe =e 2 c (β γ ) 4 6π ε oρ2超新星爆发及其残骸,如金牛座蟹状星云。
《宋会要》记载: (公元1054年7月,) 客星 “昼见如太白,芒角四出,色赤白,凡见二十 三日。
”22个月后,“客星没,客去之兆也。
” 黑洞吸附带电粒子经典(等时)回旋加速器注入束流高频腔经典(等时)回旋加速器弱聚焦同步加速器注入束流高频腔经典(等时)回旋加速器注入弱聚焦同步加速器弯转磁铁 四极磁铁高频腔束流轨道强聚焦电子同步加速器插入元件:产生特征 不同的同步辐射弯转磁铁:使束流轨道 弯转,产生同步辐射高频腔:补充同步 辐射损失的能量, 或者加速电子四极磁铁:类似于透镜, 约束粒子轨迹横向尺寸真空室:保持10-9torr水平 的真空度,维持束流寿命注入束流高频腔经典(等时)回旋加速器注入弱聚焦同步加速器弯转磁铁 四极磁铁高频腔束流轨道1947年,Pollack领导的科研组 在美国通用电气公司70 MeV电 子同步加速器中首次观察到“人 造”的这种辐射。
强聚焦电子同步加速器N S同步辐射电子电子轨道弯转磁铁1/γS N S S SN N S S N N S S N N N 电子轨道中轴线Undulator(波荡器):多极干涉,频率趋同。
高亮度,准单色光。
弯铁插入件HLSN S同步辐射电子电子轨道弯转磁铁1/γS N S S SN N S S N N S S N N N 电子轨道中轴线Undulator(波荡器):多极干涉,频率趋同。
高亮度,准单色光。
弯铁插入件Wiggler(扭摆磁铁):强度叠加。
高功率,(一般)短波长。
HLSBEPC:第一代HLS:第二代SSRF:第三代Swiss Light Source (SLS)DIAMONDSSRCAPSESRF同步辐射光源的分代第一代:高能加速器寄生 亮度:~1012ph/s⋅mm2⋅mrad2⋅0.1%BW 第二代:专用 亮度:~1015ph/s⋅mm2⋅mrad2⋅0.1%BW 第三代:大量使用插入件 亮度:~1018ph/s⋅mm2⋅mrad2⋅0.1%BW 第四代:FEL、衍射极限环、ERL、…… 亮度:~1021ph/s⋅mm2⋅mrad2⋅0.1%BW自由电子激光原理色散段 调制段种子激光辐射段自由电子 激光输出λ电子束团密度调制(群居) 相干辐射能量调制衍射极限储存环b∆θ∆θb⋅∆θ>>λ:非相干迭加,I∝N b⋅∆θ~λ:相干迭加,I∝N2HALSERL单色亮度的重要性y u yu=y’u’=······ u’ y’I B= s·Ω·0.1%BW单色亮度的重要性y u yu=y’u’=······ u’ y’I B= s·Ω·0.1%BW表面吸附 分子内 氢转移 磁记录时间 (磁畴翻转) 电荷转移化学键的 断裂和重组1015101810211024光源亮度(ph/s·mm2·mrad2·0.1%BW)同步辐射的优点★单色亮度高 ★光谱连续、宽 ★准直性好 ★偏振 ★脉冲时间结构 ★稳定,可精确计算偏振和时间结构椭圆偏振光 线偏振光实验室发展史一期:1984~1991(计委1983.4立项) 总投资6,240万:机器建设,5条光束 线和实验站。
同步辐射技术的应用同步辐射是随着电子加速器技术的不断发展而产生的。
各种电子加速器是为获得高速运动的带电粒子而建造的。
随着对带电粒子的速度要求越来越高,加速器性能也在不断地改进人们相继发明了直线加速器、回旋形加速器和同步加速器。
同步加速器的出现,开创了高能物理研究的黄金时代。
利用同步加速器可以使带电粒子的速度大大提高,然而,当粒子的速度越来越大时,进一步加速粒子却很困难,因为高速运动的带电粒子在改变运动方向时,沿其轨道的切线方向会产生电磁波辐射。
1947年,美国通用电气公司的科研人员在一台70MeV的电子同步加速器上,透过真空管道,首次在可见光范围内观察到这种辐射,从此同步辐射的概念产生了。
同步辐射光作为一种新型的强光源,具有高亮度、高强度和宽频谱等特性,它的应用领域非常广阔,不仅在物理、化学、生物学等基础研究领域,而且在医学、环境和工业等应用领域也有广泛应用。
1同步辐射技术的发展及特点1.1同步辐射技术的发展几乎所有的高能电子加速器上,都建造了“寄生运行”的同步辐射光束线及各种应用同步光的实验装置。
至今,同步辐射装置的建造及在其上的研究、应用,经历了三代的发。
第一代同步辐射光源是在那些为高能物理研究建造的电子储存环和加速器上“寄生”运行的,同步辐射光多数由弯转磁铁引出,发射度约为几百nm・rad;第二代同步辐射光源是专门为同步辐射光的应用而建造的,主要对电子储存环的结构进行优化设计,把各种使电子发生弯转、聚焦、散焦等作用的磁铁按特殊的序列组装起来,且电子储存环里拥有少量的长直线节和插入件,它的亮度比第一代同步辐射光提高了几千倍,发射度减小到几十nm・rad;20世纪80年代末出现了第三代同步辐射光源,其性能远优于第二代同步光,同步辐射光主要由插入件引出,它的亮度比第二代同步辐射光又提高了上千倍,发射度减小到10nm・rad以下。
我国上海已经建造完工的上海同步辐射装置,在性能上比目前的第三代装置还要优越一些。
同步辐射技术及应用X 射线小角散射光束线站面向化学、材料科学、生命科学等领域,以聚合物、纳米材料、生物分子、液晶等为主要研究对象,提供一个以常规小角散射为主、兼顾反常小角散射、掠入射小角散射、小角散射和广角散射同时测量以及动态过程研究等技术的实验平台:(1)通过测量 X 射线相干散射在小角度范围内的强度分布,获得物质内部较大尺度 (300nm 以下 )的结构信息。
如高分子材料和各种聚集体的分形数、生物大分子的长周期和形貌、生物蛋白及分子团簇的回转半径、纳米颗粒的粒度分布和比表面、平衡固溶体原子偏聚状态中的态密度涨落以及其他各种结构参数等;(2)可以测量较大角度范围内的散射信号,得到有关晶格的结构信息。
对于一些相变过程中发生较宽尺度范围 ( 如几个埃到几百纳米 )内结构变化的情况,要求广角散射与小角散射实验能同时进行。
如非晶合金的晶化过程,聚合物从熔体到晶体的转变等;(3) 同步辐射波长连续可调,原子散射因子中的色散项在其吸收边上下有分显著的改变,利用某一元素吸收边附近进行 X 射线散射实验,可以“标定” 物质中不同元素;(4)掠入射小角散射是近年来发展起来的一种新技术,用于研究薄膜表面和近表面内部的纳米尺度的结构。
如与反常散射技术相结合,将可从散射信号中得出某种特定元素的贡献,如多孔硅中的金属团簇,以及纳米碳管中的金属囊等等;(5)高亮度的 X 射线将使我们能够开展时间分辨散射实验,可进行生物大分子活性研究和各种相变过程的动态研究等。
3应用实例硅光电子学的应用前景以及对量子点的自组织生长机制的探讨吸引着人们广泛开展硅单晶衬底上自组织生长锗量子点微结构的研究课题,中国科学院高能物理所的姜晓明研究员在北京同步辐射装置上利用X射线掠入射衍射实验方法对Si表面生长的Ge/Si量子点及其在Si表层产生的应变进行了成功测量。
此方法可以有效地抑制体结构的信号,从而提取表面层的微弱信号。
实验结果表明,表面Ge/Si量子点的晶格在与样品表面平行的横向也偏离了衬底的晶格,并向Si衬底传递在,Si衬底小于100埃的浅表层中形成了横向晶格的膨胀区域和压缩区域。