高中生物必修三第四章第二节—种群数量的变化(含答案解析)
- 格式:doc
- 大小:276.50 KB
- 文档页数:12
第2节种群数量的变化1.在食物和空间条件充裕、气候适宜、没有敌害等理想条件下,种群数量呈“J”型增长,数学模型为:N t =N 0λt。
2.正常情况下,自然界的资源和空间是有限的,种群数量会呈“S”型增长。
3.在环境条件不受破坏的情况下,一定空间中所能维持的种群最大数量称为环境容纳量,又称K 值。
4.“J”型曲线的增长率是不变的,“S”型曲线的增长速率先增大后减小。
5.影响种群数量的因素很多,因此,大多数种群的数量总是在波动中;在不利条件下,种群数量还会急剧下降甚至消亡。
一、构建种群增长模型的方法1.数学模型:用来描述一个系统或它的性质的数学形式。
2.构建步骤:观察研究对象,提出问题→提出合理的假设→用适当的数学形式进行表达→检验或修正。
3.表达形式(1)数学方程式:科学、准确,但不够直观。
(2)曲线图:直观,但不够精确。
二、种群增长的“J”型曲线1.模型假设⎩⎪⎨⎪⎧食物和空间条件充裕气候适宜没有敌害等2.数学模型:N t =N 0λt。
3.各参数的含义⎩⎪⎨⎪⎧N 0:种群的起始数量t :时间N t:t 年后该种群的数量λ:该种群数量是一年前种群数量的 倍数三、种群增长的“S”型曲线1.形成原因2.环境容纳量在环境条件不受破坏的情况下,一定空间中所能维持的种群最大数量,又称K 值。
3.应用建立自然保护区,从而提高环境容纳量,例如为增加大熊猫的种群数量而设立的卧龙自然保护区。
四、种群数量的波动和下降1.影响因素⎩⎪⎨⎪⎧自然因素:气候、食物、天敌、传染病等人为因素:人类活动的影响2.数量变化:大多数种群的数量总是在波动中;在不利的条件下,种群数量还会急剧下降甚至消亡。
1.判断下列叙述的正误(1)“J”型曲线是发生在自然界中最为普遍的种群增长模式(×) (2)培养液中酵母菌的种群数量在培养早期呈“J”型增长(√)(3)对于“S”型曲线,同一种群的K 值是固定不变的,与环境因素无关(×) (4)种群数量达到K 值后不再发生变化(×)(5)研究种群数量的变化有利于对有害动物的防治以及对野生生物资源的保护和利用(√)2.下图中可表示种群在无环境阻力情况下增长的曲线是( )解析:选B 种群在无环境阻力情况下的增长是指在食物和空间条件充裕、气候适宜、没有天敌等的情况下的增长。
第2节 种群数量的变化学习 目 标核 心素 养1.掌握建构增长模型的方法2.理解种群数量变化的“J”型和“S”型曲线3.结合探究培养液中酵母菌种群数量的变化,建构种群数量变化的数学模型1.通过分析影响种群数量变化的因素,形成稳态与平衡观2.通过“J”型增长和“S”型增长的数学模型的分析与比较,培养归纳、比较及运用模型分析问题的能力3.通过“探究培养液中酵母菌种群数量的变化”实验的学习,掌握实验设计与实施及对实验结果的交流与评价能力4.通过研究种群数量变化及对有害动物的防治、野生生物资源的保护和利用等,形成关注社会,主动承担社会责任的态度一、建构种群增长模型的方法1.数学模型:用来描述一个系统或它的性质的数学形式。
2.研究方法及实例二、种群增长的“J”型曲线1.含义理想条件下的种群,以时间为横坐标,种群数量为纵坐标画出曲线来表示,大致呈“J”型。
2.数学模型(1)模型假设①条件:食物和空间条件充裕、气候适宜、没有敌害等。
②数量变化:种群的数量每年以一定的倍数增长,第二年的数量是第一年的λ倍。
(2)建立模型:t年后种群数量为:N t=N0λt。
(3)模型中各参数的意义:N0为该种群的起始数量,t为时间(年),N t表示t年后该种群的数量,λ表示该种群数量是一年前种群数量的倍数。
三、种群增长的“S”型曲线1.条件:自然界中的资源和空间总是有限的。
2.形成原因3.K值又称环境容纳量,在环境条件不受破坏的情况下,一定空间中所能维持的种群最大数量。
4.应用建立自然保护区,提高其环境容纳量是保护大熊猫的根本措施。
四、种群数量的波动和下降1.影响因素(1)自然因素:如气候、食物、天敌、传染病等。
(2)人为因素:种植业、养殖业的发展,砍伐森林,猎捕动物,环境污染等。
2.数量变化大多数种群的数量总是在波动中,在不利的条件下,种群数量还会急剧下降甚至消亡。
3.研究意义(1)有害动物的防治。
(2)野生生物资源的保护和利用。
第2节种群数量的变化一、种群增长的两种模型1.种群增长的“J”型曲线(1)原因:在________、________、________等条件下。
(2)特点:种群数量________,无最大值。
2.种群增长的“S”型曲线(1)原因:自然资源和空间是________,种群密度增大→________加剧,天敌增加→种群出生率________,死亡率________,最后达到平衡。
(2)特点:种群数量达到________后,停止增长。
思考讨论:“J”型“S”型曲线的增长速率如何变化?二、种群数量的波动和下降影响因素:自然因素有________、________、________、________等;人为因素主要是人类活动。
答案:一、1.(1)食物和空间充裕气候适宜没有敌害(2)持续增长2.(1)有限的种内斗争降低增高(2)环境容纳量(即K值)思考讨论:“J”型曲线的增长速率一直升高;而“S”型曲线中,在种群数量达到K/2以前,增长速率逐渐增大,K/2时增长速率最大,K/2→K增长速率逐渐减小,种群数量为K 时,增长速率为零。
二、气候食物天敌传染病1.下图中表示种群在无环境阻力状况下增长的是()2.据媒体报道,“食人鱼”是一种有极强生存能力的肉食鱼类,一旦进入自然生态水域,就会造成严重的生态灾难。
假如该物种进入某湖泊生态系统,下面哪种曲线能准确表达其种群数量变化的特点()3.下图为在理想状态下和自然环境中某生物的种群数量变化曲线。
下列对阴影部分的解释正确的是()①环境中影响种群增长的阻力②环境中允许种群增长的最大值③其数量仅表示种群内迁出和死亡的个体数④其数量表示通过生存斗争而减少的个体数A.①③B.②③C.①④D.②④4.在一个玻璃容器中,装入一定量的适合小球藻生活的营养液,接种少量的小球藻,每隔一段时间测定小球藻的个体数量,并将其随时间的变化绘制成曲线,如图1所示。
图2中能够正确表示小球藻的种群数量增长速率随时间变化趋势的曲线是()图1图25.如下图所示为有限环境中某一种群增长的曲线,下列有关叙述正确的是()A.K值是环境条件所允许达到的种群数量最大值B.在K值时,种群的增长速率最大C.如果不考虑迁入、迁出等其他因素,在K值时出生率大于死亡率D.假设这是鱼的种群,当种群达到K值时开始捕捞,可持续获得最高产量6.如图所示为某生物种群数量变化曲线。
第2节种群数量的变化题组一种群增长的曲线模型1.如图所示为一个鼠群迁入一个新的生态系统后的增长曲线。
试分析在曲线中哪段表示食物最可能成为鼠群繁殖速率的限制因素()A.EF段B.DE段C.CD段D.BC段[答案] A[解析]一个种群迁入一个新环境的初期,由于生活空间大,生活资源十分丰富,天敌少,竞争者少,种群将呈“J”型增长。
随着种群数量的增加,种群密度上升,生活空间和食物资源减少,种内斗争加剧,从而使种群增长减缓,并趋于停止。
2.(2018·甘肃天水秦安一中高二期末)自然界中某种群死亡率如图中曲线Ⅱ,出生率如图中曲线Ⅰ,下列分析正确的是()A.种群在c点之前呈“J”型增长,c点之后呈“S”型增长B.种群数量增长最快的时期是c点时期C.c点时此种群的个体总数达到其环境容纳量(K值)D.曲线表明种群数量变化受食物的影响[答案] C[解析]由图可知,种群在c点之前增长率一直下降,增长曲线不是“J”型曲线,若为“J”型曲线,则增长率不变,c点之后增长率小于零,种群数量下降,也不为“S”型曲线,A错误;种群数量增长最快的时期应该是增长速率最大的时候,c点时增长速率为零,B错误;c 点时出生率等于死亡率,增长速率为零,种群数量达到最大值,即种群的个体总数达到环境容纳量,C正确;曲线只表明了种群的出生率和死亡率的变化,不能得出种群数量变化受食物的影响,D错误。
3.(2018·陕西榆林一中期中)研究人员调查了8年间某养兔场兔子种群数量的变化情况,并据此绘制了如图所示的λ值变化曲线,以下叙述错误的是()A.第4~6年兔的种群数量保持相对稳定B.第2~4年兔的种群数量逐年下降C.第6~8年兔的种群数量逐年上升D.第8年兔的种群密度大于刚开始的种群密度[答案] D[解析]第4~6年λ=1,即当年种群数量=上一年种群数量,种群的增长率=0,兔种群数量基本不变,A项正确;第2~4年λ<1,即当年种群数量<上一年种群数量,种群的增长率<0,兔的种群数量逐年下降,B项正确;第6~8年λ>1,即当年种群数量>上一年种群数量,种群的增长率>0,兔的种群数量逐年上升,C项正确;若刚开始的种群密度为N0,由则由题图可知,第1年的种群密度为0.5N0,第2年的种群密度为0.5×0.5N0=0.25N0,同理,第8年种群密度为0.25N0×0.75×1.0×1.0×1.0×1.25×1.5≈0.35N0,即第8年兔的种群密度小于刚开始的种群密度,D项错误。
第2讲种群的数量变化一、选择题1.自然界中的种群增长一般呈现出“S”型曲线的走势,在此增长趋势中( )A.种群的增长与自身密度无关B.达到K值时种群数量不再变化.种群的增长受到环境因素制约D.同一种群的K值始终保持固定解析:种群的增长受自身密度与环境因素制约,自身密度越大,种内斗争越激烈;环境中的天敌、食物、气候等都是影响种群数量变化的因素。
达到K值时种群数量仍是不断波动的,若环境条件发生变化,K值会发生变化。
答案:2.(2011·安徽模拟)资的合理使用能使产量最大化,又不影响资的持久利用。
自然种群增长呈“S”型曲线。
K表示种群的最大值。
N 表示种群数量水平,根据下表,下列说法错误的是( )A.环境阻力对种群增长的影响出现在S4点之后B.防治蝗虫应在蝗虫数量达到S3点之前进行.渔业捕捞后需控制剩余量在S3点D.该种群数量的最大值(K值)应为200解析:由题表知,种群数量越越多,种群增长量最大时为50,此时对应种群数量为K/2,曲线上的点是S3。
故环境阻力对种群增长的影响出现在S3点之后。
答案:A3.下列关于“培养液中酵母菌种群数量的变化”实验的相关操作,正确的是( )A.培养用具必须经过严格的灭菌处理,培养液则不需灭菌B.培养酵母菌时,必须去除培养液中的溶解氧.从瓶中吸出培养液进行计数之前,不必摇匀培养瓶中的培养液D.为了方便酵母菌计数,培养后期的培养液应先稀释再计数解析:培养用具与培养液都需灭菌。
酵母菌是兼性厌氧型,培养酵母菌不必去除培养液中的溶解氧。
从瓶中吸出培养液进行计数之前,应摇匀培养瓶中的培养液,使酵母菌分布均匀。
培养后期的培养液中酵母菌数量较多,应稀释后再计数。
答案:D4.(密码改编)右图表示野兔进入缺少天敌的某海岛后,几年的种群增长情况。
下列叙述中正确的是( )A.A点时兔群数量较少,因而不存在生存斗争B.B点时兔群的年龄组成为增长型.B段兔群的种内斗争最激烈D.DE段兔群的自然增长率最大解析:在A点时同样存在着生存斗争,生存斗争包括生物与生物之间的斗争(种内斗争和种间斗争)、生物与无机环境之间的斗争;从B 点到D点,野兔的种群数量一直在增加,因此在B点年龄组成为增长型;DE段种群数量最大,种群密度最大,种内斗争最激烈;在点(K/2)时种群增长率最大,DE段种群数量最大。
2020秋高中生物人教版必修3课堂演练:第4章第2节种群数量的变化含解析1.模型建构是研究生命活动规律的常用方法,下列各项中,属于建构数学模型的是()A.制作细胞的三维结构模型B.制作DNA双螺旋结构模型C.建立血糖调节模型D.建构种群增长模型解析:制作细胞的三维结构模型和制作DNA双螺旋结构模型,属于物理模型,故A、B错误。
血糖调节模型是通过动态的物理模型构建概念模型,故C错误。
种群增长模型是数学模型,故选D。
答案:D2.下列关于种群增长曲线的叙述,正确的是()A.呈现“J”型曲线的种群中无种群密度的改变B.“S”型曲线的增长率最终变为0时,种群达到其环境容纳量C.如果种群数量的年增长率为0,则种群中无繁殖现象D.种群增长曲线同数学方程式一样,能精确反映种群数量的变化趋势解析:“J”型曲线和“S”型曲线都直观地反映种群数量的增长趋势,但不能精确反映种群数量的变化;“J"型曲线中种群密度一直在增加;“S"型曲线有环境容纳量,达到环境容纳量时,种群增长率为0,但此时仍有出生和死亡,只是二者达到相对平衡。
答案:B3.为了探究培养液中酵母菌种群数量的动态变化,某同学进行了如下操作,其中错误的是()A.将适量干酵母放入装有一定浓度葡萄糖溶液的锥形瓶中,在适宜条件下培养B.将培养液振荡摇匀后,用吸管从锥形瓶中吸取一定量的培养液C.在血球计数板中央滴一滴培养液,盖上盖玻片,并用滤纸吸去边缘多余培养液D.将计数板放在载物台中央,待酵母菌沉降到计数室底部,在显微镜下观察、计数解析:在探究酵母菌种群数量变化的实验时,将盖玻片放在计数板上,用吸管吸取培养液,滴于盖玻片边缘,让培养液自行渗入到计数板小方格内.答案:C4.向某天然牧场引入良种肉牛100头,任其自然放养,自然繁殖.如图表示种群数量增长速率随时间变化的曲线,下列叙述正确的是()A.在t0~t2时间内,种群数量呈“J”型增长B.若在t2时种群的数量为N,则在t1时种群的数量约为N/2C.捕杀肉牛的最佳时期为t1时D.在t1~t2时,该肉牛的种群数量呈下降趋势解析:在t0~t2时间内,种群数量呈“S”型增长;t2时种群达到环境最大容纳量,即K值,所以t1时种群的数量约为N/2;捕杀肉牛的最佳时期为t2;在t1~t2时,种群增长速率下降,但种群数量仍然上升.答案:B5.如图表示种群数量增长的曲线,下列有关该曲线及其应用的叙述正确的是()A.为保护鱼类资源,捕捞后应控制剩余量在b点处B.若图表示蝗虫种群的增长曲线,则虫害防治应在c点之后C.若图表示大草履虫种群的增长曲线,则e点之后的增长速率为0D.达到K值时,该种群的年龄组成为衰退型解析:为保护鱼类资源、渔业捕捞后需控制剩余量在c点,即K/2时,此时种群增长速率最大,A错误;蝗灾防治应在种群数量及增长速率较低时进行,所以应在b点之前进行,B错误;e点为K 值,当种群数量到达e点后,种群数量趋于稳定,因此增长速率为0,C正确;达到K值时,种群的年龄组成为稳定型,D错误。
第2节种群数量的变化知识点一构建种群增长模型的方法1.数学模型概念,数学模型是用来描述一个系统或它的性质的数学形式,是为了某种目的用字母、数字及其他数学符号建立起来的方程式以及图表、图像等数学表达式。
2.意义,数学模型是联系实际问题与数学规律的桥梁,具有解释、判断、预测等重要作用。
知识点二种群数量的增长,1.种群的“J”型增长(1)“J”型曲线:自然界确有类似细菌在理想条件下种群数量增长的形式,如果以时间为横坐标,种群数量为纵坐标画出曲线来表示,曲线则大致呈“J”型。
(2)“J”型增长的原因:食物充足、没有天敌、气候适宜等,这一理想条件只有在实验室或某物种最初进入一条件非常适宜的环境时才会出现。
(3)“J”型增长的数学模型,模型假设:在食物和空间条件充裕、气候适宜、没有敌害等条件下,种群的数量以一定的倍数增长,第二年是第一年的λ倍。
增长速率不随种群密度的变化而变化。
,建立模型:,一年后该种群的数量应为:N1=N0λ,两年后该种群的数量应为:N2=N1×λ=N0λ2,t年后该种群的数量应为:N t=N0λt,N0:该种群的起始数量;t:时间;N t:t年后种群数量;λ:增长的倍数。
注:当时,种群数量上升;当λ=1时,种群数量不变;当时,种群数量下降。
2.种群增长的“S”型曲线,(1)“S”型曲线出现的原因,自然资源是有限的,当种群密度增大时,使生存斗争加剧,种群的增长速率下降。
(2)实例:高斯的实验。
(3)“S”型曲线:种群经过一定时间的增长后,数量趋于稳定的增长曲线,呈“S”型。
①K值:在环境条件不受破坏的情况下,一定空间中所能维持的种群最大数量称为环境容纳量。
a.不同物种在同一环境中K值不同。
b.当环境改变时生物的K值改变。
②K/2值:K值的一半,是种群数量增长最快点。
③增长速率:可以看出种群的增长速率在K/2时最大,K/2之前不断增加,在K/2之后逐渐减小,当达到K值时增长速率为0。
④K/2之前种群增长速率增加的原因:资源和空间充足。
K/2 之后,由于种群数量的上升,资源和空间相对不足,种内和种间斗争加剧,使生物的出生率下降,死亡率上升。
(4)“S”型曲线在生产实践中的应用①在对野生动植物资源的合理开发和利用上,一般将种群的数量控制在环境容纳量的一半,即K/2左右,此时种群增长最快,可提供的资源最多,还不影响资源的再生。
②对野生动物的保护方面,如建立自然保护区等,从而提高生物的环境容纳量,是保护野生生物资源的最有效措施③农林害虫的防治方面,降低农林害虫的环境容纳量是防治的根本。
3.“J”型曲线和“S”型曲线的比较,知识点三种群数量的波动和下降1.种群数量的变动,种群的“J”型增长和“S”型增长只代表两种典型情况,自然种群的数量经常处在变动之中,有的是不规则波动,有的是周期性波动,不利条件下还会使种群数量下降,甚至灭亡。
2.影响种群数量变动的(1)决定因素:出生率和死亡率、迁入率和迁出率。
(2)间接因素:凡是影响出生率、死亡率的因素都会影响种群数量。
例如:①种群的年龄组成和性别比例。
②生物因素a.种内关系:种群通过种内斗争调节种群密度。
b.种间关系:如天敌等。
c.非生物因素:阳光、温度、风、雨等。
d.人为因素:人类对自然界种群的数量影响越来越大。
知识点四探究“培养液中酵母菌种群数量的变化”1.原理,(1)酵母菌属兼性厌氧型微生物,有氧时产生二氧化碳和水,无氧时产生二氧化碳和酒精。
(2)用液体培养基培养酵母菌,种群的增长受培养液的成分、空间、pH、温度等因素的影响。
(3)在理想环境中,酵母菌种群的增长呈“J型”曲线;在有限的环境下,酵母菌种群的增长呈“S型”曲线。
2.探究目的,初步学会酵母菌等微生物的计数及种群数量变化曲线的绘制。
3.探究步骤(1)将10 mL无菌马铃薯培养液或肉汤培养液加入试管中;(2)将酵母菌接种到试管中的培养液内混合均匀;(3)将试管在28℃条件下连续培养7天;(4)每天取样计数酵母菌数量,采用抽样检测方法:将盖玻片放在计数板上,用吸管吸取培养液,滴于盖玻片边缘,让培养液自行渗入到计数板上的方格内,显微观察计数一个方格内的菌种数,已知小方格的培养液厚度为0.1 mm,计算出培养液体积,换算出10 mL培养液中酵母菌的总数;(5)分析结果、得出结论:将所得数值用曲线表示出来,分析实验结果,得出酵母菌种群数量的变化规律。
4.注意事项(1)显微镜计数时,对于压在小方格界线上的酵母菌,应只计数相邻两边及其顶角的酵母菌。
(2)从试管中吸出培养液进行计数前,需将试管轻轻振荡几次,目的是使培养液中的酵母菌均匀分布,减少误差。
(3)记录结果最好用记录表。
表格如下:,(4)(5)培养和记录过程要尊重事实,真实记录,不能主观臆造。
5.表达和交流(1)根据实验数据可得如图所示的增长曲线。
(2)增长曲线的总趋势是先上升再下降。
(3)影响酵母菌种群数量的因素可能有养料、温度、pH及有害代谢废物等。
, 【例1】如某一年生植物初始种群有10个个体,每个个体产生10粒可育种子,当年亲本死亡,若按此生育率计算,第五年该种群有多少个个体?,答案105个,解析根据公式N t=N0λt和数学知识,求得该题λ=N1/N0=100/10=10,t=4(第五年该种群的个体数量就是第四年后该种群的个体数),故第五年该种群将有:N4=N0λ4=10×104=105个。
【例2】下列有关种群增长的“S”型曲线的叙述,错误的是()A.通常自然界中的种群增长曲线最终呈“S”型B.达到K值时种群增长速率为零C.种群增长受自身密度的影响D.种群的增长速率逐步降低答案 D解析 由于自然环境中资源和空间有限,随着种群数量的增多,单位个体的占有量会逐渐减小、环境阻力会变大,使曲线最终呈“S ”型。
对于环境容纳量K 值而言,每增加1个个体,则环境会增加1/K 的负担,所以“S ”型曲线的增长速率会逐渐减小,最后变为零。
“S ”型曲线是密度制约型曲线,而“J ”则不受密度的影响。
“S ”型曲线的增长速率呈“倒钟型”,先增大,后减小,最后为零。
1.“S ”型曲线的增长率曲线图如下:,2.“S ”型曲线的增长速率曲线图如下:,规律总结当种群数量达到环境容纳量一半时(即K2),其种群增长速率最大。
3.“S ”型曲线与其增长速率的关系图,【例3】 某研究所调查发现:某种鱼迁入一生态系统后,其种群数量增长速率随时间变化的曲线如图所示,请分析回答:,(1)在t0~t2时间内,种群数量增长曲线呈___________型曲线;若在t2时种群数量为N ,则在t1时种群数量为___________。
t1时该种群的年龄组成可能为___________。
(2)捕获该鱼的最佳时期为___________时,原因是________________________________________________________________________,________________________________________________________________________。
(3)在t2时期后,该鱼种群数量变化___________是___________,主要原因是___________、___________。
答案 (1)“S ” N/2 增长型 (2)t1 在t1时种群增长速率最大,捕获该鱼获得的量最大且不影响该鱼类资源的再生(3)不增加 种内斗争加剧 捕食者数量增加解析 本题考查种群数量的变化。
坐标曲线图是高考中出现的比较多的一种图,它可以反映自变量和因变量之间的关系,解题时注意起点、转折点和终点等含义。
由图形可以看出,t0~t2时间内该种鱼的种群增长为“S”型曲线,t1时种群数量为K/2,此时为捕捞的最佳时期,t2时种群数量为K。
,1.为了保护鱼类资源不受破坏,并能持续地获得最大捕鱼量,根据种群增长的“S”型曲线,应使被捕鱼群的种群数量保持在K/2水平。
这是因为在这个水平上()A.种群数量相对稳定B.种群增长速率最大C.种群数量最大D.环境条件所允许的种群数量最大,答案B,解析根据题意,被捕鱼群的种群数量保持在K/2水平,可使鱼类资源不受破坏,并能持续获得最大捕鱼量,该点在S曲线上的斜率最大,即代表种群增长速率最大。
它既不代表最大种群数量,也未达到环境容纳量(K值)。
,2.“食人鱼”是一种有极强生存能力的肉食鱼类,一旦进入自然生态水域,就会造成严重的生态灾难。
假如该物种进入某湖泊,下图中的曲线能准确表达其种群数量变化特点的是(),答案A,解析在自然界中,种群不能无限地增长,因为随着种群数量的增加,制约因素(捕食、食物供应、传染病流行等)的作用也在增加。
所以在自然环境中,所有生物的种群增长是一个“S”型曲线。
3.下列关于种群数量变化的叙述中,错误的是()A.种群数量的变化包括增长、波动、稳定和下降等B.种群数量的变化主要是由迁入率和迁出率、出生率和死亡率引起的C.在自然界中,种群的增长一般是“J”型曲线D.在自然界中,种群的增长一般是“S”型曲线答案 C解析自然界中种群的增长一般为“S”型曲线,因为自然界中的食物和空间有限,当种群数量增加时,种内斗争会加剧,以该生物为食的生物也会增加,会限制种群数量的进一步增加。
4.自然界中生物种群增长常表现为“S”型增长曲线。
下列有关种群“S”型增长的正确说法是()A.“S ”型增长曲线表示了种群数量和食物的关系B.种群增长速率在各阶段是不相同的C.“S ”型增长曲线表示了种群数量与时间无关D.种群增长速率不受种群密度制约,答案 B,解析 “S ”型曲线表示了种群数量与时间的关系。
种群的增长受自身密度制约,而种群增长速率是逐渐下降的,各阶段都不相同。
,知识点一、构建种群增长模型的方法 1.建立数学模型的一般步骤是( )观察研究对象→观察研究对象→用数学形式对事物的性质进行表达→检验和修正,提出合理假设→提出合理假设→检验或修正→用数学形式对事物的性质进行表达,提出合理假设→提出合理假设→用数学形式对事物的性质进行表达→检验或修正,用数学形式对事物的性质进行表达→用数学形式对事物的性质进行表达→检验或修正→提出合理假设,答案 C,提出假设→提出假设→根据实验数据,用适当的数学形式对事物的性质进行表达→通过进一步实验或观察,对模型进行检验或修正。
2.在营养和生存空间没有限制的情况下,某细菌每20 min 就通过分裂繁殖一代,经过72 h 后,由一个细菌分裂产生的细菌量是( ) A.272 B .2216 C .262 D .232答案 B,解析 根据N t =N 0·λt ,λ=2,t 为繁殖的次数,每20 min 繁殖一代,72 h 共繁殖72×6020=216次。