小升初数学试卷奥数真题及答案
- 格式:docx
- 大小:15.41 KB
- 文档页数:1
小升初小学奥数试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3答案:C2. 一个数的3倍加上15等于这个数的5倍,这个数是多少?A. 5B. 10C. 15D. 20答案:B3. 一个长方体的长、宽、高分别是12厘米、8厘米和6厘米,其表面积是多少平方厘米?A. 432B. 504C. 576D. 648答案:B4. 一个数除以3的余数是2,除以5的余数是1,这个数最小是多少?A. 11B. 16C. 21D. 26答案:A5. 一本书的价格是35元,如果打8折,那么现价是多少元?A. 25B. 28C. 30D. 35答案:B二、填空题(每题3分,共15分)6. 一个数的1/4加上它的1/2等于______。
答案:3/47. 一个正方形的面积是64平方厘米,它的周长是______厘米。
答案:328. 一本书有120页,小明第一天看了总页数的1/3,第二天看了剩下页数的1/2,那么小明两天共看了______页。
答案:609. 一个数的2/3加上它的1/3等于______。
答案:110. 一个长方形的长是15厘米,宽是10厘米,如果长和宽都增加5厘米,那么新的长方形面积比原来增加了______平方厘米。
答案:125三、解答题(共75分)11. 一个长方形的长是21厘米,宽是15厘米。
如果长和宽都减少3厘米,那么新的长方形的面积是多少平方厘米?(10分)答案:新的长方形的长是21 - 3 = 18厘米,宽是15 - 3 = 12厘米。
面积是18 * 12 = 216平方厘米。
12. 小明和小红合伙买了一些文具,小明出了总金额的2/5,小红出了总金额的3/5。
如果小红出了60元,那么小明出了多少元?(15分)答案:小红出的钱是总金额的3/5,那么总金额是60 / (3/5) = 100元。
小明出了总金额的2/5,即小明出了100 * (2/5) = 40元。
小升初奥数题大全100道附答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。
这三个数分别是多少?答案:3、4、5因为3×4×5 = 60题目2:一个数除以5 余3,除以6 余4,除以7 余5。
这个数最小是多少?答案:2085、6、7 的最小公倍数是210,这个数为210 - 2 = 208题目3:小明在计算两个数相加时,把一个加数个位上的6 错写成2,把另一个加数十位上的5 错写成3,所得的和是374。
原来两个数相加的正确结果是多少?答案:408一个加数个位上的6 错写成2,少加了4;把另一个加数十位上的5 错写成3,少加了20。
所以正确结果是374 + 4 + 20 = 408题目4:鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只假设全是鸡,有脚60 只,少了28 只脚。
每把一只鸡换成一只兔,脚多2 只,所以兔有28÷2 = 14 只,鸡有16 只题目5:在一条长400 米的环形跑道上,甲、乙两人同时从同一点出发,同向而行,甲每秒跑6 米,乙每秒跑4 米。
经过多少秒甲第一次追上乙?答案:200 秒甲每秒比乙多跑2 米,多跑一圈400 米追上,所以400÷2 = 200 秒题目6:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2。
这个长方体的体积是多少?答案:240 立方厘米长方体有4 条长、4 条宽、4 条高,所以一组长、宽、高的和为20 厘米。
按比例分配可得长10 厘米、宽6 厘米、高4 厘米,体积为10×6×4 = 240 立方厘米题目7:某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第二车间少40 人。
三个车间共有多少人?答案:560 人设总人数为x 人,则第一车间人数为1/4 x 人,第二车间人数为3/7×3/4 x 人,可列方程3/7×3/4 x - 1/4 x = 40题目8:一个分数,分子与分母的和是48,如果分子、分母都加上1,所得分数约分后是2/3。
小升初数学奥数题及答案小升初数学奥数题是许多学生在准备升学考试时会接触到的题目,它们通常比常规的数学题目更具挑战性,需要学生运用更高层次的逻辑思维和数学技巧。
以下是一些典型的小升初数学奥数题目及答案:题目1:小明有5个苹果,他想将这些苹果平均分给3个朋友,每个朋友至少得到一个苹果,问小明最多能分给每个朋友几个苹果?答案:小明可以将5个苹果中的3个分给3个朋友,每人得到1个,剩下的2个苹果,他可以给其中的两个朋友每人再分一个,这样每个朋友都得到了2个苹果。
题目2:在一个圆形的花坛周围,有10个等距离的点,每个点上都种了一棵树。
如果将这些树重新排列,使得任意两棵树之间的距离都相等,问最少需要移动多少棵树?答案:由于是圆形排列,我们可以将问题转化为将10个点平均分布在圆周上。
在这种情况下,最少需要移动的树的数量是5棵,因为每两棵树之间的距离是圆周的1/10,移动5棵树后,可以形成新的等距离排列。
题目3:有一串数字序列,每个数字都是前两个数字的和,序列开始为1, 1。
如果这个序列无限延长,那么第100个数字是奇数还是偶数?答案:这个序列是斐波那契数列,即1, 1, 2, 3, 5, 8, 13, ...。
观察数列可以发现,奇数和奇数相加得到偶数,偶数和奇数相加得到奇数。
由于序列开始是两个奇数,接下来的数字将是偶数,然后是奇数,以此类推。
因此,每三个数字会形成一个周期:奇数,偶数,奇数。
由于100除以3的余数是1,所以第100个数字将是奇数。
题目4:一个数字钟的时针和分针在12点整时重合。
如果时针和分针下一次重合需要多少分钟?答案:时针和分针重合的情况通常发生在每个小时的某个时刻。
由于时针每小时走30度(360度/12小时),而分针每分钟走6度(360度/60分钟),我们可以设置一个方程来解决这个问题。
设x为分钟数,那么有:\[ 30 + \frac{30}{60}x = 6x \]\[ 30 + 0.5x = 6x \]\[ 30 = 5.5x \]\[ x = \frac{30}{5.5} \]\[ x \approx 5.45 \]由于时间不能是小数,我们取最接近的整数,即5分钟。
小升初奥数考试题及答案1. 题目:一个数列,前三项分别是1,2,4,从第四项开始,每一项都是前三项的和。
求第10项的值。
答案:根据题意,数列的前几项为1,2,4,7(1+2+4),13(2+4+7),24(4+7+13),44(7+13+24),81(13+24+44),149(24+44+81),274(44+81+149),504(81+149+274)。
因此,第10项的值为504。
2. 题目:一个长方形的长是宽的两倍,如果宽增加5米,长减少3米,面积就增加35平方米。
求原来长方形的长和宽。
答案:设原来长方形的宽为x米,则长为2x米。
根据题意,有方程:(x+5)(2x-3) - x*2x = 35。
解得x=7,所以原来的宽为7米,长为14米。
3. 题目:一个自然数,除以3余1,除以5余2,除以7余3,求这个数。
答案:根据中国剩余定理,设这个数为x,则有以下同余方程组:x ≡ 1 (mod 3)x ≡ 2 (mod 5)x ≡ 3 (mod 7)解得x=53。
因此,这个自然数是53。
4. 题目:一个工厂有100个工人,每个工人每天可以生产10个零件。
现在工厂接到一个订单,需要在30天内完成1000个零件的生产。
如果工厂每天增加5个工人,那么需要多少天完成这个订单?答案:设需要x天完成这个订单,则有方程:(100+5x)*10x = 1000。
解得x=5。
因此,需要5天完成这个订单。
5. 题目:一个数的平方减去这个数本身再减去1等于0,求这个数。
答案:设这个数为x,则有方程:x^2 - x - 1 = 0。
解得x=(1±√5)/2。
因此,这个数是(1±√5)/2。
结束语:通过以上题目的练习,可以有效地提高学生的逻辑思维能力和数学解题技巧,为小升初的数学考试打下坚实的基础。
小升初奥数试题题及答案1. 题目:一个数列的前三项是2,4,6,从第四项开始,每一项都是它前三项的和。
求这个数列的第10项是多少?答案:首先,我们已知数列的前三项是2,4,6。
根据题目描述,我们可以计算出接下来的几项:- 第四项:2 + 4 + 6 = 12- 第五项:4 + 6 + 12 = 22- 第六项:6 + 12 + 22 = 40- 第七项:12 + 22 + 40 = 74- 第八项:22 + 40 + 74 = 136- 第九项:40 + 74 + 136 = 250- 第十项:74 + 136 + 250 = 470所以,这个数列的第10项是470。
2. 题目:一个水池,有甲乙两个水管,甲水管单独注水需要6小时,乙水管单独注水需要8小时。
现在甲乙两个水管同时注水,需要多少时间才能将水池注满?答案:设水池的容量为1,甲水管的注水速度为1/6,乙水管的注水速度为1/8。
当甲乙两个水管同时注水时,它们的注水速度相加,即1/6 + 1/8 = 7/24。
因此,注满水池需要的时间为1 / (7/24) = 24/7小时。
3. 题目:一个长方体的长、宽、高分别为2,3,4。
求这个长方体的表面积。
答案:长方体的表面积计算公式为:2 * (长*宽 + 长*高 + 宽*高)。
将题目中给出的长、宽、高代入公式,我们可以得到:表面积 = 2 * (2*3 + 2*4 + 3*4) = 2 * (6 + 8 + 12) = 2 * 26 = 52所以,这个长方体的表面积是52平方单位。
4. 题目:一个数列的前四项是1,2,4,8,求这个数列的第五项。
答案:观察数列的前四项,我们可以发现每一项都是前一项的两倍。
因此,这个数列是一个等比数列,公比为2。
根据等比数列的性质,第五项是第四项的两倍,即8 * 2 = 16。
5. 题目:一个班级有40名学生,其中有20%的学生喜欢足球,30%的学生喜欢篮球,剩下的学生喜欢乒乓球。
小升初数学 奥数题一、小明有10块糖,他给了小红3块,又给了小蓝2块,最后还剩下几块糖?A. 4块B. 5块C. 6块D. 7块(答案)B(解析)小明原来有10块糖,给小红3块后剩下7块,再给小蓝2块后剩下5块,所以最后剩下5块糖。
二、一个正方形的边长是4厘米,如果把它的一条边增加2厘米,面积会增加多少平方厘米?A. 4平方厘米B. 8平方厘米C. 12平方厘米D. 16平方厘米(答案)C(解析)原正方形的面积是4×4=16平方厘米,边长增加2厘米后变为6厘米,新正方形的面积是6×6=36平方厘米,面积增加了36-16=12平方厘米。
三、小华从1楼走到3楼需要30秒,那么他从1楼走到5楼需要多少秒?A. 45秒B. 50秒C. 60秒D. 75秒(答案)C(解析)小华从1楼走到3楼是走了2层楼,用了30秒,那么走1层楼就需要15秒。
从1楼走到5楼是走了4层楼,所以需要15×4=60秒。
四、一串数字:1,1,2,3,5,8,13,21,... ,请问第10个数字是多少?A. 34B. 55C. 89D. 144(答案)B(解析)这是一串斐波那契数列,每个数字都是前两个数字的和。
根据这个规律,可以推算出第10个数字是55。
五、一个长方形的长是8厘米,宽是6厘米,如果把它的长增加2厘米,宽减少1厘米,那么新的长方形的面积会如何变化?A. 增加B. 减少C. 不变D. 无法确定(答案)A(解析)原长方形的面积是8×6=48平方厘米,长增加2厘米变为10厘米,宽减少1厘米变为5厘米,新长方形的面积是10×5=50平方厘米,面积增加了。
六、小明有3个苹果,小红有2个苹果,他们一共有多少个苹果?如果小明给小红1个苹果,他们会有相同数量的苹果吗?A. 5个,会B. 5个,不会C. 6个,会D. 6个,不会(答案)B(解析)小明和小红一共有3+2=5个苹果。
如果小明给小红1个苹果,小明还剩2个,小红有3个,他们不会有相同数量的苹果。
小升初奥数考试题及答案1. 题目:一个数列的前三项是1,2,3,从第四项开始,每一项都是它前三项的和。
求数列的第10项是多少?答案:根据题意,数列的前几项为1,2,3,6,10,15,21,28,36,45。
因此,数列的第10项是45。
2. 题目:一个长方体的长、宽、高分别为5厘米、4厘米、3厘米,求这个长方体的表面积。
答案:长方体的表面积公式为2(长×宽+长×高+宽×高)。
代入数据得:2(5×4+5×3+4×3)=2(20+15+12)=2×47=94平方厘米。
3. 题目:一个正整数除以3余1,除以5余2,除以7余3,求这个数。
答案:满足条件的数是3、5、7的最小公倍数减去1,即3×5×7-1=104。
4. 题目:一个数的平方减去这个数等于48,求这个数。
答案:设这个数为x,则有x^2 - x = 48。
解这个一元二次方程,得到x=8或x=-6。
5. 题目:一个数列的前三项是2,4,6,从第四项开始,每一项都是它前三项的和。
求数列的第10项是多少?答案:根据题意,数列的前几项为2,4,6,12,18,28,42,60,84,114。
因此,数列的第10项是114。
6. 题目:一个长方体的长、宽、高分别为6厘米、5厘米、4厘米,求这个长方体的体积。
答案:长方体的体积公式为长×宽×高。
代入数据得:6×5×4=120立方厘米。
7. 题目:一个正整数除以4余2,除以5余3,除以6余4,求这个数。
答案:满足条件的数是4、5、6的最小公倍数减去2,即4×5×6-2=118。
8. 题目:一个数的立方减去这个数等于216,求这个数。
答案:设这个数为y,则有y^3 - y = 216。
解这个一元三次方程,得到y=6。
9. 题目:一个数列的前三项是3,5,7,从第四项开始,每一项都是它前三项的和。
小升初奥数试题及参考答案一、选择题1. 下列哪个数是最小的质数?A. 0B. 1C. 2D. 3参考答案:C2. 一个数的1/5加上它的1/3,求和的结果是这个数的几分之几?A. 1/15B. 8/15C. 1/3D. 3/5参考答案:B3. 一个长方体的长是10厘米,宽是8厘米,高是5厘米,其表面积是多少平方厘米?A. 170B. 270C. 340D. 420参考答案:D二、填空题4. 一个数的3/4加上它的1/2,和是这个数的______。
参考答案:7/85. 一本书的价格是35元,如果打8折出售,那么现价是______元。
参考答案:286. 一个正方形的边长增加10%,那么它的面积增加了多少百分比?参考答案:21%三、解答题7. 一块长方形草地的长是40米,宽是30米。
现在要在其四周围上篱笆,问篱笆的总长度是多少米?参考答案:(40+30)×2 = 140米8. 小明和小红合作完成一项工作,小明单独完成需要4小时,小红单独完成需要6小时。
现在他们合作,共同完成这项工作需要多少时间?参考答案:设工作总量为1,小明每小时完成1/4,小红每小时完成1/6的工作量。
合作时,他们每小时完成的工作量是1/4 + 1/6 =5/12。
所以,他们合作完成工作需要的时间为1 ÷ (5/12) = 2.4小时。
9. 一个班级有48名学生,其中2/3是男生,剩下的是女生。
问这个班级有多少名女生?参考答案:48 × (1 - 2/3) = 48 × 1/3 = 16名女生。
四、应用题10. 小华有一些贴纸,她给了小明一半的贴纸后,自己还剩下20张。
请问小华原来有多少张贴纸?参考答案:设小华原来有x张贴纸,根据题意,x/2 = 20,解得x = 40张。
11. 一辆汽车从甲地到乙地,如果速度提高20%,可以比原定时间提前1小时到达。
已知原定速度是60公里/小时,求两地之间的距离。
小升初最常考奥数题100道及答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)2. 小明看一本书,第一天看了全书的1/4,第二天看了全书的2/5,第二天比第一天多看了21 页,这本书一共有多少页?答案:21÷(2/5 - 1/4)= 21÷3/20 = 140(页)3. 有一批货物,第一天运走了总数的2/5,第二天运走的货物比总数的1/4 多4 吨,这时还剩17 吨,这批货物共有多少吨?答案:(17 + 4)÷(1 - 2/5 - 1/4)= 21÷7/20 = 60(吨)4. 某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:40÷[(1 - 25%)×3/(3 + 4) - 25%] = 40÷[3/7 - 1/4] = 560(人)5. 师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21 个,这批零件有多少个?答案:21÷(1 - 2/7 - 2/7)= 21÷3/7 = 49(个)6. 仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3 少12 袋,这时仓库里还剩24 袋,两次共取出多少袋?答案:(24 - 12)÷(1 - 2/5 - 1/3)= 12÷4/15 = 45(袋),45 - 24 = 21(袋)7. 甲、乙、丙三个数的和是110,甲与乙的比是3:2,乙与丙的比是4:1,乙数是多少?答案:甲:乙= 3:2 = 6:4,乙:丙= 4:1,所以甲:乙:丙= 6:4:1,乙数:110×4/(6 + 4 + 1) = 408. 一辆汽车从甲地开往乙地,行了全程的3/8,离乙地还有135 千米,两地之间的公路长多少千米?答案:135÷(1 - 3/8)= 216(千米)9. 修一条路,已修的与未修的比是1:5,又修了490 米后,已修的与未修的比是3:1,这时还有多少米未修?答案:490÷(3/4 - 1/6)×1/4 = 180(米)10. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,4/5 x - 2/3×(465 - x) = 20 ,解得x = 225,女生人数:465 - 225 = 240(人)11. 水果店里卖出的梨的重量是苹果的5/7,梨比苹果少卖30 千克,梨卖了多少千克?答案:30÷(1 - 5/7)×5/7 = 75(千克)12. 一筐苹果卖掉1/5 后,又卖掉6 千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?答案:6÷(1/3 - 1/5)= 45(千克)13. 甲、乙两班共有84 人,甲班人数的5/8 与乙班人数的3/4 共有58 人,甲、乙两班各有多少人?答案:设甲班有x 人,5/8 x + 3/4×(84 - x) = 58 ,解得x = 40,乙班:84 - 40 = 44(人)14. 学校买来两种图书共220 本,取出甲种图书的1/4 和乙种图书的1/5 共50 本借给五年级(1)班同学阅读,问甲、乙两种图书各买来多少本?答案:设甲种图书有x 本,1/4 x + 1/5×(220 - x) = 50 ,解得x = 120,乙种图书:220 - 120 = 100(本)15. 某工厂第一车间有工人150 人,第二车间有工人90 人,要使第一车间人数是第二车间的2 倍,需要从第二车间调多少人到第一车间?答案:(150 + 90)÷(2 + 1) = 80(人),90 - 80 = 10(人)16. 甲、乙两堆煤共180 吨,甲堆煤的1/3 比乙堆煤的2/3 多18 吨,甲、乙两堆煤各有多少吨?答案:设甲堆煤有x 吨,1/3 x - 2/3×(180 - x) = 18 ,解得x = 138,乙堆煤:180 - 138 = 42(吨)17. 学校图书馆有科技书和文艺书共3200 本,科技书的本数是文艺书的4/5,科技书和文艺书各有多少本?答案:文艺书:3200÷(1 + 4/5)= 16000/9 ≈1778(本),科技书:3200 - 1778 = 1422(本)18. 一辆汽车从甲地到乙地,已经行了全程的1/5,再向前行50 千米,就比全程的2/3 少6 千米,求甲乙两地的距离。
小升初数学试卷奥数真题及答案
关于小升初数学试卷奥数真题及答案
试题一:有5个亮着的灯泡,每个灯泡都由一个开关控制,每次操作可以拉动其中的2个开关以改变相应灯泡的`亮暗状态,能否经过若干次操作使得5个灯泡都变暗?
解答:每个灯泡变暗需要拉动奇数次开关;则5个灯泡全部变暗一共也需要拉动奇数次开关;而每次操作是拉动2个开关;若干次操作后一共拉动的次数肯定是2的倍数,也就是偶数次;但是5个灯泡全部变暗一定需要总共拉动奇数次,所以矛盾了;所以无论经过多少次操作都不可能使5个灯泡一起变暗。
试题二:甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.
解答:第一次相遇时,两人合走了半个圆周;第二次相遇时,两人又合走了一个圆周,所以从第一相遇到第二次相遇时乙走的路程是第一次相遇时走的2倍,所以第二次相遇时,乙一共走了100×(2+1)=300 米,两人的总路程和为一周半,又甲所走路程比一周少60米,说明乙的路程比半周多60米,那么圆形场地的半周长为300-60=240 米,周长为240×2=480米.
试题三:迎春杯数学竞赛后,甲、乙、丙、丁四名同学猜测他们之中谁能获奖.甲说:如果我能获奖,那么乙也能获奖.乙说:如果我能获奖,那么丙也能获奖.丙说:如果丁没获奖,那么我也不能获奖.实际上,他们之中只有一个人没有获奖.并且甲、乙、丙说的话都是正确的.那么没能获奖的同学是___。
解答:首先根据丙说的话可以推知,丁必能获奖.否则,假设丁没获奖,那么丙也没获奖,这与他们之中只有一个人没有获奖矛盾。
其次考虑甲是否获奖,假设甲能获奖,那么根据甲说的话可以推知,乙也能获奖;再根据乙说的话又可以推知丙也能获奖,这样就得出4个人全都能获奖,不可能.因此,只有甲没有获奖。