2018-2019学年最新浙教版数学九年级(上)期末模拟试卷(一)及参考答案-精编试题
- 格式:doc
- 大小:481.20 KB
- 文档页数:11
浙江省宁波市XX中学2018届九年级上册期末模拟数学试卷一.单选题(共10题;共30分)1.如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()A. π﹣2B. π﹣4C. 4π﹣2D. 4π﹣42.已知AB是⊙O的直径,弧AC的度数是30°.如果⊙O的直径为4,那么AC2等于()A. 2-B. 4-6C. 8-4D. 23.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A. 175πcm2B. 350πcm2C. πcm2D. 150πcm24.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)是体积V(单位:m3)的反比例函数,它的图象如图所示,当V=10m3时,气体的密度是()A. 5kg/m3B. 2kg/m3C. 100kg/m3D. 1kg/m35.已知扇形AOB的半径为6㎝,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为()A. B. C. D.6.如果两个相似三角形的相似比是1:,那么这两个相似三角形的面积比是()A. 2:1B. 1:C. 1:2D. 1:47.sin30°的值是()A. B. C. 1 D.8.在△ABC中,∠C=90°,sinA=,则tanA的值为()A. B. C. D.9.在下列现象中:①时针转动,②电风扇叶片的转动,③转呼啦圈,④传送带上的电视机,其中是旋转的有()A. ①②B. ②③C. ①④D. ③④10.如图所示的抛物线对称轴是直线x=1,与x轴有两个交点,与y轴交点坐标是(0,3),把它向下平移2个单位后,得到新的抛物线解析式是y=ax2+bx+c,以下四个结论:①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>10中,判断正确的有()A. ②③④B. ①②③C. ②③D. ①④二.填空题(共8题;共24分)11.如图,在⊙O中,直径AB∥弦CD,若∠COD=120°,则∠BOD= ________.12.挂钟分针的长10cm,经过45分钟,它的针尖转过的弧长是________ cm.13.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为________ cm.14.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个;若这种商品的零售价在一定范围内每降价2元,其日销售量就增加4个,为了获得最大利润,则售价为________元,最大利润为________元.15.请写一个图象在第二、四象限的反比例函数解析式:________ .16.若(b+d≠0),则=________17.如果,那么=________18.二次函数y=ax2+bx+c(a≠0)自变量x与函数y的对应值如下表:m m若1<m<1,则一元二次方程ax2+bx+c=0的两根x1,x2的取值范围是________ .三.解答题(共6题;共36分)19.如图,某超市利用一个带斜坡的平台装卸货物,其纵断面ACFE如图所示.AE为台面,AC垂直于地面,AB表示平台前方的斜坡.斜坡的坡角∠ABC为45°,坡长AB为2m.为保障安全,又便于装卸货物,决定减小斜坡AB的坡角,AD 是改造后的斜坡(点D在直线BC上),坡角∠ADC为31°.求斜坡AD底端D与平台AC的距离CD.(结果精确到0.01m)[参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.601,≈1.414].20.如图,是抛物线形拱桥,当拱顶离水面2米时,水面宽4米.若水面下降1米,则水面宽度将增加多少米?21.如图,已知△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F,AB=12,EF=9,则DF 的长是多少?22.如图,以O为位似中心,将△ABC放大为原来的2倍.23.“蘑菇石”是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)24.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)四.综合题(共10分)25.如图,用20m的篱笆围成一个矩形的花圃.设连墙的一边为x(m),矩形的面积为y(m2).(1)写出y关于x的函数解析式;(2)当x=3时,矩形的面积为多少?浙江省宁波市XX中学2018届九年级上册期末模拟数学试卷参考答案与试题解析一.单选题1.【答案】A【考点】扇形面积的计算【解析】【解答】S阴影部分=S扇形OAB﹣S△OAB=-=π﹣2,故选:A【分析】由∠AOB为90°,得到△OAB为等腰直角三角形,于是OA=OB,而S阴影部分=S扇形OAB﹣S△OAB.然后根据扇形和直角三角形的面积公式计算即可.2.【答案】C【考点】圆心角、弧、弦的关系【解析】【解答】解:如图,连接OC.过点C作CD⊥OA于点D.∵⊙O的直径为4,∴AB=4,∴OA=OC=2.∵弧AC的度数是30°,∴∠COD=30°,∴CD=1,∴OD==,则AD=2﹣,∵AB是直径,∴∠ACB=90°.∴AC2=AD•AB=(2﹣)×4=8﹣4.故选C.【分析】如图,连接OC.过点C作CD⊥OA于点D.根据圆心角、弧、弦间的关系知∠COD=30°.在直角△COD中,利用勾股定理、30度角所对的直角边是斜边的一半求得线段OD的长度,易求线段AD的长度.所以在直角△ACB中,利用射影定理来求AC2的值.3.【答案】B【考点】扇形面积的计算【解析】【解答】解:∵AB=25,BD=15,∴AD=10,∴S贴纸=2×(﹣)=2×175π=350πcm2,故选B.【分析】贴纸部分的面积等于扇形ABC减去小扇形的面积,已知圆心角的度数为120°,扇形的半径为25cm和10cm,可根据扇形的面积公式求出贴纸部分的面积.4.【答案】D【考点】反比例函数的应用【解析】【解答】∵ρ•V=10,∴ρ=,∴当V=10m3时,ρ==1kg/m3.故选:D.【分析】根据题意:密度ρ与体积V成反比例函数,且过点(5,2),故ρ•V=10;故当V=10m3时,气体的密度是10 V =1kg/m3.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.5.【答案】D【考点】弧长的计算,圆锥的计算【解析】【分析】设围成圆锥的底面半径为r,由扇形弧长恰好等于底面周长,有:,cm,圆锥的侧面积cm2,故选D.6.【答案】C【考点】相似三角形的性质【解析】【解答】解:这两个相似三角形的面积比=12:()2=1:2.故选C.【分析】直接根据似三角形的面积的比等于相似比的平方进行计算即可.7.【答案】A【考点】特殊角的三角函数值【解析】【解答】解:sin30°= .故选A.【分析】由30°的正弦值为,即可求得答案.8.【答案】C【考点】同角三角函数的关系【解析】【解答】解:由△ABC中,∠C=90°,sinA=,得cosA= ,tanA= ,故选:C.【分析】根据同角三角函数的关系:sin2α+cos2α=1,tanα= ,可得答案.9.【答案】A【考点】生活中的旋转现象【解析】【解答】解:①时针转动,是旋转;故本项符合题意;②电风扇叶片的转动,是旋转;故本项符合题意;③转呼拉圈,不只是旋转;故本项不符合题意;④传送带上的电视机,不是旋转;故本项不符合题意;故选:A.【分析】根据旋转的定义,在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转;对每一项分析、判断即可.10.【答案】A【考点】二次函数图象与系数的关系,二次函数图象与几何变换【解析】【解答】解:根据题意平移后的抛物线的对称轴x=﹣=1,c=3﹣2=1,由图象可知,平移后的抛物线与x轴有两个交点,∴b2﹣4ac>0,故①错误;∵抛物线开口向上,∴a>0,b=﹣2a<0,∴abc<0,故②正确;∵平移后抛物线与y轴的交点为(0,1)对称轴x=1,∴点(2,1)点(0,1)的对称点,∴当x=2时,y=1,∴4a+2b+c=1,故③正确;由图象可知,当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选A.【分析】根据平移后的图象即可判定①,根据平移后的对称轴和与y轴的交点坐标,即可判定a和b的关系以及c的值,即可判定②,根据与y轴的交点求得对称点,即可判定③,根据图象即可判定④.二.填空题11.【答案】30°【考点】圆心角、弧、弦的关系【解析】【解答】解:∵OC=OD,∴∠C=∠D,∵∠COD=120°,∴∠C=∠D=30°,∵AB∥CD,∴∠BOD=∠D=30°,故答案为30.【分析】先求得∠C=∠D,再根据AB∥CD,可得出∠BOD=∠D,再求值即可.12.【答案】【考点】弧长的计算【解析】【解答】分针经过60分钟,转过360°,经过45分钟转过270°,则分针的针尖转过的弧长是.故答案是.【分析】考查弧长的计算.13.【答案】18【考点】相似三角形的应用【解析】【解答】解:∵DE∥BC,∴△AED∽△ABC∴设屏幕上的小树高是x,则解得x=18cm.故答案为:18.【分析】根据题意可画出图形,再根据相似三角形的性质对应边成比例解答.14.【答案】90;800【考点】二次函数的最值【解析】【解答】解:设降价x元,利润为y,y=(100﹣70﹣x)(20+2x)=﹣2x2+40x+600=﹣2(x﹣10)2+800,当x=10时,y的最大值为800,即售价为90元时,最大利润为800元.故答案为90,800.【分析】设降价x元,利润为y,利用总利润等于单个的利润乘以销售量得到y=(100﹣70﹣x)(20+2x),利用配方法得到y=﹣2(x﹣10)2+800,然后根据二次函数的最值问题求解.15.【答案】y=-【考点】反比例函数的定义【解析】【解答】∵图象在第二、四象限,∴y=-,故答案为:y=-.【分析】根据反比例函数的性质可得k<0,写一个k<0的反比例函数即可.此题主要考查了反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.16.【答案】【考点】比例的性质【解析】【解答】解:由等比性质,得= = ,故答案为:.【分析】根据等比性质,可得答案.17.【答案】【考点】比例的性质【解析】【解答】解:∵,∴设x=2k,y=5k,则.故答案为:.【分析】根据比例设x=2k,y=5k,然后代入比例式进行计算即可得解.18.【答案】﹣1<x1<0,2<x2<3【考点】图象法求一元二次方程的近似根【解析】解:∵1<m<1,∴﹣1<m﹣2<﹣,<m﹣<1,∴函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0.由表中数据可知:y=0在y=m﹣2与y=m﹣之间,故对应的x的值在﹣1与0之间,即﹣1<x1<0,y=0在y=m﹣2与y=m﹣之间,故对应的x的值在2与3之间,即2<x2<3.故答案为﹣1<x1<0,2<x2<3.【分析】根据函数y=ax2+bx+c的图象与x轴的交点的横坐标就是方程ax2+bx+c=0的根,再根据函数的增减性即可判断方程ax2+bx+c=0两个根的范围.三.解答题19.【答案】解:在Rt△ABC中,∵∠ABC=53°,AB=2m,∴AC=AB•sin45°=2 (m)∴,在Rt△ADC中,∵∠ADC=31°,∴,∴.答:斜坡AD底端D与平台AC的距离CD约为2.36m【考点】解直角三角形的应用-坡度坡角问题【解析】【分析】首先根据∠ABC=45°,AB=2m,在Rt△ABC中,求出AC的长度,然后根据∠ADC=31°,利用三角函数的知识在Rt△ACD中求出CD的长度.20.【答案】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2 米,比原先的宽度当然是增加了(2 ﹣4)米.【考点】二次函数的应用【解析】【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再根据通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.21.【答案】解:∵△ABC与△DEC的面积相等,∴△CDF与四边形AFEB的面积相等,∵AB∥DE,∴△CEF∽△CBA,∵EF=9,AB=12,∴EF:AB=9:12=3:4,∴△CEF和△CBA的面积比=9:16,设△CEF的面积为9k,则四边形AFEB的面积=7k,∵△CDF与四边形AFEB的面积相等,∴S△CDF=7k,∵△CDF与△CEF是同高不同底的三角形,∴面积比等于底之比,∴DF:EF=7k:9k,∴DF=7.【考点】相似三角形的判定与性质【解析】【分析】根据题意,易得△CDF与四边形AFEB的面积相等,再根据相似三角形的相似比求得它们的面积关系比,从而求DF的长,此题考查了相似三角形的判定与性质,解题的关键是会用割补法计算面积.22.【答案】解:如图所示:△A′B′C′和△A″B″C″.【考点】位似变换【解析】【分析】直接利用位似图形的性质分别得出对应点位置,进而得出答案.23.【答案】解:如图,过点D作DF⊥BC于点F,延长DE交AC于点M,由题意可得:EM⊥AC,DF=MC,∠AEM=29°,在Rt△DFB中,sin80°= ,则DF=BD•sin80°,AM=AC﹣CM=1890﹣1800•sin80°,在Rt△AME中,sin29°= ,故AE= = ≈242.1(m),答:斜坡AE的长度约为242.1m.【考点】解直角三角形的应用-坡度坡角问题【解析】【分析】首先过点D作DF⊥BC于点F,延长DE交AC于点M,进而表示出DF、AM的长,再利用AE= ,求出答案.24.【答案】解:过C作CD⊥AB于D,在Rt△ACD中,∵AC=10,∠A=30°,∴DC=ACsin30°=5,AD=ACcos30°=5,在Rt△BCD中,∵∠B=45°,∴BD=CD=5,BC=5,则用AC+BC-(AD+BD)=10+5-(5+5)=5+5-5(千米).答:汽车从A地到B地比原来少走(5+5-5)千米.【考点】特殊角的三角函数值,解直角三角形【解析】【分析】特殊角的三角函数值的应用,解决实际问题。
第一学期九年级期末模拟检测数学试题卷一、选择题(共10小题,每小题3分,满分30分)1.若2a=5b,则=()A.B.C.2 D.52.抛物线y=x2﹣4与y轴的交点坐标是()A.(0,﹣4)B.(﹣4,0)C.(2,0)D.(0,2)3.二次函数y=2(x+1)2﹣3的最小值是()A.1 B.﹣1 C.3 D.﹣34.某路口交通信号灯的时间设置为:红灯亮25秒,绿灯亮30秒,黄灯亮5秒.当人或车随意经过该路口时,遇到绿灯的概率为()A.B.C.D.5.已知一扇形的半径长是6,圆心角为60°,则这个扇形的面积为()A.πB.2πC.6πD.12π6.如图,在△ABC中,∠ACB=90°,BC=3cm,AC=4cm,D是AB的中点,若以点C 为圆心,以3cm长为半径作⊙C,则下列选项中的点在⊙C外的是()A.点A B.点B C.点C D.点D7.经过某十字路口的汽车,可能直行,也可能左转或者右转,若这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆直行,一辆右转的概率是()A.B.C.D.8.如图,在△ABC中,点D在边AB上,过点D作DE∥BC交AC于点E,DF∥AC交BC于F,若AE:DF=2:3,则BF:BC的值是()A.B.C.D.9.如图,AD是△ABC的外角∠EAC的平分线,与△ABC的外接圆交于点D,则图中与∠EAD相等的角(不包括∠EAD)有()A.2个B.3个C.4个D.5个10.如图,P是给定△ABC边AB上一动点,D是CP的延长线上一点,且2DP=PC,连结DB,动点P从点B出发,沿BA方向匀速运动到终点A,则△APC与△DBP面积的差的变化情况是()A.始终不变 B.先减小后增大C.一直变大 D.一直变小二、填空题(共8小题,每小题3分,满分24分)11.抛物线y=x2﹣4x﹣1的对称轴为.12.将抛物线y=x2﹣2向左平移1个单位后所得抛物线的表达式为.13.某单位工会组织内部抽奖活动,共准备了100张奖券,设特等奖1个,一等奖10个,二等奖20个,三等奖30个.已知每张奖券获奖的可能性相同,则一张奖券中一等奖或二等奖的概率是.14.二次函数y=a(x+3)2+k的图象如图所示,已知点A(﹣1,y1),B(﹣2,y2)和C (﹣6.5,y3)都在该图象上,则y1,y2,y3的大小关系是.15.如图,水平放置的圆柱形排水管道的截面直径是1m,排水管内水的最大深度CD是0.8m,则水面宽AB为m.16.如图,P是△ABC的重心,过点P作PE∥AB交BC于点E,PF∥AC交BC于点F,若△PEF的周长是6,则△ABC的周长为.17.如图,点A,B,C均在⊙O上,点O在∠ACB的内部,若∠A+∠B=56°,则为度.18.如图,P是AB为直径的半圆周上一点,点C在∠PAB的平分线上,且CB⊥AB于B,PB交AC于E,若AB=4,BE=2,则PE的长为.三、解答题(共6小题,满分46分)19.如图1,在8×8方格纸中,△ABC的三个顶点都在小方格的顶点上,按要求画一个三角形,使它的顶点都在方格的顶点上.(1)请在图2中画一个三角形,使它与△ABC相似,且相似比为2:1;(2)请在图3中画一个三角形,使它与△ABC相似,且相似比为:1.20.一个不透明的袋中,装有10个红球、2个黄球、8个篮球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取出若干个红球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率是,问取出了多少个红球?21.如图,抛物线y=﹣(x﹣1)2+4与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,CD∥x轴交抛物线另一点D,连结AC,DE∥AC交边CB于点E.(1)求A,B两点的坐标;(2)求△CDE与△BAC的面积之比.22.如图,点C,P均在⊙O上,且分布在直径AB的两侧,BE⊥CP于点E.(1)求证:△CAB∽△EPB;(2)若AB=10,AC=6,BP=5,求CP的长.23.某农场拟建三件矩形饲养室,饲养室一面靠现有墙(墙可用长≤20m),中间用两道墙隔开,已知计划中的建筑材料可建围墙的总长为60m,设饲养室宽为x(m),总占地面积为y(m2)(如图所示).(1)求y关于x的函数表达式,并直接写出自变量x的取值范围;(2)三间饲养室占地总面积有可能达到210m2吗?请说明理由.24.如图,点A,B的坐标分别为(0,8),(﹣3,0),点P从点A出发,以2单位/秒的速度沿射线AO方向运动,同时点E从点B出发,以1单位/秒的速度沿射线BO方向运动,以PE为斜边构造Rt△PEC(字母按逆时针顺序),且EC=2PC,抛物线y=﹣2x2+bx+c 经过点(0,4),(﹣1,﹣2),设运动时间为t秒.(1)求该抛物线的表达式;(2)当t=2时,求点C的坐标;(3)①当t<3时,求点C的坐标(用含t的代数式表示);②在运动过程中,若点C恰好落在该抛物线上,请直接写出所有满足条件的t的值.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.若2a=5b,则=()A.B.C.2 D.5【考点】比例的性质.【分析】根据等式的性质,可得答案.【解答】解:两边都除以2b,得=,故选:B.【点评】本题考查了比例的性质,利用等式的性质是解题关键.2.抛物线y=x2﹣4与y轴的交点坐标是()A.(0,﹣4)B.(﹣4,0)C.(2,0)D.(0,2)【考点】二次函数图象上点的坐标特征.【分析】令x=0,求出y的值即可.【解答】解:∵令x=0,则y=﹣4,∴抛物线y=x2﹣4与y轴的交点坐标是(0,﹣4).故选A.【点评】本题考查的是二次函数图象上点的坐标特点,熟知二次函数与坐标轴交点的特点是解答此题的关键.3.二次函数y=2(x+1)2﹣3的最小值是()A.1 B.﹣1 C.3 D.﹣3【考点】二次函数的最值.【分析】根据顶点式解析式写出最小值即可.【解答】解:∵a=2>0,∴二次函数y=2(x+1)2﹣3的最小值是﹣3.故选D.【点评】本题考查了二次函数的最值问题,掌握利用顶点式解析式确定最值的方法是解题的关键.4.某路口交通信号灯的时间设置为:红灯亮25秒,绿灯亮30秒,黄灯亮5秒.当人或车随意经过该路口时,遇到绿灯的概率为()A.B.C.D.【考点】概率公式.【分析】由红灯的时间为25秒,黄灯的时间为5秒,绿灯的时间为30秒,直接利用概率公式求解即可求得答案.【解答】解:,故选D【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.已知一扇形的半径长是6,圆心角为60°,则这个扇形的面积为()A.πB.2πC.6πD.12π【考点】扇形面积的计算.【分析】利用扇形的面积公式即可直接求解.【解答】解:扇形的面积是=6π.故选C.【点评】本题考查扇形的面积公式,正确记忆公式是关键.6.如图,在△ABC中,∠ACB=90°,BC=3cm,AC=4cm,D是AB的中点,若以点C 为圆心,以3cm长为半径作⊙C,则下列选项中的点在⊙C外的是()A.点A B.点B C.点C D.点D【考点】点与圆的位置关系;直角三角形斜边上的中线.【分析】分别求出AB、CD的长,根据点与圆的位置关系的判断方法进行判断即可.【解答】解:∵∠C=90°,BC=3cm,AC=4cm,∴AB==5,∵以点C为圆心,以3cm长为半径作⊙C,∴点A在⊙C外,∵D是AB的中点,∴CD=AB=2.5,故D在圆C内部,B在圆上,C是圆心.故选:A.【点评】本题考查的是点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.7.经过某十字路口的汽车,可能直行,也可能左转或者右转,若这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆直行,一辆右转的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】此题可以采用列表法或树状图求解.可以得到一共有9种情况,两辆汽车一辆直行,一辆右转的有2种情况,根据概率公式求解即可.【解答】解:画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:∵这两辆汽车行驶方向共有9种可能的结果,两辆汽车一辆直行,一辆右转的结果有2种,且所有结果的可能性相等,∴P(两辆汽车一辆直行,一辆右转)=.故选:C.【点评】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.8.如图,在△ABC中,点D在边AB上,过点D作DE∥BC交AC于点E,DF∥AC交BC于F,若AE:DF=2:3,则BF:BC的值是()A.B.C.D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得出比例式,再把它们等量代换,即可得出答案.【解答】解:∵DE∥BC,∴,∵DF∥AC,∴,∴,故选B【点评】本题考查了平行线分线段成比例定理,此题比较简单,注意掌握比例线段的对应关系是解此题的关键.9.如图,AD是△ABC的外角∠EAC的平分线,与△ABC的外接圆交于点D,则图中与∠EAD相等的角(不包括∠EAD)有()A.2个B.3个C.4个D.5个【考点】三角形的外接圆与外心.【分析】直接利用角平分线的性质结合圆内接四边形的性质得出答案.【解答】解:∵AD是△ABC的外角∠EAC的平分线,∴∠EAD=∠DAC,∵∠DAC=∠DBC,∠EAD=∠BCD,∴∠EAD=∠DAC=∠DBC=∠BCD,故与∠EAD相等的角(不包括∠EAD)有3个.故选:B.【点评】此题主要考查了角平分线的性质以及圆内接四边形的性质,正确得出∠EAD=∠BCD是解题关键.10.如图,P是给定△ABC边AB上一动点,D是CP的延长线上一点,且2DP=PC,连结DB,动点P从点B出发,沿BA方向匀速运动到终点A,则△APC与△DBP面积的差的变化情况是()A.始终不变 B.先减小后增大C.一直变大 D.一直变小【考点】动点问题的函数图象.【分析】根据题意可得S△APC﹣S△DBP=S△ABC﹣﹣S△DBC=S△APC+S△BPC﹣S△DBP﹣S△BPC,根据等底的三角形面积比等于高之比,可得S△DBP+S△BPC变大,再根据等量关系即可求解.【解答】解:∵S△APC﹣S△DBP=S△ABC﹣﹣S△DBC=S△APC+S△BPC﹣S△DBP﹣S△BPC,∵S△APC+S△BPC不变,S△DBP+S△BPC变大,∴S△APC﹣S△DBP一直变小.故选:D.【点评】考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二、填空题(共8小题,每小题3分,满分24分)11.抛物线y=x2﹣4x﹣1的对称轴为直线x=2 .【考点】二次函数的性质.【分析】根据抛物线y=ax2+bx+c的对称轴公式为x=﹣,此题中的a=1,b=﹣4,将它们代入其中即可.【解答】解:x=﹣=﹣=2.故答案为直线x=2.【点评】本题考查二次函数对称轴公式的应用,熟练掌握对称轴公式是解题的关键.12.将抛物线y=x2﹣2向左平移1个单位后所得抛物线的表达式为y=(x+1)2﹣2 .【考点】二次函数图象与几何变换.【分析】根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,把抛物线y=x2﹣2向左平移1个单位,则平移后的抛物线的表达式为y=(x+1)2﹣2,故答案为:y=(x+1)2﹣2.【点评】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.13.某单位工会组织内部抽奖活动,共准备了100张奖券,设特等奖1个,一等奖10个,二等奖20个,三等奖30个.已知每张奖券获奖的可能性相同,则一张奖券中一等奖或二等奖的概率是.【考点】概率公式.【专题】计算题.【分析】直接利用概率公式求解.【解答】解:一张奖券中一等奖或二等奖的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.二次函数y=a(x+3)2+k的图象如图所示,已知点A(﹣1,y1),B(﹣2,y2)和C (﹣6.5,y3)都在该图象上,则y1,y2,y3的大小关系是y2>y1>y3..【考点】二次函数图象上点的坐标特征.【分析】根据函数解析式的特点为顶点式,其对称轴为x=﹣3,图象开口向下;根据二次函数图象的对称性,利用y随x的增大而减小,可判断y2>y1>y3.【解答】解:由二次函数y=a(x+3)2+k可知对称轴为x=﹣3,根据二次函数图象的对称性可知,C(﹣6.5,y3)与D(0.5,y3)对称,∵点A(﹣1,y1),B(﹣2,y2),D(0.5,y3)在对称轴的右侧,y随x的增大而减小,∵﹣2<﹣1<0.5,∴y2>y1>y3,故答案是:y2>y1>y3.【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.15.如图,水平放置的圆柱形排水管道的截面直径是1m,排水管内水的最大深度CD是0.8m,则水面宽AB为0.8 m.【考点】垂径定理的应用.【分析】连接OB,根据OB=OD可得出OC的长,再由勾股定理求出BC的长,进而可得出结论.【解答】解:连接OB,∵排水管道的截面直径是1m,CD=0.8m,∴OB=OD=0.5m,∴OC=0.8﹣0.5=0.3m,∴BC===0.4m,∴AB=2BC=0.8m.故答案为:0.8.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.16.如图,P是△ABC的重心,过点P作PE∥AB交BC于点E,PF∥AC交BC于点F,若△PEF的周长是6,则△ABC的周长为18 .【考点】三角形的重心;平行线的性质.【专题】计算题.【分析】延长AP交BC于Q,如图,根据三角形重心性质得=,再证明△QPE∽△QAB得到===,即AB=3PE,QB=3EQ,同理可得AC=3PF,GC=3QF,然后可得△ABC的周长=AB+AC+BC=3(PE+PF+EF)=18.【解答】解:延长AP交BC于Q,如图,∵P是△ABC的重心,∴=2,∴=,∵PE∥AB,∴△QPE∽△QAB,∴===,∴AB=3PE,QB=3EQ,同理可得AC=3PF,GC=3QF,∴△ABC的周长=AB+AC+BC=3PE+3PF+3EF=3(PE+PF+EF)=3×6=18.故答案为18.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.17.如图,点A,B,C均在⊙O上,点O在∠ACB的内部,若∠A+∠B=56°,则为112 度.【考点】圆周角定理.【分析】连接OC,则由圆的半径都相等可求得∠A=∠OCA、∠B=∠OCB,则可求得∠ACB,再利用圆周角定理可求得∠AOB.【解答】解:如图,连接OC,∵OA=OB=OC,∴∠A=∠OCA、∠B=∠OCB,∴∠ACB=∠OCA+∠OCB=∠A+∠B=56°,∴∠AOB=2∠ACB=112°,∴为112度,故答案为:112.【点评】本题主要考查圆周角定理,利用整体思想求得∠ACB的大小是解题的关键.18.如图,P是AB为直径的半圆周上一点,点C在∠PAB的平分线上,且CB⊥AB于B,PB交AC于E,若AB=4,BE=2,则PE的长为.【考点】圆周角定理;角平分线的性质.【分析】易证CB=BE,设PE=x,在直角△ABC中利用勾股定理即可列方程,求得PE的长.【解答】解:∵∠PAE=∠CAB,∠CAB+∠C=∠PAE+∠PEA,∴∠PEA=∠C.∵∠PEA=∠CEB,∴∠C=∠CEB,∴CB=BE=2=AB.设PE=x,PA=2x.(x+2)2+(2x)2=16,解得:x=或﹣2(舍去).则PE=.故答案是:.【点评】本题考查了圆周角定理和等腰三角形的判定定理,以及勾股定理,正确证明CB=BE 是关键.三、解答题(共6小题,满分46分)19.如图1,在8×8方格纸中,△ABC的三个顶点都在小方格的顶点上,按要求画一个三角形,使它的顶点都在方格的顶点上.(1)请在图2中画一个三角形,使它与△ABC相似,且相似比为2:1;(2)请在图3中画一个三角形,使它与△ABC相似,且相似比为:1.【考点】作图—相似变换;勾股定理.【分析】(1)利用已知三角形的三边长进而结合相似比得出所求三角形的边长,进而得出答案;(2)利用已知三角形的三边长进而结合相似比得出所求三角形的边长,进而得出答案.【解答】解:(1)如图2所示:△A1B1C1即为所求;(2)如图3所示:△A2B2C2即为所求.【点评】此题主要考查了相似变换,正确得出相似三角形的边长是解题关键.20.一个不透明的袋中,装有10个红球、2个黄球、8个篮球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取出若干个红球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率是,问取出了多少个红球?【考点】列表法与树状图法;概率公式.【分析】(1)由一个不透明的袋中,装有10个红球、2个黄球、8个篮球,它们除颜色外都相同,直接利用概率公式求解即可求得答案;(2)首先设取出了x个红球,由概率公式可得方程:=,解此方程即可求得答案.【解答】解:(1)∵一个不透明的袋中,装有10个红球、2个黄球、8个篮球,它们除颜色外都相同,∴从袋中摸出一个球是红球的概率为:=;(2)设取出了x个红球,根据题意得:=,解得:x=6,答:取出了6个红球.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,抛物线y=﹣(x﹣1)2+4与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,CD∥x轴交抛物线另一点D,连结AC,DE∥AC交边CB于点E.(1)求A,B两点的坐标;(2)求△CDE与△BAC的面积之比.【考点】相似三角形的判定与性质;抛物线与x轴的交点.【分析】(1)直接把y=0代入求出x的值即可;(2)先根据CD∥AB,DE∥AC得出△CDE∽△BAC,求出CD的长,再由相似三角形的性质即可得出结论.【解答】解:(1)∵令y=0,则﹣(x﹣1)2+4=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)∵CD∥AB,DE∥AC,∴△CDE∽△BAC.∵当y=3时,x1=0,x2=2,∴CD=2.∵AB=4,∴=,∴=()2=.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.22.如图,点C,P均在⊙O上,且分布在直径AB的两侧,BE⊥CP于点E.(1)求证:△CAB∽△EPB;(2)若AB=10,AC=6,BP=5,求CP的长.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)根据两角相等的三角形相似可得出结论;(2)先根据勾股定理求出BC的长,再由相似三角形的性质得出PE及BE的长,由勾股定理得出CE的长,进而可得出结论.【解答】(1)证明:∵AB是⊙O的直径,BE⊥CP,∴∠ACB=∠BEP.∵∠CAB=∠BPC,∴△CAB∽△EPB;(2)解:∵AB=10,AC=6,∴BC==8.∵△CAB∽△EPB,BP=5,∴==,即==,∴PE=3,BE=4,∴CE==4,∴CP=4+3.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.23.某农场拟建三件矩形饲养室,饲养室一面靠现有墙(墙可用长≤20m),中间用两道墙隔开,已知计划中的建筑材料可建围墙的总长为60m,设饲养室宽为x(m),总占地面积为y(m2)(如图所示).(1)求y关于x的函数表达式,并直接写出自变量x的取值范围;(2)三间饲养室占地总面积有可能达到210m2吗?请说明理由.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)设饲养室宽为x(m),则长为(60﹣4x)m,根据长方形面积公式即可得,由墙可用长≤20m可得x的范围;(2)令y=210求出x,根据(1)中x的范围即可判断.【解答】解:(1)设饲养室宽为x(m),则长为(60﹣4x)m,∴y=x(60﹣4x)=﹣4x2+60x,∵0<60﹣4x≤20,∴10≤x<15;(2)不能,理由如下:当y=210时,﹣4x2+60x=210,解得:x=或x=,∵x=<10,且x=<10,∴不能.【点评】本题主要考查二次函数的应用,解题的关键是将实际问题转化为数学问题以后,准确列出二次函数关系式,正确运用二次函数的有关性质来解题.24.如图,点A,B的坐标分别为(0,8),(﹣3,0),点P从点A出发,以2单位/秒的速度沿射线AO方向运动,同时点E从点B出发,以1单位/秒的速度沿射线BO方向运动,以PE为斜边构造Rt△PEC(字母按逆时针顺序),且EC=2PC,抛物线y=﹣2x2+bx+c 经过点(0,4),(﹣1,﹣2),设运动时间为t秒.(1)求该抛物线的表达式;(2)当t=2时,求点C的坐标;(3)①当t<3时,求点C的坐标(用含t的代数式表示);②在运动过程中,若点C恰好落在该抛物线上,请直接写出所有满足条件的t的值.【考点】二次函数综合题.【分析】(1)把(0,4),(﹣1,﹣2)代入抛物线解析式y=﹣2x2+bx+c,列方程组即可解决问题.(2)如图1中,t=2时,EO=1,OP=4,设C(x,y),作CH⊥x轴于H,PQ⊥HC于Q,由△PCQ∽△CEH,得==,列出方程组,解方程组即可解决问题.(3)①如图1中,设C(x,y),则PO=8﹣2t,EH=3﹣t+x,CH=y,QC=8﹣2t﹣y,PQ=x,由△PCQ∽△CEH,得==,由EC=2PC,可得==,用t 表示x、y即可解决问题.②分三种情形①t<3时,列出方程即可解决问题.②3≤t<4时,显然不存在这样的点C 在抛物线上.③t>4时,如图2中,作CH⊥x轴于H,PQ⊥HC于Q.设C(x,y),则PO=2t﹣8,EH=t﹣3﹣x,CH=﹣y,QC=2t﹣8+y,PQ=﹣x,由△PCQ∽△CEH,得到==,解方程组即可得到点C坐标,代入抛物线即可解决问题.【解答】解:(1)∵抛物线y=﹣2x2+bx+c经过点(0,4),(﹣1,﹣2),∴∴,∴抛物线的解析式为y=﹣2x2+4x+4.(2)如图1中,t=2时,EO=1,OP=4,设C(x,y),作CH⊥x轴于H,PQ⊥HC于Q.∵∠PCQ+∠CPQ=90°,∠ECH+∠PCQ=90°,∴∠CPQ=∠ECH,∵∠Q=∠CHE=90°,∴△PCQ∽△CEH,∴==∵EC=2PC,∴==,∴x=,y=,∴点C坐标(,).(3)①如图1中,设C(x,y),则PO=8﹣2t,EH=3﹣t+x,CH=y,QC=8﹣2t﹣y,PQ=x,∵△PCQ∽△CEH,∴==∵EC=2PC,∴==,∴x=,y=,∴点C坐标(,).②当t<3时,如果点C在抛物线上,则有=﹣2()2+4•+4,解得t=1或6(舍弃),∴t=1时,点C在抛物线上.当3≤t<4时,由图象可知,不存在这样的点C在抛物线上,当t>4时,如图2中,作CH⊥x轴于H,PQ⊥HC于Q.设C(x,y),则PO=2t﹣8,EH=t﹣3﹣x,CH=﹣y,QC=2t﹣8+y,PQ=﹣x,∵△PCQ∽△CEH,∴==∵EC=2PC,∴==,∴x=,y=,∴点C坐标(,),如果点C在抛物线上,则有=﹣2()2+4•+4,解得t=6或1(舍弃),∴t=6时,点C在抛物线上,综上所述t=1或6s时,点C 抛物线上.【点评】本题考查二次函数综合题、待定系数法、相似三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,学会利用参数,构建方程解决问题,属于中考压轴题.。
浙教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.在平面直角坐标系中,下列二次函数的图象开口向上的是()A .2y =B .221y x x =-++C .22y x x=-+D .20.5y x x=-+2.下列属于随机事件的是()A .从装满红球的口袋随意摸一个球是红球B .抛一个硬币,正好反面朝上C .从一副扑克牌任抽2张都是红心5D .抛一枚骰子两次出现点数之和为133.已知34x y =,则下列结论一定成立的是()A .3x =,4y =B .1y x -=C .34x y=D .74x y y +=4.Rt ABC ∆中,斜边12AB =,其重心与外心之间的距离为()A .2B .3C .4D .65.若点A 在⊙O 内,点B 在⊙O 外,OA =3,OB =5,则⊙O 的半径r 的取值范围是()A .0<r <3B .2<r <8C .3<r <5D .r >56.在平面直角坐标系中,将抛物线()21y x =+向右平移2个单位,再向下平移4个单位,得到的抛物线解析式是()A .()234y x =+-B .()214y x =--C .()234y x =++D .()214y x =-+7.角α,β满足045αβ<<<︒︒,下列是关于角α,β的命题,其中错误..的是()A .0sin α<<B .0tan 1β<<C .cos sin βα<D .sin cos βα<8.已知二次函数()()20y a x m a =->的图象经过点()1,A p -,()3,B q ,且p q <,则m 的值不可能...是()A .2-B .C .0D .529.如图,30MAN ∠=︒,O 是MAN ∠内部一点,O 与MAN ∠的边AN 相切于点B ,与边AM相交于点C ,D ,AB =OE CD ⊥于E ,OB =,则弦CD 的长是()A .B .C .4D .10.如图,E ,F ,G ,H 分别是矩形ABCD 四条边上的点,连结EG ,HF 相交于点O ,//EG AD ,//FH AB ,矩形BFOE ∽矩形OGDH ,连结AC 交EG ,FH 于点P ,Q .下列一定能求出BPQ ∆面积的条件是()A .矩形BFOE 和矩形OGDH 的面积之差B .矩形ABCD 与矩形BFOE 的面积之差C .矩形BFOE 和矩形FCGO 的面积之差D .矩形BFOE 和矩形EOHA 的面积之差二、填空题11.比例式453x=中x 的值等于___________.12.为估计种子的发芽率,做了10次试验.每次种了1000颗种子,发芽的种子都是950颗左右,预估该种子的发芽率是___________.13.如图,点D 在钝角ABC 的边BC 上,连接AD ,45B ∠=︒,CAD CDA ∠=∠,:5:7CA CB =,则CAD ∠的余弦值为__________.14.如图,直线AB 与抛物线2y ax bx c =++(0a >)相交于()2,5A -,()5,12B 两点,点P 是抛物线上位于直线AB 下方的点,则点P 的横坐标m 的取值范围是___________.15.如图,点A ,B ,C 都在O 上,2tan 3ABC ∠=,将圆O 沿BC 翻折后恰好经过弦AB 的中点D ,则BCAB的值是___________.16.如图,矩形OABC 中,3OA =,5AB =,抛物线2y x bx c =++的顶点为P ,且经过点(),M m n 和()4,N m n +,其中点M ,N 位于矩形OABC 的内部(不含边界),则MNP ∆的面积是___________,b c +的取值范围是___________.三、解答题17.计算:22sin 60cos 303tan 45︒+︒+︒.18.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得元购物券,最多可得元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.19.由36个边长为1的小正方形组成的66⨯网格中,线段AB 的两个端点在格点上.(1)如图1,C ,D 也在格点上,连结AB ,CD 相交于点O ,求AOBO的值和OC 的长;(2)如图2,仅用无刻度直尺在线段AB 上找一点M ,使得23AM MB =.20.如图,在东西方向的海岸线l 上有长为300米的码头海岸AB ,在码头的最西端A 处测得轮船M 在它的北偏东45︒方向上;同一时刻,在A 处正东方向距离A 处50米的C 处测得轮船M 在北偏东37︒方向上.(1)求轮船M 到海岸线l 的距离;(结果保留整数米)(2)如果轮船M 沿着南偏东22︒的方向就行,那么该轮船能否行至码头海岸AB 靠岸?请说明理由.(参考数据:sin 370.60︒≈,tan 370.75︒≈,sin 220.37︒≈,tan 220.40︒≈)21.如图,在锐角ABC ∆,4AB BC ==,以BC 为直径画O 交AC 于点D ,过点D 作DE AB ⊥于点E .(1)求证:DE 是O 的切线;(2)当4AC AE =时,求阴影部分弓形的面积.22.(1)抛物线y =ax 2+c 经过点A (2,3),点B (-1,-3)两点,求该抛物线的解析式.(2)如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管应多长?23.ABC ∆和ADE ∆均是等腰直角三角形,其中90ACB AED ∠=∠=︒.如图1,开始时,//DE AC ,现在固定ABC ∆将ADE ∆绕着点A 按顺时针方向旋转α(0180α︒<<︒).(1)当ADE ∆中的DE 边旋转到与ABC ∆的某条边平行时,旋转角α的度数是;(2)如图2,连结BD ,CE ,求证:ABD ACE ∆∆∽;(3)若2AB AD =,在ADE ∆的旋转过程中,当C ,D ,E 三点在同一条直线上时,请画出图形求DBC ∠的度数.24.定义:若一个三角形存在两个内角之差是第三个内角的两倍,则称这个三角形为关于第三个内角的“差倍角三角形”.例如,在ABC ∆中,100A ∠=︒,60B ∠=︒,20C ∠=︒,满足2A B C ∠-∠=∠,所以ABC ∆是关于C ∠的“差倍角三角形”.(1)若等腰ABC ∆是“差倍角三角形”,求等腰三角形的顶角A ∠的度数;(2)如图1,ABC ∆中,3AB =,8AC =,9BC =,小明发现这个ABC ∆是关于C ∠的“差倍角三角形”.他的证明方法如下:证明:在BC 上取点D ,使得1BD =,连结AD ,(请你完成接下去的证明)(3)如图2,五边形ABCDE 内接于圆,连结AC ,AD 与BE 相交于点F ,G , AB BCDE ==,ABE ∆是关于AEB ∠的“差倍角三角形”.①求证:四边形CDEF 是平行四边形;②若1BF =,设AB x =,CDEFAEGS y S ∆=四边形,求y 关于x的函数关系式.参考答案1.A 【分析】二次函数y =ax 2+bx +c (a ≠0),①当a >0时,抛物线y =ax 2+bx +c (a ≠0)的开口向上;②当a <0时,抛物线y =ax 2+bx +c (a ≠0)的开口向下,据此判断即可.【详解】解:A 、∵a0,∴2y =的图象开口向上,故本选项符合题意;B 、∵a =﹣1<0,∴y =﹣x 2+2x +1的图象开口向下,故本选项不符合题意;C 、∵a =﹣2<0,∴y =﹣2x 2+x 的图象开口向下,故本选项不符合题意;D、∵a=﹣0.5<0,∴y=﹣0.5x2+x的图象开口向下,故本选项不符合题意;故选:A.【点睛】本题考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答.2.B【分析】根据事件发生的可能性大小判断.【详解】解:A、从装满红球的口袋随意摸一个球是红球,是必然事件;B、抛一枚硬币,正好反面朝上,是随机事件;C、从一副扑克牌中任抽2张都是红心5,是不可能事件;D、抛一枚骰子两次出现点数之和为13,是不可能事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.D【分析】根据比例的基本性质以及合比性质进行判断,即可得出结论.【详解】解:A.由34xy=,不能得到x=3,y=4,故本选项错误;B.由34xy=,不能得到y﹣x=1,故本选项错误;C.由34xy=,可得4x=3y;由34xy=,可得xy=12,故本选项错误;D.由34xy=,可得3114xy+=+,即74x yy+=,故本选项正确.故选:D.【点睛】本题主要考查了比例的性质.利用“两内项之积等于两外项之积”是解题的关键.4.A【分析】根据直角三角形的性质得到162CD AB==,根据重心的性质求解即可;【详解】∵直角三角形的外心是斜边的中点,∴162CD AB==,∵M是Rt ABC∆的重心,∴123DM DC==;故答案选A.【点睛】本题主要考查了直角三角形的性质,三角形的重心和三角形的外心,准确计算是解题的关键.5.C【分析】直接根据点与圆的位置关系的判定方法求解.【详解】解:∵点A在半径为r的⊙O内,点B在⊙O外,∴OA小于r,OB大于r,∵OA=3,OB=5,∴3<r<5.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.6.B 【分析】找出抛物线的顶点坐标,将其按要求平移后可得出新抛物线的顶点坐标,进而即可得出抛物线的解析式.【详解】解:∵抛物线y=(x+1)2的顶点坐标为(-1,0),∴平移后抛物线的顶点坐标为(1,-4),∴平移后抛物线的解析式为y=(x-1)2-4.故选:B .【点睛】本题考查了二次函数图象与几何变换,通过平移顶点找出平移后抛物线的解析式是解题的关键.7.C 【分析】由角α,β满足045αβ<<<︒︒,确定锐角三角函数的增减性,sin α随α的增大而增大,cos β随β的增大而减小,tan β随β的增大而增大,利用45°函数值的分点即可确定答案.【详解】解:角α,β满足045αβ<<<︒︒,sin α随α的增大而增大,cos β随β的增大而减小,tan β随β的增大而增大,A.∵sin 45=2︒,∴0<sin α<2,选项A 正确,不合题意;B .∵tan 45=1︒,∴0tan 1β<<,选项B 正确,不合题意;C .sin 45=2︒,cos 45=2︒,cos ,sin 22βα><,cos sin βα>,选项C 不正确,符合题意;D .sin 45=2︒,cos 45=2︒,cos 22αβ><,sin cos βα<,选项D 正确,不符合题意.【点睛】本题考查锐角三角函数值的大小比较问题,掌握函数的增减性质利用45°函数值的特殊关系是解题关键.8.D 【分析】根据二次函数图象上点的坐标特征得到m +1<3﹣m 或m ≤﹣1,解得即可.【详解】解:∵二次函数y =a (x ﹣m )2(a >0),∴抛物线的开口向上,对称轴为直线x =m ,∵图象经过点A (﹣1,p ),B (3,q ),且p <q ,∴m +1<3﹣m 或m ≤﹣1解得m <1,故选:D .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.9.C 【分析】延长BO 交AM 点F ,计算BF ,后计算OB ,OC ,OE ,最后,运用垂径定理计算即可.【详解】如图,延长BO 交AM 点F ,连接OC ,∵O 与MAN ∠的边AN 相切,∴∠ABF=90°,∵30MAN ∠=︒,AB =∴BF=3,∠AFB=60°,∠FOE=30°,设EF=x ,则OF=2x ,,∵OB =,∴OB=3x ,∴BF=OB+OF=5x ,∴,∴∴,⊥,∵OE CD∴在直角三角形OCE中,=,根据垂径定理,得CD=2CE=4,故选C.【点睛】本题考查了切线的性质,直角三角形的性质,垂径定理,会用延长线段BO构造特殊的直角三角形是解题的关键.10.A【分析】设BF=a,BE=b,BE=b,AE=kb,根据△AEP∽△ABC,△FQC∽△ABC,分别用含a、b、k的式子表示出EP、FQ,利用割补法表示出△BPQ面积,即可求解.【详解】解:设BF=a,BE=b,BE=b,AE=kb,∵EP∥BC,∠AEP=∠ABC=90°,∴△AEP∽△ABC,∴==1AE EP k AB BC k +,∴()111k k EP BC k a ka k k ==+=++ ,同理,△FQC ∽△ABC ,∴==1FQ FC k AB BC k +,∴()111k k FQ BA k b kb k k ==+=++ ,∵BPQ ABC ABP BQCS S S S =--△△△△()()()()1111111222k a k b k b ka k a kb =++-+-+ ()2112ab k =-,∵2BEOF HOGD S ab S k ab ==矩形矩形,,∴ BPQ S ()12BEOFHOGD S S =-矩形矩形.故选:A【点睛】本题为三角形相似知识的综合,综合性较强,根据题意设出参数,根据相似表示出相关线段,恰当利用割补法进行转换是解题关键.11.154【分析】根据比例的性质列出方程,通过解方程求得x 的值即可.【详解】解:∵453x=,∴4x =15,解得x =154,故答案为:154.【点睛】本题主要考查了比例的性质.利用“两内项之积等于两外项之积”列出方程是解题的关键.12.95%【分析】根据发芽率的意义,求出发芽的种子数占实验种子总数的百分比即可.【详解】解:(950×10)÷(1000×10)×100%=95%,故答案为:95%.【点睛】本题考查频率估计概率,理解发芽率的意义是正确计算的前提.13【分析】作AH ⊥BC 于H ,设AC═CD=5k ,则BC=7k ,设AH=BH=x ,在Rt △ACH 中,利用勾股定理求得x 的值(x 用k 表示,求得的值需淘汰不构成钝角三角形的值),然后表示AD ,DH ,利用余弦的定义即可求得.【详解】解:如图作AH ⊥BC 于H ,∵CAD CDA ∠=∠,:5:7CA CB =,设AC═CD=5k ,BC=7k ,∵∠B=45°,∠AHB=90°,∴AH=BH ,设AH=BH=x ,在Rt △ACH 中,∵AH 2+HC 2=AC 2,∴x 2+(7k-x )2=(5k )2,解得x=3k 或4k ,当x=4k 时,即AH=4k ,HC=7k-4k=3k ,AH>HC ,此时根据大边对大角,∠HAC<∠HCA ,又∠HAC+∠HCA=90°,∴∠HAC<45°,∴∠BAC<90°,与△ABC 为钝角三角形矛盾,故x=4k 舍去,当x=3k 时,∴BH=AH=3k ,HC=7k-3k=4k ,DH=k ,∴AD ==,∴cos cosDH CAD ADH AD ∠=∠==【点睛】本题考查解直角三角形,等腰三角形的判定定理,勾股定理,一元二次方程的应用等.解决本题的关键是作辅助线构造直角三角形,注意作辅助线时尽量不要破坏已给的角.14.25m -<<【分析】先求出直线AB 的解析式为:7y x =+,点P 是抛物线上位于直线AB 下方的点,点P 的横坐标满足27x ax bx c +>++,由27x ax bx c +=++的两根为x 1=-2,x 2=5,不等式的解集是25x -<<,点P 的横坐标m 的取值范围即可求出.【详解】解:直线AB 与抛物线2y ax bx c =++(0a >)相交于()2,5A -,()5,12B 两点,设直线AB 的解析式为:y kx b =+,由直线过A 、B 代入解析式得25512k b k b -+=⎧⎨+=⎩,解得17k b =⎧⎨=⎩,直线AB 的解析式为:7y x =+,点P 是抛物线上位于直线AB 下方的点,点P 的横坐标满足27x ax bx c +>++,由27x ax bx c +=++的两根为x 1=-2,x 2=5,不等式的解集是25x -<<.∴点P 的横坐标m 的取值范围是25m -<<.故答案为:25m -<<.【点睛】本题考查直线解析式的求法,方程的解,利用图像解不等式,掌握直线解析式的求法,方程的解,利用图像解不等式,根据点P 的位置构造不等式27x ax bx c +>++是解题关键.15.4【分析】如图,连接AC ,CD ,过点C 作CE ⊥AB 于E .设AD =DB =2a .想办法用a 表示BC 即可解决问题.【详解】解:如图,连接AC ,CD ,过点C 作CE ⊥AB 于E .∵D 为AB 的中点,设AD =DB =2a∵∠ABC =∠CBD ,∴ AC CD=,∴CA =CD ,∵CE ⊥AD ,∴AE =ED =a ,∴BE =DE +DB =3a ,∵2tan 3∠==C EC EB AB ,∴EC =2a ,∴BC =,∴44BC AB a ==,【点睛】本题考查圆周角定理,圆心角、弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.842b c -<+<【分析】根据题意,先把抛物线的一次项系数和常数项用含,m n 的式子表示出来,从而表示出点P 的坐标,再利用两点间的距离求出MN 的长,和点P 到MN 的距离,即可求出三角形的面积;再根据点M ,N 在矩形内部求出,m n 的范围,进而可求b c +的范围【详解】点M 和点N 的纵坐标均为n 可知,M 与N 关于对称轴对称,点M (m 、n )点N (4m +、n )∴MN 的距离为:44m m +-=∴点P 的横坐标为:2m + 抛物线2y x bx c =++的对称轴为:2bx =-22b m ∴-=+24b m ∴=--将点M (m 、n )代入2y x bxc =++得:2m bm c n ++=,则24c m m n =++①,点P 为抛物线的顶点,则点P 的纵坐标为:22244416164444ac b c m m c m m a ----==---,将①式代入得P 点的坐标为(2m +、4n -)∴点P 到MN 的距离为:()44n n --=14482PMN S ∴=⨯⨯=△2224424b c m m m n m m n +=--+++=++- ②点M 在矩形的内部,045m m >⎧∴⎨+<⎩01m ∴<< 点N 在矩形的内部03n ∴<<代入②式有:42b c -<+<故答案为:①8;②42b c -<+<【点睛】本题考查了二次函数的性质以及二次函数图像上点的特征,解题关键是用含,m n 式子表示出点P 的坐标,结合题意求出,m n 的范围17.74【分析】分别把各角的三角函数值代入原式,再由二次根式混合运算的法则进行计算即可.【详解】解:原式22122⎛=⨯- ⎝⎭,314+,74=.【点睛】本题考查了特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.18.(1)20,80;(2)58.【分析】(1)若两次都转向“10元”,该顾客最少可得20元购物券,若两次都转向“40元”,最多可得80元购物券.(2)画树状图或列表即可求得所有等可能的结果与该顾客所获购物券金额不低于50元的情况,然后利用概率公式求解即可求得答案.【详解】解:(1)画树状图得:则该顾客最少可得20元购物券,最多可得80元购物券;故答案为:20,80;(2)画树状图得:∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况,∴该顾客所获购物券金额不低于50元的概率为:105168=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(1)34,157;(2)见解析【分析】(1)由//AB CD ,可证AOC BOD ∆∆∽,由性质知34AO CO AC BO DO BD ===,由勾股定理求出22345CD =+=,利用比例即可求出CO 的长;(2)从A 向左取两个格为E ,过B 向右取三个格为F ,连结EF 交AB 与点M ,构造相似,利用相似比即可求出M 满足条件.【详解】解:(1)由图知:3AC =,4BD =,∵//AB CD ,∴A B∠=∠,C D∠=∠.∴AOC BOD∆∆∽,∴34 AO CO ACBO DO BD===,∵5 CD=,∴31577 CO CD==,(2)从A向左取两个格为E,过B向右取三个格为F,连结EF交AB与点M,∵AE∥BF,∴∠A=∠B,∠E=∠F,∴△AEM∽△BFM,∴AE AM2== BF BM3,如图,点M是所求作的点.【点睛】本题考查网格作图问题,与平行线性质,相似三角形的判定与性质,掌握网格作图经常利用相似或全等解决问题.20.(1)轮船M到海岸线l的距离为200米;(2)该轮船能行至码头海岸AB靠岸【分析】(1)过点M作MD⊥AC交AC的延长线于D,设DM=x,解直角三角形即可得到结论;(2)作∠DMF=22°,交l于点F.解直角三角形即可得到结论.【详解】解:(1)过点M作MD⊥AC交AC的延长线于D,设DM=x,∵在Rt △CDM 中,CD=DM•tan ∠CMD=x•tan37°,又∵在Rt △ADM 中,∠MAC=45°,∴AD=DM ,∵AD=AC+CD=50+x•tan37°,∴50+x•tan37°=x ,∴50502001tan 3710.75x ︒=≈=--,答:轮船M 到海岸线l 的距离约为200米;(2)作∠DMF=22°,交l 于点F ,在Rt △DMF 中,DF=DM•tan ∠FMD=DM•tan22°≈200×0.40=80(米),∴AF=AC+CD+DF=DM+DF≈200+80=280<300,所以该轮船能行至码头AB 靠岸.【点睛】本题考查了解直角三角形的应用-方向角问题,读懂题目信息并作出辅助线构造成直角三角形是解题的关键.21.(1)见解析;(2)23π【分析】(1)连接OD ,由等腰三角形的性质得到,∠A =∠C,∠ODC =∠C ,∠A =∠ODC,可得OD ∥AB,根据平行线的性质得到OD ⊥DE ,于是得到DE 是⊙O 的切线;(2)根据等腰三角形的性质得到AD =CD ,根据直角三角形的性质得到∠ADE =30°,求得∠A =60°,然后根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)连结OD ,∵OD OC =,∴∠=∠C ODC .∵AB BC =,∴C A ∠=∠.∴A ODC ∠=∠.∴OD ∥AB .∵DE AB ⊥,∴DE OD ⊥,而OD 是圆O 的半径,∴DE 是O 的切线.(2)连结BD ,∵BD ⊥AC ,AB =BC ,∴AD =CD ,∵AC =4AE ,∴AD =2AE ,∵∠AED =90°,∴∠ADE =30°,∴∠A =60°,∴∠ABD =∠CBD =30°,∴∠COD =60°,AD =CD =12AB =2,BD =2AB =∴2602112360223S BD CD ππ⨯⨯=-⨯⨯⋅=-阴影【点睛】本题考查了切线的判定和性质,等腰三角形的性质,直角三角形的性质,扇形面积的计算,正确的作出辅助线是解题的关键.22.(1)y=2x 2-5;(2)2.25m.【分析】(1)把点A (2,3),点B (-1,-3)代入y=ax 2+c ,解方程组即可得到结论;(2)先求出顶点坐标,然后设抛物线的解析式为y=a (x-1)2+3(0≤x≤3),将(3,0)代入求得a 值,则x=0时得的y 值即为水管的长.【详解】解:(1)把点A (2,3),点B (-1,-3)代入y=ax 2+c 得,433a c a c +=⎧⎨+=-⎩,解得:25a c =⎧⎨=-⎩,∴该抛物线的解析式为:y=2x 2-5;(2)∵在距池中心的水平距离为1m 时达到最高,高度为3m ,∴抛物线的顶点坐标为(1,3),∴设抛物线的解析式为:y=a (x-1)2+3(0≤x≤3),代入(3,0)求得:a=-.将a 值代入得到抛物线的解析式为:y=34-(x-1)2+3(0≤x≤3),令x=0,则y=94=2.25.故水管长为2.25m ;【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.23.(1)45︒或90︒;(2)见解析;(3)图见解析,15DBC ∠=︒或75︒.【分析】(1)分2种情况进行讨论:AB ∥DE 、BC ∥DE ,分别画出图形,计算出度数即可;(2)根据等腰直角三角形的性质得出2AC AE AB AD ==,∠BAC=∠DAE=45°,即可得出∠BAD=∠CAE ,从而证得△ABD ∽△ACE ;(3)由(2)可知,△ABD ∽△ACE ,得到∠ABD=∠ACE=90°,根据AB=2AD 得出∠ACE=30°,即可得出∠DBC=15°或75°.【详解】解:(1)当△ADE 中的DE 边旋转到与△ABC 的某条边平行时,旋转角α的度数是45°,90°.①当AB ∥DE 时,α=45°;②当DE ∥BC 时,α=90°;∴旋转角α的所有可能的度数为45°,90°.故答案为45°,90°;(2)∵△ABC 和△ADE 均是等腰直角三角形,其中∠ACB=∠AED=90°.∴22AC AE AB AD ==,∠BAC=∠DAE=45°,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE ,∴△ABD ∽△ACE ;(3)如图,由BAD CAE ∆∆∽得,ABD ACE ∠=∠,2ACABAE AD ==.在Rt ACE ∆中,90AEC ∠=︒,2AC AE =,∴30ACE ∠=︒,∴30ABD ACE ∠=∠=︒.∴453015DBC ∠=︒-︒=︒.如图,在BAD CAE ∆∆∽得,ABD ACE ∠=∠,2AC AB AE AD==.在Rt ACE ∆中,90AEC ∠=︒,2AC AE =,∴30ACE ∠=︒,∴30ABD ACE ∠=∠=︒.∴453075DBC ∠=+=︒︒︒.∴15DBC ∠=︒或75︒.【点睛】本题考查了作图-旋转变换,等腰直角三角形的性质,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.24.(1)108A ∠=︒;(2)见解析;(3)①见解析;②22421x y x -=-【分析】(1)利用“差倍角三角形”的意义,建立方程求解,即可得出结论;(2)先判断出∠C=∠BAD ,进而判断出∠CAD=∠ADC ,即可得出结论;(3)①先判断出∠CAD=∠ABE ,进而得出AC ∥DE ,即可得出结论;②先判断出△ABF ∽△EBA ,得出BE=x 2进而得出CD=x 2-1,AE=x 2-1,AF=21x x-,再判断出221-x x ,即可得出结论【详解】解:(1)设等腰三角形的顶角∠A 为2x ,则等腰三角形的底角为90°-x ,∵等腰△ABC 是“差倍角三角形”,∴90°-x-2x=2×2x ,∠A=2x=108°,∴顶角∠A 的度数为108°;(2)∵3AB =,1BD =,9BC =,∴ABBDBC AB =.又∵B B ∠=∠,∴BAD BCA ∆∆∽.∴BAD C ∠=∠.设BAD C α∠=∠=.∵8CA CD ==,∴1902DAC ADC α∠=∠=︒-.∴3902B α︒∠=-,1902BAC α∠=︒+.∴2BAC B C ∠-∠=∠.∴ABC ∆是差倍角三角形.(3)①证明:连结CE ,∵»»BC DE =,∴ECD BEC ∠=∠,∴BE CD ∥.∵ AB BC DE ==,∴AEB BAC DAE ∠=∠=∠.∵ABE ∆是关于AEB ∠的差倍角三角形,∴2FAG BAE BAC DAE BAE AEB ABE ∠=∠-∠-∠=∠-∠=∠.∴FAG ABE ADE ∠=∠=∠.∴//AC DE .∴四边形CDEF 是平行四边形②∵∠BAF=∠AEB ,∠ABF=∠EBA ,∴△ABF ∽△EBA ,∴ABBF AFBE AB AE ==,∴2221AB x BE x BF ===,∴EF=BE-BF=x 2-1,∵四边形CDEF 是平行四边形,∴CD=EF=x 2-1,∵ AE CD =,∴AE=CD=x 2-1,∴222(1)1AB AE x x x AF BE x x ⋅--===,过点B 作BM ⊥AC 于M ,EN ⊥AC 于N,∴BM ∥EN ,∴△BFM ∽△EFN ,∴211BM BF EN EF x ==-,∴211BM ENx =-过点G 作GH ⊥AE 于H ,∵∠BAC=ACB=∠AEG=∠EAG ,∴△ABC ∽△AGE ,∴BM ACGH AE =,∴22222112111(1)EN x x x x GH GH x x x ---===--,∴221EN x GH x -=,∴22222221421112CDEFAEGS DE EN DE EN x x xyS AE GH x x xAE GH∆⋅--===⋅=⋅=--⋅四边形.【点睛】此题是圆的综合题,主要考查了相似三角形的判定和性质,圆周角定理,新定义,平行四边形的判定和性质,构造出相似三角形判断出221EN xGH x-=是解本题的关键.。
浙教版九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分1.(3分)抛物线y=4x2﹣3的顶点坐标是()A.(0,3)B.(0,﹣3)C.(﹣3,0)D.(4,﹣3)2.(3分)下列各组中得四条线段成比例的是()A.4cm、2cm、1cm、3cm B.1cm、2cm、3cm、5cmC.3cm、4cm、5cm、6cm D.1cm、2cm、2cm、4cm3.(3分)如图,⊙O的半径为5,弦心距OC=3,则弦AB的长是()A.4B.6C.8D.54.(3分)在△ABC中,∠C=Rt∠,AC=6,BC=8,则cos B的值是()A.B.C.D.5.(3分)如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=6.(3分)有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x,y=x2﹣3(x>0),y=(x>0),y=﹣(x<0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是()A.B.C.D.17.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C.D.8.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.29.(3分)已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠P AD=∠PDA=60°;②△P AO≌△ADE;③PO=r;④AO:OP:P A=1::.A.①④B.②③C.③④D.①③④10.(3分)如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m个红球.通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在0.2左右,则m的值约为.12.(4分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是.13.(4分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为度.14.(4分)如图,在▱ABCD中,点E在DC边上,若,则的值为.15.(4分)如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.16.(4分)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是.三、解答题(本题有8小题,共66分)17.(6分)计算:2cos30°+sin45°﹣tan260°.18.(6分)已知:如图,在△ABC中,AD是∠BAC的平分线,∠ADE=∠B.求证:(1)△ABD∽△ADE;(2)AD2=AE•AB.19.(6分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶,分别写着:有害垃圾、厨余垃圾、其他垃圾、可回收垃圾.其中小明投放了一袋垃圾,小丽投放了两袋垃圾.(1)直接写出小明投放的垃圾恰好是“厨余垃圾”的概率;(2)求小丽投放的两袋垃圾不同类的概率.20.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)21.(8分)如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.22.(10分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?23.(10分)如图1,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,=,BE分别交AD、AC于点F、G.(1)判断△F AG的形状,并说明理由;(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,若BG=26,BD﹣DF=7,求AB的长.24.(12分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分1.【解答】解:∵抛物线y=4x2﹣3,∴该抛物线的顶点坐标为(0,﹣3),故选:B.2.【解答】解:A、从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;B、从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;C、从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;D、从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选:D.3.【解答】解:连接OA,如图所示:∵OC⊥AB,OC=3,OA=5,∴AB=2AC,∵AC===4,∴AB=2AC=8.故选:C.4.【解答】解:如图,在Rt△ABC中,∵AC=6,BC=8,∴AB===10,∴cos B===,故选:C.5.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.6.【解答】解:函数y=2x,y=x2﹣3(x>0),y=(x>0),y=﹣(x<0)中,有y=2x,y=x2﹣3(x>0),y=﹣(x<0),是y随x的增大而增大,所以随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是.故选:C.7.【解答】解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.8.【解答】解:因为对称轴x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选:A.9.【解答】解:∵A、B、C、D、E、F是半径为r的⊙O的六等分点,∴,∴AE=DF<AD,根据题意得:AP=AE,DP=DF,∴AP=DP<AD,∴△P AD是等腰三角形,∠P AD=∠PDA≠60°,①错误;连接OP、AE、DE,如图所示,∵AD是⊙O的直径,∴AD>AE=AP,②△P AO≌△ADE错误,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO==r,③正确;∵AO:OP:P A=r:r:r=1::.∴④正确;说法正确的是③④,故选:C.10.【解答】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴P A=PC,∴PC+PE=P A+PE,∴当A、P、E共线时,PE+PC的值最小,即AE的长.观察图象可知,当点P与B重合时,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=2,∴PC+PE的最小值为2,∴点H的纵坐标a=2,∵BC∥AD,∴=2,∵BD=4,∴PD==,∴点H的横坐标b=,∴a+b=2+=;故选:C.二、填空题(本题有6小题,每小题4分,共24分)11.【解答】解:根据题意,得:=0.2,解得:m=20,故答案为:20.12.【解答】解:根据“上加下减,左加右减”的法则可知,抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2.故答案为:y=3(x﹣1)2﹣2.13.【解答】解:∵扇形的半径是1,弧长是,∴l==,即=,解得:n=60,∴此扇形所对的圆心角为:60°.故答案为:60.14.【解答】解:∵=,∴=;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD;∴△ABF∽△CEF;∴;∵==,∴=.15.【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=4,∴AD=4,∴MN=AD=2,故答案为:2.16.【解答】解:y=ax2﹣2ax+a+3=a(x﹣1)2+3,故抛物线的顶点为:(1,3);如图所示,a<0,图象实心点为8个“整点”,则符合条件的抛物线过点A、B之间(不含点B),当抛物线过点A(3,1)时,将点A的坐标代入抛物线表达式并解得:a=﹣;同理当抛物线过点B(4,1)时,a=﹣,故答案为:﹣<a<﹣.三、解答题(本题有8小题,共66分)17.【解答】解:2cos30°+sin45°﹣tan260°=2×+×﹣=+1﹣3=﹣218.【解答】证明:(1)∵AD是∠BAC的平分线,∴∠BAD=∠DAE,∵∠ADE=∠B.∴△ABD∽△ADE;(2)∵△ABD∽△ADE,∴∴AD2=AE•AB.19.【解答】解:(1)将有害垃圾、厨余垃圾、其他垃圾、可回收垃圾分别记为A,B,C,D,∵小明投放了一袋垃圾,∴小明投放的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,小丽投放的垃圾共有16种等可能结果,其中小丽投放的两袋垃圾不同类的有12种结果,所以小丽投放的两袋垃圾不同类的概率为=.20.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9.4,∴OB=2x≈19.21.【解答】解:(1)∵抛物线y=﹣x2+mx+3过(3,0),∴0=﹣9+3m+3,∴m=2(2)由,得或,∴D(,﹣),∵S△ABP=4S△ABD,∴AB×|P y|=4×AB×,∴|P y||=9,P y=±9,当y=9时,﹣x2+2x+3=9,无实数解,当y=﹣9时,﹣x2+2x+3=﹣9,x1=1+,x2=1﹣,∴P(1+,﹣9)或P(1﹣,﹣9).22.【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.23.【解答】解:(1)等腰三角形;理由:如图1,∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∴AF=BF,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴F A=FG,∴△F AG是等腰三角形;(2)成立;∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∴AF=BF,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴F A=FG,∴△F AG是等腰三角形;(3)由(2)得:AF=BF=FG,∵BG=26,∴FB=13,∴解得:BD=12,DF=5,∴AD=AF﹣DF=13﹣5=8,∴AB==4.24.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=,∴M(,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(舍去)或m=0.5;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为0.5或﹣1或﹣.。
九年级数学上学期期末测试模拟卷一、 选择题(共10题,每题2分,共20分.)1、在行程问题中,路程s (千米)一定时,速度v (千米/时)关于时间t (小时)的函数关系的大致图像是( )2、若将函数y=2x 2的图象向右平行移动1个单位,再向上平移5个单位,可得到的抛物线是( )A 、y=2(x-1)2-5B 、y=2(x-1)2+5C 、y=2(x+1)2-5D 、y=2(x+1)2+53、已知圆锥的母线长为6cm ,底面圆的半径为3cm ,则此圆锥侧面展开图的面积为 ( )A 、18πcm 2B 、36πcm 2C 、12πcm 2D 、9πcm 24、中央电视台“开心辞典”栏目曾有这么一道题:圆的半径增加一倍,那么圆的面积增加到 ( )A 、1倍B 、2倍C 、3倍D 、4倍5、一个点到圆的最小距离为6cm ,最大距离为9cm ,则该圆的半径是 ( ) A 、1.5cm B 、7.5cm C 、1.5cm 或7.5cm D 、3cm 或15cm6、在比例尺为10000:1的地图上,若,某建筑物在图上的面积为50 cm 2,则该建筑物实际占地面积为( )A 、50 m 2B 、5000 m 2C 、50000 m 2D 、500000 m 2 7、下列说法正确的是( )A 、所有的等腰三角形都相似B 、四个角都是直角的两个四边形一定相似C 、所有的正方形都相似D 、四条边对应成比例的两个四边形相似 8、按如下方法,将△ABC 的三边缩小的原来的21,如图,任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF ,则下列说法正确的个数是( ) ①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形 ③△ABC 与△DEF 的周长比为1:2 ④△ABC 与△DEF 的面积比为4:1 A 、1 B 、2 C 、3 D 、49、二次函数y=ax 2+bx+c 的图象如图所示,对称轴x=1,下列结论中,正确的( )A 、ac>0B 、b<0C 、b 2-4ac<0D 、2a+b=010、如图,AC 是⊙O 的直径,BD 是⊙O 的弦,EC ∥AB 交⊙O 于E ,则图中与12∠BOC 相等的角共有( )A 、2个B 、3个C 、4个D 、5个二、填空题(共8题,每题3分,共24分.) 11、若462)5(+--=k k xk y 是x 的反比例函数,则k=__12、二次函数5)3(212-+=x y 的对称轴是 13、如图,在⊙O 中,弦AB=1.8cm ,圆周角∠ACB=30O ,则⊙O 的直径等于 cm 。
2018-2019学年浙江省宁波市九年级(上)期末数学试卷含答案一、选择题(每小题4分,共48分)1.(4分)相似三角形的面积之比为2:1,则它们的相似比为()A.4:1 B.3:1 C.2:1 D.:12.(4分)下列事件中,属于必然事件的是()A.在标准大气压下,气温2°C时,冰融化为水B.任意抛掷一枚均匀的骰子,骰子停止转动后,朝上的一面的点数为1C.在只装着白球和黑球的袋中摸球,摸出红球D.在一张纸上随意画两个直角三角形,这两个直角三角形相似3.(4分)如图所示,△ABC中,∠BAC=30°,将△ABC绕点A顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为()A.30°B.50°C.20°D.40°4.(4分)已知一条圆弧的度数为60°,半径为6cm,则此圆弧长为()A.πcm B.2πcm C.4πcm D.6πcm5.(4分)如图,在8×4的正方形网格中,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.B.C.D.6.(4分)如图,点P为直径BA延长线上一点,PC切⊙O于C,若的度数等于120°,则∠ACP的度数为()A.40°B.35°C.30°D.45°7.(4分)把抛物线y=(x+1)2+3的图象先向右平移3个单位,再向下平移2个单位,所得的图象解析式是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x+4)2+1 D.y=(x+4)2+5 8.(4分)如图,四边形ABCD内接于⊙O,∠DAB=140°,连接OC,点P是半径OC上一点,则∠BPD不可能为()A.40°B.60°C.80°D.90°9.(4分)如图,把矩形ABCD折叠,点B恰好落在CD边的中点E处,折痕为AF,则sin∠EAD等于()A .B .C .D .10.(4分)如图,四边形ABCD 内接于直径为1厘米的⊙O ,若∠BAD =90°,BC =a 厘米,CD =b 厘米,则下列结论正确的有( )①sin ∠BAC =a ,②cos ∠BAC =b ,③tan ∠BAC =.A .0个B .1个C .2个D .3个11.(4分)如图,⊙O 与∠α的两边相切,若∠α=60°,则图中阴影部分的面积S 关于⊙O 的半径r 的函数图象大致是( )A .B .C .D .12.(4分)定义符号min {a ,b }的含义:当a ≥b 时,min {a ,b }=b ;当a <b 时,min {a ,b}=a,如min{1,﹣4}=﹣4,min{﹣6,﹣2}=﹣6,则min{﹣x2+2,﹣2x}的最大值为()A.2﹣2 B.+1 C.1﹣D.2+2二、填空题(每小题4分,共24分)13.(4分)箱子里有7个白球、3个红球,它们仅颜色不同,从中随机摸出一球是白球的概率是.14.(4分)若线段c是线段a、b的比例中项,且a=4厘米,b=25厘米,则c=厘米.15.(4分)已知△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,r为半径画圆,使得点A在⊙C内,点B在⊙C外,则半径r的取值范围是.16.(4分)一直角三角形的两条直角边长分别为6和8,则它的内切圆半径为.17.(4分)如图,⊙A的圆心A在⊙O上,O的弦PQ与⊙A相切于点B,若⊙O的直径AC=10,AB=2,则AP•AQ的值为.18.(4分)如图,矩形ABCD中,AB=4,AD=6,E为射线BC上一动点(不与C重合),△CDE的外接圆交AE于P,若CP=CD,则AP的值为.三、解答题(第19题6分,第20、21题每题8分,第22、23、24题每题10分,第25题12分第26题14分,共78分)19.(6分)(1)tan60°﹣cos45°;(2)若=,求的值.20.(8分)如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.21.(8分)如图,为一圆洞门.工匠在建造过程中需要一根横梁AB和两根对称的立柱CE、DF来支撑,点A、B、C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AB=2,EF=,=120°.(1)求出圆洞门⊙O的半径;(2)求立柱CE的长度.22.(10分)如图,一艘潜水器在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子(即∠EAC=30°),继续在同一深度直线航行1400米到B点处测得正前方C点处的俯角为45°(即∠EBC=45°).求海底C点处距离海面DF的深度.(结果保留根号).23.(10分)如图,△ABC内接于⊙O,AC是⊙O直径,D是的中点,过点D作CB的垂线,分别交CB、CA延长线于点F、E.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若sin E=,求AB:EF的值.24.(10分)我们定义:三边之比为1::的三角形叫神奇三角形.(1)如图一,△ABC是正方形网格中的格点三角形,假设每个小正方形的边长为1,请证明△ABC是神奇三角形,并直接写出∠ABC的度数;(2)请你在下列2×5的正方形网格中(图二)分别画出一个与(1)中△ABC不全等的大小各不同的格点神奇三角形.25.(12分)有一家网红私人定制蛋糕店,她家的蛋糕经常供不应求,但每日最多只能做40只蛋糕,且每日做好的蛋糕全部订售一空.已知做x只蛋糕的成本为R元,售价为每只P元,且R、P与x的关系式为R=500+30x,P=170﹣2x,设她家每日获得的利润为y元.(1)销售x只蛋糕的总售价为元(用含x的代数式表示),并求y与x的函数关系式;(2)当每日做多少只蛋糕时,每日获得的利润为1500元?(3)当每日做多少只蛋糕时,每日所获得的利润最大?最大日利润是多少元?26.(14分)如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)相似三角形的面积之比为2:1,则它们的相似比为()A.4:1 B.3:1 C.2:1 D.:1【分析】根据相似三角形面积的比等于相似比的平方解答.【解答】解:若两个相似三角形的面积比为2:1,则它们的相似比为:1.故选:D.【点评】此题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.2.(4分)下列事件中,属于必然事件的是()A.在标准大气压下,气温2°C时,冰融化为水B.任意抛掷一枚均匀的骰子,骰子停止转动后,朝上的一面的点数为1C.在只装着白球和黑球的袋中摸球,摸出红球D.在一张纸上随意画两个直角三角形,这两个直角三角形相似【分析】直接利用必然事件以及随机事件的定义分别分析得出答案.【解答】解:A、在标准大气压下,气温2°C时,冰融化为水,是必然事件,故此选项正确;B、任意抛掷一枚均匀的骰子,骰子停止转动后,朝上的一面的点数为1,是随机事件,故此选项错误;C、在只装着白球和黑球的袋中摸球,摸出红球,是随机事件,故此选项错误;D、在一张纸上随意画两个直角三角形,这两个直角三角形相似,是随机事件,故此选项错误;故选:A.【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.3.(4分)如图所示,△ABC中,∠BAC=30°,将△ABC绕点A顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为()A.30°B.50°C.20°D.40°【分析】根据旋转的性质可得∠BAB'=∠CAC'=50°,即可求∠∠B′AC的度数.【解答】解:∵旋转∴∠BAB'=50°,且∠BAC=30°∴∠B'AC=20°故选:C.【点评】本题考查了旋转的性质,熟练运用旋转的性质解决问题是本题的关键.4.(4分)已知一条圆弧的度数为60°,半径为6cm,则此圆弧长为()A.πcm B.2πcm C.4πcm D.6πcm【分析】根据弧长公式l=进行解答.【解答】解:此圆弧长为l==cm,故选:B.【点评】本题考查了弧长的计算,熟记弧长公式是解题的关键.5.(4分)如图,在8×4的正方形网格中,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.B.C.D.【分析】结合图形,根据锐角三角函数的定义即可求解.【解答】解:由图形知:tan∠ACB=,故选:B.【点评】本题考查了锐角三角函数的定义,属于基础题,关键是掌握锐角三角函数的定义.6.(4分)如图,点P为直径BA延长线上一点,PC切⊙O于C,若的度数等于120°,则∠ACP的度数为()A.40°B.35°C.30°D.45°【分析】连接OC,由的度数等于120°知∠AOC=60°,根据OC=OA可得△AOC是等边三角形,从而知∠ACO=60°,再根据PC切⊙O于C知∠PCO=90°,据此可得答案.【解答】解:如图,连接OC,∵的度数等于120°,∴∠BOC=120°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴∠ACO=60°,∵PC切⊙O于C,∴∠PCO=90°,∴∠ACP=30°,故选:C.【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:圆的切线垂直于经过切点的半径,也考查了圆周角定理、等边三角形的判定与性质.7.(4分)把抛物线y=(x+1)2+3的图象先向右平移3个单位,再向下平移2个单位,所得的图象解析式是()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x+4)2+1 D.y=(x+4)2+5 【分析】直接利用二次函数的平移规律进而得出答案.【解答】解:把抛物线y=(x+1)2+3的图象先向右平移3个单位,得到:y=(x﹣2)2+3再向下平移2个单位,所得的图象解析式是:y=(x﹣2)2+1.故选:A.【点评】此题主要考查了二次函数的几何变换,正确掌握平移规律是解题关键.8.(4分)如图,四边形ABCD内接于⊙O,∠DAB=140°,连接OC,点P是半径OC上一点,则∠BPD不可能为()A.40°B.60°C.80°D.90°【分析】连接OD、OB,根据圆内接四边形的性质求出∠DCB,根据圆周角定理求出∠BOD,求出∠BPD的范围,即可解答.【解答】解:连接OD、OB,∵四边形ABCD内接于⊙O,∴∠DCB=180°﹣∠DAB=40°,由圆周角定理得,∠BOD=2∠DCB=80°,∴40°≤∠BPD≤80°,∴∠BPD不可能为90°,故选:D.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.9.(4分)如图,把矩形ABCD折叠,点B恰好落在CD边的中点E处,折痕为AF,则sin∠EAD等于()A.B.C.D.【分析】根据折叠的性质得到AE=AB,∠EAF=∠FAB,在Rt△ADE中,AE=2DE,根据含30°的直角三角形三边的关系得到∠DAE=30°,进而解答即可.【解答】解:∵纸片ABCD为矩形,∴AB=CD,∵矩形纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,∴AE=AB,∠EAF=∠FAB,而E为DC的中点,∴AE=2DE,在Rt△ADE中,AE=2DE,∴∠EAD=30°,∴sin∠EAD=,故选:B.【点评】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.10.(4分)如图,四边形ABCD内接于直径为1厘米的⊙O,若∠BAD=90°,BC=a厘米,CD=b厘米,则下列结论正确的有()①sin∠BAC=a,②cos∠BAC=b,③tan∠BAC=.A.0个B.1个C.2个D.3个【分析】根据题意和图形可以得到∠BDC的三角函数值,然后根据圆周角相等,即可得到∠BAC的三角函数值,即可解答本题.【解答】解:连接BD,∵∠BAD=90°,∴BD是⊙O的直径,∴∠BCD=90°,∵∠BDC=∠BAC,BC=a厘米,CD=b厘米,⊙O的直径为1厘米,∴sin∠BDC=a,cos∠BDC=b,tan∠BDC=,∴sin∠BAC=a,故①正确,cos∠BAC=b,故②正确,tan∠BAC=,故③错误,故选:C.【点评】本题考查圆周角定理、解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.11.(4分)如图,⊙O与∠α的两边相切,若∠α=60°,则图中阴影部分的面积S关于⊙O 的半径r的函数图象大致是()A.B.C.D.【分析】过O点作两切线的垂线,垂足分别为A、B,连接OP,如图,利用切线的性质得OA=OB=r,根据切线长定理得到∠APO=∠BPO=30°,则AP=OA=r,再利用四边形内角和计算出∠AOB=120°,接着利用扇形面积公式得到S=(﹣π)r2(r>0),然后根据解析式对各选项进行判断.【解答】解:过O点作两切线的垂线,垂足分别为A、B,连接OP,如图,则OA=OB=r,∠APO=∠BPO=30°,∴AP=OA=r,∵∠OAP=∠OBP=90°,∴∠AOB=180°﹣α=180°﹣60°=120°,∴S=S四边形AOBP﹣S扇形AOB=2×r•r﹣=(﹣π)r2(r>0),故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了二次函数的图象.12.(4分)定义符号min{a,b}的含义:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a,如min{1,﹣4}=﹣4,min{﹣6,﹣2}=﹣6,则min{﹣x2+2,﹣2x}的最大值为()A.2﹣2 B.+1 C.1﹣D.2+2【分析】根据题意和题目中的新定义,利用分类讨论的方法,可以求得min{﹣x2+2,﹣2x}的最大值,本题得以解决.【解答】解:当﹣x2+2≥﹣2x时,解得,1﹣≤x≤1+,∴当1﹣≤x≤1+时,min{﹣x2+2,﹣2x}=﹣2x,此时,当x=1﹣时,﹣2x取得最大值﹣2+2;当﹣x2+2≤﹣2x时,解得,x≤1﹣或x≥1+,∴当x≤1﹣或x≥1+时,min{﹣x2+2,﹣2x}=﹣x2+2,此时,当x=1﹣时,﹣x2+2取得最大值﹣2+2;由上可得,min{﹣x2+2,﹣2x}的最大值为2﹣2,故选:A.【点评】本题考查二次函数的性质、新定义、实数大小比较,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.二、填空题(每小题4分,共24分)13.(4分)箱子里有7个白球、3个红球,它们仅颜色不同,从中随机摸出一球是白球的概率是.【分析】用白球的个数除以球的总个数即可.【解答】解:∵箱子里有7个白球、3个红球,∴从中随机摸出一球是白球的概率是=.故答案为.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)若线段c是线段a、b的比例中项,且a=4厘米,b=25厘米,则c=10 厘米.【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×25,解得c=±10(线段是正数,负值舍去),∴c=10cm,故答案为:10【点评】本题考查比例线段、比例中项等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.15.(4分)已知△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,r为半径画圆,使得点A在⊙C内,点B在⊙C外,则半径r的取值范围是3<r<4 .【分析】根据勾股定理得到AC==5,点A在⊙C外,点B在⊙C内,则r的取值范围是3<r<4.【解答】解:∵△ABC中,∠C=90°,AC=3,BC=4,∴AC=5,∴r的取值范围是3<r<4.故答案为:3<r<4【点评】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R时,点在圆外;当d<R时,点在圆内.判断这三点与圆的位置关系是解决本题的关键.16.(4分)一直角三角形的两条直角边长分别为6和8,则它的内切圆半径为 2 .【分析】如图,作辅助线,首先证明四边形ODCF为正方形;求出AB的长度;证明AF=AE,BD=BE问题即可解决.【解答】解:如图,⊙O内切于直角△ABC中,切点分别为D、E、F;其中AC=8,BC=6;连接OD、OF;则OD⊥BC,OF⊥AC;OD=OF;∵∠C=90°,∴四边形ODCF为正方形,∴CD=CF=R(R为⊙O的半径);由勾股定理得:AB2=AC2+BC2=36+64=100,∴AB=10;由切线的性质定理的:AF=AE,BD=BE;∴CD+CF=AC+BC﹣AB=6+8﹣10=4,∴R=2,它的内切圆半径为2.【点评】该题主要考查了三角形的内切圆的性质、勾股定理等几何知识点的应用问题;解题的关键是灵活运用有关定理来分析、判断、解答.17.(4分)如图,⊙A的圆心A在⊙O上,O的弦PQ与⊙A相切于点B,若⊙O的直径AC=10,AB=2,则AP•AQ的值为20 .【分析】连接QC,根据圆周角定理、切线的性质定理得到∠ABP=∠AQC,证明△ABP∽△AQC,根据相似三角形的性质定理计算即可.【解答】解:连接QC,∵PQ与⊙A相切于点B,∴∠ABP=90°,∵AC为⊙O的直径,∴∠AQC=90°,∴∠ABP=∠AQC,又∠APB=∠ACQ,∴△ABP∽△AQC,∴=,∴AP•AQ=AB•AC=20,故答案为:20.【点评】本题考查的是圆周角定理、切线的性质定理、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.18.(4分)如图,矩形ABCD中,AB=4,AD=6,E为射线BC上一动点(不与C重合),△CDE的外接圆交AE于P,若CP=CD,则AP的值为.【分析】连接PD,如图,利用圆周角定理证明∠EPD=90°,∠CDP=∠CED,再证明∠AEB=∠CED,则可判断△ABE≌△DCE,所以BE=CE=BC=3,再利用勾股定理计算出AE,然后证明Rt△ADP∽Rt△EAB,从而利用相似比可计算出AP的长.【解答】解:连接PD,如图,∵∠ECD=90°,∴DE为直径∴∠EPD=90°,∵CP=CD,∴∠CDP=∠CED,∵∠AEB=∠CDP,∴∠AEB=∠CED,∵AB=CD,∠B=∠ECD,∴△ABE≌△DCE,∴BE=CE=BC=3,在Rt△ABE中,AE==5,∵AD∥BC,∴∠BEA=∠DAE,∴Rt△ADP∽Rt△EAB,∴=,即=,∴AP=.故答案为.【点评】本题考查了三角形外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了矩形的性质、圆周角定理和相似三角形的判定与性质.三、解答题(第19题6分,第20、21题每题8分,第22、23、24题每题10分,第25题12分第26题14分,共78分)19.(6分)(1)tan60°﹣cos45°;(2)若=,求的值.【分析】(1)将三角函数值代入计算可得;(2)由=知y=3x,代入计算可得.【解答】解:(1)原式=×﹣×=3﹣1=2;(2)∵=,∴y=3x,则原式==.【点评】本题主要考查比例的性质,解题的关键是掌握实数的运算与比例的基本性质.20.(8分)如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.【分析】(1)根据概率公式直接填即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)有4个开关,只有D开关一个闭合小灯发亮,所以任意闭合其中一个开关,则小灯泡发光的概率是;(2)画树状图如右图:结果任意闭合其中两个开关的情况共有12种,其中能使小灯泡发光的情况有6种,小灯泡发光的概率是.【点评】本题是跨学科综合题,综合物理学中电学知识,结合电路图,正确判断出灯泡发光的条件,主要考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,为一圆洞门.工匠在建造过程中需要一根横梁AB和两根对称的立柱CE、DF来支撑,点A、B、C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AB=2,EF=,=120°.(1)求出圆洞门⊙O的半径;(2)求立柱CE的长度.【分析】(1)作OH⊥AB于H,连接OB、OA.在Rt△BOH中,解直角三角形即可解决问题;(2)作OM⊥EC于M,连接OC.在Rt△OMC中,解直角三角形即可;【解答】解:(1)作OH⊥AB于H,连接OB、OA.∵的度数为120°,AO=BO,∴∠BOH=×120°=60°,∴AH=BH=,在Rt△BOH中,sin∠BOH=,∴OB=2,即圆洞门⊙O的半径为2;(2)作OM⊥EC于M,连接OC.∵Rt△BOH中,OH=1,∵EH=,易证四边形OMEH是矩形,∴OM=EH=,ME=OH=1,在Rt△OMC中,CM==,∴CE=ME+CM=1+=,∴立柱CE的长度为.【点评】本题考查垂径定理的应用、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(10分)如图,一艘潜水器在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子(即∠EAC=30°),继续在同一深度直线航行1400米到B点处测得正前方C点处的俯角为45°(即∠EBC=45°).求海底C点处距离海面DF的深度.(结果保留根号).【分析】作CM⊥DF于M,交AB于N点,如图,设CN=x,在Rt△BCE中利用正切定义得到BN=CN=x,在Rt△ACN中,利用∠A的正切得到=tan30°=,解得x=700+700,然后计算CN+MN即可.【解答】解:作CM⊥DF于M,交AB于N点,如图,则MN=600,AB=1400,∠NAC=30°,∠NBC=45°,设CN=x,在Rt△BCE中,∵tan∠NBC=tan45°=,∴BN=CN=x,在Rt△ACN中,tan∠NAC=,∴=tan30°=,解得x=700+700,∴CM=CN+MN=700+700+600=700+1300.答:海底C点处距离海面DF的深度为(700+1300)m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决23.(10分)如图,△ABC内接于⊙O,AC是⊙O直径,D是的中点,过点D作CB的垂线,分别交CB、CA延长线于点F、E.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若sin E=,求AB:EF的值.【分析】(1)先判断出∠CBA为直角,再判断出∠F为直角,进而得出AB与EF平行,再由D为的中点,利用垂径定理的逆定理得到OD垂直于AB,即可得出结论;(2)根据角E的正弦值,设出OD=OC=OB=OA=5x,则得出CA=10x,CE=13x,进而得出CE=18x,最后判断出△ABC∽△ECF即可得出结论.【解答】解:(1)直线EF与圆O相切,理由为:连接OD,如图所示:∵AC为圆O的直径,∴∠CBA=90°,又∵∠F=90°,∴∠CBA=∠F=90°,∴AB∥EF,∴∠AMO=∠EDO,又∵D为的中点,∴=,∴OD⊥AB,∴∠AMO=90°,∴∠EDO=90°,∵EF过半径OD的外端,则EF为圆O的切线,(2)在Rt△ODE中,sin E==,设OD=OC=OA=5x,∴CA=10x,OE=13x,∴CE=18x,∵EF∥AB,∴△ABC∽△ECF,∴==【点评】此题考查了切线的性质,圆周角定理,平行线的判定与性质,相似三角形的判定与性质,锐角三角函数的定义,熟练掌握性质与定理是解本题的关键.24.(10分)我们定义:三边之比为1::的三角形叫神奇三角形.(1)如图一,△ABC是正方形网格中的格点三角形,假设每个小正方形的边长为1,请证明△ABC是神奇三角形,并直接写出∠ABC的度数;(2)请你在下列2×5的正方形网格中(图二)分别画出一个与(1)中△ABC不全等的大小各不同的格点神奇三角形.【分析】(1)利用勾股定理分别计算出BC、AB、AC的长度,计算出三边的比例可得答案;(2)根据相似三角形作图可得.【解答】解:(1)由勾股定理得BC==、AB=2、AC==,∴BC:AB:AC=:2:=1::,∴△ABC是神奇三角形,∠ABC=135°;(2)如图所示:【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握勾股定理与相似三角形的定义.25.(12分)有一家网红私人定制蛋糕店,她家的蛋糕经常供不应求,但每日最多只能做40只蛋糕,且每日做好的蛋糕全部订售一空.已知做x只蛋糕的成本为R元,售价为每只P元,且R、P与x的关系式为R=500+30x,P=170﹣2x,设她家每日获得的利润为y元.(1)销售x只蛋糕的总售价为(﹣2x2+170x)元(用含x的代数式表示),并求y与x 的函数关系式;(2)当每日做多少只蛋糕时,每日获得的利润为1500元?(3)当每日做多少只蛋糕时,每日所获得的利润最大?最大日利润是多少元?【分析】(1)利用总售价=销售单价×销售数量可得,再根据每日利润=总售价﹣做x只蛋糕的成本可得y关于x的解析式;(2)求出y=1500时x的值即可得;(3)将所得函数解析式配方成顶点式,再利用二次函数的性质求解可得.【解答】解:(1)销售x只蛋糕的总售价为(170﹣2x)x=﹣2x2+170x(元),根据题意,得:y=(﹣2x2+170x)﹣(500+30x)=﹣2x2+140x﹣500,故答案为:(﹣2x2+170x);(2)当y=1500时,得:﹣2x2+140x﹣500=1500,解得:x1=20、x2=50,∵x≤40,∴x=20,即当每日做20只蛋糕时,每日获得的利润为1500元;(3)y=﹣2x2+140x﹣500=﹣2(x﹣35)2+1950,∵a=﹣2<0,∴当x=35时,y取得最大值,最大值为1950,答:当每日做35只蛋糕时,每日所获得的利润最大,最大日利润是1950元.【点评】本题考查了二次函数的应用,掌握销售问题的数量关系销售收入=售价×数量的运用,二次函数的解析式的性质的运用,解答时求出二次函数的解析式是关键.26.(14分)如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.【分析】(1)分别代入y=0、x=0求出与之对应的x、y的值,进而可得出点A、B、C 的坐标,再由二次函数的对称性可找出抛物线的对称轴;(2)连接CP、BP,在Rt△BOC中利用勾股定理可求出BC的长,由等腰直角三角形的性质及圆周角定理可得出∠BPC=90°,再利用等腰直角三角形的性质可求出BP的值,此题得解;(3)设点D的坐标为(1,y),当∠BDC=90°时,利用勾股定理可求出y值,进而可得出:当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,根据旋转的性质可找出点C′的坐标及∠AC′O′=45°,进而可找出线段C′O′所在直线的解析式,由点E在CO上可得出点F在C′O′上,过点O作OF⊥C′O′于点F,则△OC′F为等腰直角三角形,此时线段OF取最小值,利用等腰直角三角形的性质即可求出此时OF的长,此题得解.【解答】解:(1)当y=0时,﹣(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴点B的坐标为(﹣1,0),点A的坐标为(3,0);当x=0时,y=﹣(0+1)×(0﹣3)=3,∴点C的坐标为(0,3);∵抛物线与x轴交于点(﹣1,0)、(3,0),∴抛物线的对称轴为直线x=1.(2)连接CP、BP,如图1所示.在Rt△BOC中,BC==.∵∠AOC=90°,OA=OC=3,∴∠OAC=∠OCA=45°,∴∠BPC=2∠OAC=90°,∴CP=BP=BC=,∴⊙P的半径为.(3)设点D的坐标为(1,y),当∠BDC=90°时,BD2+CD2=BC2,∴[(﹣1﹣1)2+(0﹣y)2]+[(0﹣1)2+(3﹣y)2]=10,整理,得:y2﹣3y+2=0,解得:y1=1,y2=2,∴当1<y<2时,∠BDC>90°.(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,如图2所示.∵AC==3,∠ACO=45°,∴点C′的坐标为(3﹣3,0),∠AC′O′=45°,∴线段C′O′所在直线的解析式为y=﹣x+3﹣3.∵点E在线段CO上,∴点F在线段C′O′上.过点O作OF⊥C′O′于点F,则△OC′F为等腰直角三角形,此时线段OF取最小值.∵△OC′F为等腰直角三角形,∴OF=OC′=(3﹣3)=3﹣.【点评】本题考查了二次函数图象上点的坐标特征、二次函数的性质、圆周角定理、勾股定理、旋转以及等腰直角三角形,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标;(2)利用圆周角定理找出∠BPC=90°;(3)利用极限值法求出点D纵坐标;(4)利用点到直线之间垂直线段最短确定点F的位置.。
2018学年第一学期基础性学力检测样卷九年级数学友情提示:1.全卷分卷I 与卷Ⅱ两部分,考试时间为100分钟,试卷满分为120分.2.试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效.3.请仔细审题,细心答题,相信你一定会有出色的表现!4.参考公式:抛物线2()0y ax bx c a =++≠的顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭ 卷I一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题号中对应字母的方框涂黑,不选、多选、错选均不给分.1.(2019余杭)寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为( )A .12B .13C .14D .192.(2019余杭)如图,已知⊙O 中,半径OC 垂直于弦AB ,垂足为D ,若OD=3,OC=5则AB的长为( )A .2B .4C .6D .83.(2019余杭)圆的面积公式2S R π=中,S 与R 之间的关系是( )A .S 是R 的正比例函数B .S 是R 的一次函数C .S 是R 的二次函数D .以上答案都不对 4.(2019余杭)将二次函数2y x =的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式( )A .()212y x =++B .()212y x =+-C .()212y x =--D .()212y x =-+ 5.(2019余杭)由23x y =不能推出的比例式是( )A .23x y = B .35x y y += C .13x y y -= D .22333x y y +=≠-+() 6.(2019余杭)如图,点A ,B ,C 都在⊙O 上,若∠AOC=140°,则∠B 的度数是( )A .70°B .80°C .110°D .140°7.(2019余杭)如图,抛物线2()0y ax bx c a =++≠的开口向上,与x 轴交点的横坐标分别为-1和3,则下列说法错误的是( )A .对称轴是直线1x =B .方程20ax bx c ++=的解是121,3x x =-=C .当13x -<<时,0y <D .当1x <,y 随x 的增大而增大8.(2019余杭)甲、乙两名同学在一次用频率估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是( )A .掷一枚正六面体的骰子,出现1点的概率B .抛一枚硬币,出现正面的概率C .任意写一个整数,它能被2整除的概率D .从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率9.(2019余杭)如图,在线段AB 上有一点C ,在AB 的同侧作等腰△ACD 和等腰△ECB ,且AC=AD ,EC=EB ,∠DAC=∠CEB ,直线BD 与线段AE ,线段CE 分别交于点F ,G .对于下列结论:①△DCG ∽△BEG ;②△ACE ∽△DCB ;③GF ·GB=GC ·GE ;④若∠DAC=∠CEB=90°,则2AD 2=DF ·DG .其中正确的是( )A .①②③④B .①②③C .①③④D .①②10.(2019余杭)如图,在平面直角坐标系中,直线4y x =-+与x 轴交于点A ,与y 轴交于点B ,点C 是AB 的中点,∠ECD 绕点C 按顺时针旋转,且∠ECD=45°,∠ECD 的一边CE 交y 轴于点F ,开始时另一边CD 经过点O ,点G 坐标为(-2,0),当∠ECD 旋转过程中,射线CD 与x 轴的交点由点O 到点G 的过程中,则经过点B 、C 、F 三点的圆的圆心所经过的路径长为( )A .3B .2CD .4卷Ⅱ二、填空题(本题有5小题,每小题5分,共25分11.(2019余杭)如果两个相似三角形的面积的比是4:9,那么它们对应角的角平分线的比是__________12.(2019余杭)如图,已知AB ,CD 是⊙O 的直径,AE AC =,∠AOE=32°,那么∠COE 的度数为__________度.13.(2019余杭)如图,在平面直角坐标系中,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是__________14.(2019余杭)如图,已知点P 是△ABC 的重心,过P 作AB 的平行线DE ,分别交AC 于点D ,交BC 于点E ,作DF//BC ,交AB 于点F ,若四边形BEDF 的面积为4,则△ABC 的面积为__________15.(2019余杭)二次函数243y x x =-+的图象与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,作直线():1l y t t =>-,将直线l 下方的二次函数图象沿直线l 向上翻折,与其它剩余部分组成一个组合图象W ,若线段BC 与组合图象W 有两个交点,则t 的取值范围为__________三、解答题(本题有7小题,共65分)16.(2019余杭)(本小题8分) 已知234a b c ==.(1)求+a b c b+(2)若2230a b c ++=-,求a ,b ,c 的值.17.(2019余杭)(本小题8分)如图,已知二次函数2y x bx c =++的图象经过点(-1,0),(1,-2).(1)求b ,c 的值;(2)直接写出不等式20x bx c ++<的解.18.(2019余杭)(本小题8分)周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽,测量时,他们选择河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC=1m ,DE=1.35m ,BD=7m .测量示意图如图所示.请根据相关测量信息,求河宽AB.在学习概率的课堂上,老师提出问题:只有一张电影票,小丽和小芳想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小丽和小芳都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小丽先抽一张,小芳从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小丽看电影,否则小芳看电影。
浙江省宁波市镇海区2018-2019学年九年级(上)期末模拟试卷一.选择题(共12小题,满分48分)1.下列事件中,是必然事件的是()A.明天太阳从东方升起B.随意翻到一本书的某页,这页的页码是奇数C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯2.若2a=3b,则等于()A.B.1C.D.不能确定3.对于抛物线y=﹣(x+2)2+3,下列结论中正确结论的个数为()①抛物线的开口向下;②对称轴是直线x=﹣2;③图象不经过第一象限;④当x>2时,y随x的增大而减小.A.4B.3C.2D.14.已知△ABC中,∠C=90°,AC=6,BC=8,则cosB的值是()A.0.6B.0.75C.0.8D.5.一个扇形的圆心角是60°,半径是6cm,那么这个扇形的面积是()A.3πcm2B.πcm2C.6πcm2D.9πcm26.下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂宜于弦;并且平分弦所对的弧,④圆内接四边形对角互补.其中错误的结论有()A.1个B.2个C.3个D.4个7.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为3,则△BCD的面积为()A.12B.9C.6D.38.如图,菱形ABCD中,∠B=70°,AB=3,以AD为直径的⊙O交CD于点E,则弧DE的长为()A.πB.πC.πD.π9.从1、2、3、4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线y=x2上的概率是()A.B.C.D.10.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4B.2C.3D.2.511.如图,已知点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A,过点C作CE⊥AB于E,CE=8,cosD=,则AC的长为()A.B.C.10D.12.二次函数y=ax2+bx+c(a≠0),自变量x与函数y的对应值如下表:则下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最大值是6D.抛物线的对称轴是x=﹣二.填空题(共6小题,满分24分,每小题4分)13.抛物线y=的顶点坐标是.14.若线段a,b,c,d成比例,其中a=1,b=2,c=3,则d= .15.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x 的值为16.如图,AB为⊙O的直径,C为⊙O上一点,∠BOC=50°,AD∥OC,AD 交⊙O于点D,连接AC,CD,那么∠ACD= .17.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为.18.如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的正方形ABCD 的周长为.三.解答题(共8小题,满分64分)19.(6分)计算:2sin30°﹣tan60°+cos60°﹣tan45°.20.(8分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.21.(9分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了两个格点△ABC和△DEF(顶点在网格线的交点上).(1)平移△ABC,使得△ABC和△DEF组成一个轴对称图形,在网格中画出这个轴对称图形;(2)在网格中画一个格点△A′B′C′,使△A′B′C′∽△ABC,且相似比不为1.22.(9分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.(1)求BC的长;(2)尺规作图(保留作图痕迹,不写作法):作出△ABC的外接圆,并求外接圆半径.23.(10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)24.(10分)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA= ,k= ,点E的坐标为;(2)当1≤t≤6时,经过点M(t﹣1,﹣t2+5t﹣)与点N(﹣t﹣3,﹣t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c的顶点.①当点P在双曲线y=上时,求证:直线MN与双曲线y=没有公共点;②当抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.25.(12分)如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G.(1)判断直线PA与⊙O的位置关系,并说明理由;(2)求证:AG2=AF•AB;(3)求若⊙O的直径为10,AC=2,求AE的长.26.如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、明天太阳从东方升起是必然事件,符合题意;B、随意翻到一本书的某页,这页的页码是奇数是随机事件,不符合题意;C、射击运动员射击一次,命中靶心是随机事件,不符合题意;D、经过有交通信号灯的路口,遇到红灯是随机事件,不符合题意;故选:A.2.解:∵2a=3b,∴两边都除以3a得:=,∴=,即=,故选:A.3.解:∵y=﹣(x+2)2+3,∴抛物线开口向下、对称轴为直线x=﹣2,顶点坐标为(﹣2,3),故①、②都正确;在y=﹣(x+2)2+3中,令y=0可求得x=﹣2+<0,或x=﹣2﹣<0,∴抛物线图象不经过第一象限,故③正确;∵抛物线开口向下,对称轴为x=﹣2,∴当x>﹣2时,y随x的增大而减小,∴当x>2时,y随x的增大而减小,故④正确;综上可知正确的结论有4个,故选:A.4.解:∵∠C=90°,AC=6,BC=8,∴AB=10,∴cosB==0.8,故选:C.5.解:因为r=6cm,n=60°,根据扇形的面积公式S=进得:S==6π(cm2).故选:C.6.解::①任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆;②相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;③平分弦的直径垂宜于弦;并且平分弦所对的弧,错误,此弦不是直径;④圆内接四边形对角互补;正确;故选:C.7.解:∵∠ACD=∠B,∠CAD=∠BAC,∴△ACD∽△ABC,∴=()2=4.∵S△ACD=3,∴S△ABC =4•S△ACD=12,∴S△BCD =S△ABC﹣S△ACD=9.故选:B.8.解:连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=70°,AD=AB=3,∴OA=OD=1.5,∵OD=OE,∴∠OED=∠D=70°,∴∠D OE=180°﹣2×70°=40°,∴的长=;故选:A.9.解:列表如下:从1、2、3、4四个整数中任取两个数作为一个点的坐标共有12种等可能结果,其中点恰好在抛物线y=x2上的只有(2,4)这一个结果,所以这个点恰好在抛物线y=x2上的概率是,故选:B.10.解:连接DO,∵PD与⊙O相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PD O∽△PCB,∴===,设PA=x,则=,解得:x=4,故PA=4.故选:A.11.解:连结OC,如图,∵CE⊥AB,∴∠AEC=∠CED=90°,∴cos D==,设DE=4x,则DC=5x,∴CE=3x=8,解得x=,∴DE=,DC=,∵AB为直径,∴∠ACB=90°,∵∠A=∠BCD,而∠A=∠ACO,∴∠ACO=∠BCD,∴∠OCD=90°,在Rt△OCD中,cosD===,解得OD=,∴OE=OD﹣DE=﹣=6,在Rt△OCE中,OC==10,∴OA=10,∴AE=10+6=16,在Rt△ACE中,AC===8.故选:A.12.解:由数据可得:当x=﹣3和﹣2时,对应y的值相等,故函数的对称轴为:直线x=﹣,且数据从x=﹣5到﹣3对应的y值不断减小,故函数有最小值,没有最大值,则其开口向上,x>﹣时,y随x的增大而增大.故选项A,B,C都错误,只有选项D正确.故选:D.二.填空题(共6小题,满分24分,每小题4分)13.解:∵y=,∴抛物线顶点坐标为(7,8),故答案为:(7,8).14.解:∵a、b、c、d是成比例线段,∴a:b=c:d,即1:2=3:d,∴d=6;故答案为:615.解:根据题意得=,解得x=4,故答案为:4.16.解:连接OD,∵AD∥OC,∴∠DAB=∠BOC=50°,∵OA=OD∴∠AOD=180°﹣2∠DAB=80°,∴∠ACD=∠AOD=40°故答案为40°17.解:如图所示:连接AQ.∵BP•BQ=AB2,∴=.又∵∠ABP=∠QBA,∴△ABP∽△QBA,∴∠APB=∠QAB=90°,∴QA始终与AB垂直.当点P在A点时,Q与A重合,当点P在C点时,AQ=2OC=4,此时,Q运动到最远处,∴点Q运动路径长为4.故答案为:4.18.解:∵在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,∴点A的横坐标是0,该抛物线的对称轴为直线x=﹣,∵点B是这条抛物线上的另一点,且AB∥x轴,∴点B的横坐标是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周长为:3×4=12,故答案为:12.三.解答题(共8小题,满分64分)19.解:2sin30°﹣tan60°+cos60°﹣tan45°==.20.解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.21.解:(1)如图(答案不唯一).(2)如图(答案不唯一).22.解:(1)过点A作AE⊥BC于点E,∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=4AE=4,∴BC=BE+CE=5;(2)如图,①作线段AB的垂直平分线NM.②作线段AC的垂直平分线GH与直线MN的交点O就是△ABC外接圆的圆心.③以点O为圆心OA为半径作圆.⊙O就是所求作的△ABC的外接圆.∵∠AOC=2∠ABC,∠AOK=∠COK,∴∠ABC=∠AOK,∵sin∠AOK=sin∠ABC==,由(1)可知AB==,∴=,∴AO=.23.解:(1)由题意,得:w=(x﹣20)•y=(x﹣20)•(﹣10x+500)=﹣10x2+700x ﹣10000,即w=﹣10x2+700x﹣10000(20≤x≤32)(2)对于函数w=﹣10x 2+700x ﹣10000的图象的对称轴是直线.又∵a=﹣10<0,抛物线开口向下.∴当20≤x ≤32时,W 随着X 的增大而增大,∴当x=32时,W=2160答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.(3)取W=2000得,﹣10x 2+700x ﹣10000=2000 解这个方程得:x 1=30,x 2=40. ∵a=﹣10<0,抛物线开口向下. ∴当30≤x ≤40时,w ≥2000. ∵20≤x ≤32∴当30≤x ≤32时,w ≥2000.设每月的成本为P (元),由题意,得:P=20(﹣10x+500)=﹣200x+10000 ∵k=﹣200<0,∴P 随x 的增大而减小.∴当x=32时,P 的值最小,P 最小值=3600.答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元. 24.解:(1)∵A 点坐标为(﹣6,0) ∴OA=6∵过点C (﹣6,1)的双曲线y= ∴k=﹣6y=4时,x=﹣∴点E 的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)(2)①设直线MN 解析式为:y 1=k 1x+b 1由题意得:解得∵抛物线y=﹣过点M 、N∴解得∴抛物线解析式为:y=﹣x 2﹣x+5t ﹣2∴顶点P 坐标为(﹣1,5t ﹣)∵P 在双曲线y=﹣上∴(5t ﹣)×(﹣1)=﹣6∴t=此时直线MN 解析式为:联立∴8x 2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN 与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t=或t=③∵点P的坐标为(﹣1,5t﹣)=5t﹣∴yP随t的增大而增大当1≤t≤6时,yP此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴y=﹣F随t的增大而增大∴当1≤t≤4时,随者yF此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=25.(1)PA与⊙O相切.理由:连接CD∵AD为⊙O的直径,∴∠ACD=90°∴∠D+∠CAD=90°∵∠B=∠D,∠PAC=∠B∴∠PAC=∠D,∴∠PAC+∠CAD=90°即DA⊥PA∵点A在圆上,∴PA与⊙O相切.(2)证明:如图2,连接BG∵AD为⊙O的直径,CG⊥AD ∴AC弧与AG弧相等∴∠AGF=∠ABG∵∠GAF=∠BAG∴△AGF∽△ABG∴AG:AB=AF:AG∴AG2=AB•AF(3)解:∵AD是直径,CG⊥AD∴∠ACD=∠AEC=90°∵∠CAD=∠EAC∴△ACD∽△AEC∴即∴AE=226.解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x﹣1)(x﹣3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2﹣4x+3;(2)如图2,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S四边形AOPE =S△AOE+S△POE,=×3×3+PG•AE,=+×3×(﹣m2+5m﹣3),=﹣+,=﹣(m﹣)2+,∵﹣<0,∴当m=时,S有最大值是;(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=或,∴P的坐标为(,)或(,);如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).。
2018-2019学年九年级(上)期末数学试卷一.选择题(共10小题)1.已知3x =4y (x ≠0),则下列比例式成立的是( ) A. 34xy= B. 34y x = C. 34xy = D. 34xy =【答案】B【解析】【分析】根据比例的基本性质:内项之积等于外项之积,逐项判断即可.【详解】A 、由3x =4y得4x =3y ,故本选项错误;B 、由3y =4x 得3x =4y ,故本选项正确;C 、由3y =4x得xy =12,故本选项错误;D 、由xy =34得4x =3y ,故本选项错误;故选:B .【点睛】本题考查了比例的基本性质,熟练掌握内项之积等于外项之积是解题的关键.2.抛物线y =2x 2﹣3的顶点坐标是( )A. (0,﹣3)B. (﹣3,0)C. (﹣34,0) D. (0,﹣34)【答案】A【解析】【分析】根据题目中的函数解析式,可以直接写出该抛物线的顶点坐标,本题得以解决.【详解】∵抛物线y =2x 2﹣3的对称轴是y 轴,∴该抛物线的顶点坐标为(0,﹣3),故选:A .【点睛】本题考查了抛物线的顶点坐标,找到抛物线的对称轴是解题的关键.3.小红抛掷一枚质地均匀的骰子,骰子六个面分别刻有1到6的点数,下列事件为必然事件的是( )A. 骰子向上一面的点数为偶数B. 骰子向上一面的点数为3C. 骰子向上一面的点数小于7D. 骰子向上一面的点数为6【答案】C【解析】【分析】必然事件就是一定发生的事件,依据定义即可判断.【详解】A、骰子向上一面的点数为偶数是随机事件,选项错误;B、骰子向上一面的点数为3是随机事件,选项错误;C、骰子向上一面的点数小于7是必然事件,选项正确;D、骰子向上一面的点数为6是随机事件,选项错误.故选:C.【点睛】本题考查了随机事件与必然事件,熟练掌握必然事件的定义是解题的关键.4.如图,△ABC中,∠C=90°,AB=5,AC=4,且点D,E分别是AC,AB的中点,若作半径为3的⊙C,则下列选项中的点在⊙C外的是()A. 点BB. 点DC. 点ED. 点A【答案】D【解析】【分析】分别求出AC、CE、BC、CD的长,根据点与圆的位置关系的判断方法进行判断即可.【详解】如图,连接CE,∵∠C=90°,AB=5,AC=4,∴BC2254,∵点D,E分别是AC,AB的中点,∴CD =12AC = 2,CE =12AB =52, ∵⊙C 的半径为3,BC=3,CE 3<,CD 3<,AC 3>∴点B ⊙C 上,点E 在⊙C 内,点D 在⊙C 内,点A 在⊙C 外,故选:D .【点睛】本题考查点与圆的位置关系,解题的关键是求点到圆心的距离.5.如图,在正方形网格上有两个相似三角形△ABC 和△DEF ,则∠BAC 的度数为( )A. 105°B. 115°C. 125°D. 135° 【答案】D【解析】【分析】根据相似三角形的对应角相等即可得出.【详解】∵△ABC ∽△EDF ,∴∠BAC =∠DEF ,又∵∠DEF =90°+45°=135°,∴∠BAC =135°,故选:D .【点睛】本题考查相似三角形的性质,解题的关键是找到对应角6.将抛物线y=3x 2﹣3向右平移3个单位长度,得到新抛物线的表达式为()A. y=3(x ﹣3)2﹣3B. y=3x 2C. y=3(x+3)2﹣3D. y=3x 2﹣6 【答案】A【解析】【分析】根据二次函数的图象平移规律:左加右减,上加下减,即可得出.【详解】抛物线233y x =-向右平移3个单位,得到抛物线的解析式是()233 3.y x =--故选A.【点睛】本题主要考查二次函数的图象平移规律:左加右减,上加下减.7. 若四边形ABCD是⊙O的内接四边形,且∠A︰∠B︰∠C=1︰3︰8,则∠D的度数是A. 10°B. 30°C. 80°D. 120°【答案】D【解析】试题分析:设∠A=x,则∠B=3x,∠C=8x,因为四边形ABCD为圆内接四边形,所以∠A+∠C=180°,即:x+8x=180,∴x=20°,则∠A=20°,∠B=60°,∠C=160°,所以∠D=120°,故选D考点: 圆内接四边形的性质8.)边形.A. 六B. 八C. 十D. 十二【答案】B【解析】【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.,【详解】∵一个外角为锐角,且其余弦值为2∴外角=45°,∴360÷45=8.故它是正八边形.故选:B.【点睛】本题考查根据正多边形的外角判断边数,根据余弦值得到外角度数是解题的关键.9.如图,在△ABC中,BC=8,高AD=6,点E,F分别在AB,AC上,点G,F在BC上,当四边形EFGH 是矩形,且EF=2EH时,则矩形EFGH的周长为()A. 245B. 365C. 725D. 2885【答案】C【解析】【分析】通过证明△AEF ∽△ABC ,可得2EH 6EH 86-=,可求EH 的长,即可求解. 【详解】∵EF ∥BC ,∴△AEF ∽△ABC ,∴-=EF AD EH BC AD, ∵EF =2EH ,BC=8,AD=6,∴2EH 6EH 86-= ∴EH =125, ∴EF =245, ∴矩形EFGH 的周长=1272524255⎛⎫⨯+=⎪⎝⎭ 故选:C .【点睛】本题考查了相似三角形的应用,根据相似三角形对应边成比例建立方程是解题的关键. 10.如图,半径为5的A 中,弦BC ,ED 所对的圆心角分别是BAC ∠,EAD ∠,若6DE =,180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A. 8B. 10C. 11D. 12【答案】A【解析】作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=3,从而求解.解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=180°,而∠BAC+∠BAF=180°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=12BF=3.∴2222534BH AB AH-=-=,∴BC=2BH=8.故选A.“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.二.填空题(共6小题)11.计算:sin30°=_____.【答案】1 2【解析】【分析】根据sin30°=12直接解答即可.【详解】sin30°=1 2 .【点睛】本题考查的知识点是特殊角的三角函数值,解题的关键是熟练的掌握特殊角的三角函数值.12.二次函数y=2x2﹣5kx﹣3的图象经过点M(﹣2,10),则k=_____.【答案】12.【解析】【分析】点M(﹣2,10),代入二次函数y=2x2﹣5kx﹣3即可求出k的值.【详解】把点M(﹣2,10),代入二次函数y=2x2﹣5kx﹣3得,8+10k﹣3=10,解得,k=12,故答案为:12.【点睛】本题考查求二次函数解析式的系数,解题的关键是将图象上的点坐标代入函数解析式.13.不透明布袋里有5个红球,4个白球,往布袋里再放入x个红球,y个白球,若从布袋里摸出白球的概率为13,则y与x之间的关系式是_____.【答案】x﹣2y=3.【解析】【分析】根据从布袋里摸出白球的概率为13,列出454++++yx y=13,整理即可得.【详解】根据题意得454++++yx y=13,整理,得:x﹣2y=3,故答案为:x﹣2y=3.【点睛】本题考查概率公式的应用,熟练掌握概率公式建立方程是解题的关键.14.如图,在⊙O内有折线DABC,点B,C在⊙O上,DA过圆心O,其中OA=8,AB=12,∠A=∠B=60°,则BC=_____.【答案】20【解析】【分析】作OE⊥BC于E,连接OB,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长,设垂足为E,在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长,由垂径定理知BC=2BE即可得出答案.【详解】作OE⊥BC于E,连接OB.∵∠A=∠B=60°,∴∠ADB=60°,∴△ADB为等边三角形,∴BD=AD=AB=12,∵OA=8,∴OD=4,又∵∠ADB=60°,∴DE=12OD=2,∴BE=12﹣2=10,由垂径定理得BC=2BE=20故答案为:20.【点睛】本题考查了圆中的弦长计算,熟练掌握垂径定理,作出辅助线构造直角三角形是解题的关键.15.如图,AB是⊙O的直径,且AB=6,弦CD⊥AB交AB于点P,直线AC,DB交于点E,若AC:CE=1:2,则OP=_____.【答案】1.【解析】【分析】过点E 作EF ⊥AB 于点F ,证明△ACP ∽△AEF 以及△PBD ∽△FBE ,设PB =x ,然后利用相似三角形的性质即可求出答案.【详解】过点E 作EF ⊥AB 于点F ,∵CP ⊥AB ,AC :CE =1:2,∴CP ∥EF ,AC :AE =1:3,∴△ACP ∽△AEF , ∴13===AC CP AP AE EF AF , ∵PD ∥EF ,∴△PBD ∽△FBE , ∴=PD PB ED BF, ∵PC =PD , ∴13=PB BF , 设PB =x ,BF =3x ,∴AP =6﹣x ,AF =6+3x , ∴61633-=+x x , 解得:x =2,∴PB =2,∴OP =1,故答案为:1.【点睛】本题考查了圆中的计算问题,熟练掌握垂径定理,相似三角形的判定与性质是解题的关键. 16.当﹣1≤x ≤3时,二次函数y =﹣(x ﹣m )2+m 2﹣1可取到的最大值为3,则m =_____.【答案】﹣2.5或2.【解析】【分析】根据题意和二次函数的性质,利用分类讨论的方法可以求得m的值.【详解】∵当﹣1≤x≤3时,二次函数y=﹣(x﹣m)2+m2﹣1可取到的最大值为3,∴当m≤﹣1时,x=﹣1时,函数取得最大值,即3=﹣(﹣1﹣m)2+m2﹣1,得m=﹣2.5;当﹣1<m<3时,x=m时,函数取得最大值,即3=m2﹣1,得m1=2,m2=﹣2(舍去);当m≥3时,x=3时,函数取得最大值,即3=﹣(3﹣m)2+m2﹣1,得m=136(舍去);由上可得,m的值为﹣2.5或2,故答案为:﹣2.5或2.【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的性质,分类讨论是解题的关键.三.解答题(共7小题)17.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上一点,且BD=BA,求tan∠ADC的值.【答案】23【解析】【分析】设AC=m,解直角三角形求出AB,BC,BD即可解决问题.【详解】设AC=m,Rt△ABC中,∵∠C=90°,∠ABC=30°,∴AB=2AC=2m,BC33,∴BD=AB=2m,DC=2m3,∴tan∠ADC=ACCD2m3m+23.【点睛】本题考查求正切值,熟记正切的定义,解出直角三角形的边长是解题的关键.18.某校垃圾分类“督察部”从4名学生会干部(2男2女)随机选取2名学生会干部进行督查,请用枚举、列表或画树状图的方法求出恰好选中两名男生的概率.【答案】16. 【解析】【分析】用列表法或树状图法列举出所有等可能出现的情况,从中找出符合条件的情况数,进而求出概率.【详解】用列表法得出所有可能出现的情况如下:共有12种等可能的情况,其中两人都是男生的有2种,∴P (两人都是男生)=212=16. 【点睛】本题考查求概率,熟练掌握列表法或树状图法是解题的关键.19.已知菱形的两条对角线长度之和为40厘米,面积S (单位:cm 2)随其中一条对角线的长x (单位:cm )的变化而变化.(1)请直接写出S 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)当x 取何值时,菱形的面积最大,最大面积是多少?【答案】(1)S =﹣12x 2+20x ,0<x <40;(2)当x =20时,菱形的面积最大,最大面积是200. 【解析】分析】(1)直接利用菱形面积公式得出S 与x 之间的关系式;(2)利用配方法求出最值即可.【详解】(1)由题意可得:211(40)2022=-=-+S x x x x , ∵x 为对角线的长,∴x >0,40﹣x >0,即0<x <40;(2)211(40)2022=-=-+S x x x x , =()21402--x x=21(20)4002⎡⎤---⎣⎦x =21(20)2002--+x , 即当x =20时,菱形的面积最大,最大面积是200.【点睛】本题考查二次函数的应用,熟练掌握菱形的性质,建立二次函数模型是解题的关键. 20.如图,有一直径是20厘米的圆型纸片,现从中剪出一个圆心角是90°的扇形ABC .(1)求剪出的扇形ABC 的周长.(2)求被剪掉的阴影部分的面积.【答案】(1)(202+52)cm ;(2)50πcm 2.【解析】【分析】(1)连接BC ,首先证明BC 是直径,求出AB ,AC ,利用弧长公式求出弧BC 的长即可解决问题. (2)根据S 阴=S 圆O ﹣S 扇形ABC 计算即可解决问题.【详解】解:(1)如图,连接BC∵∠BAC =90°,∴BC 是⊙O 的直径,∴BC =20cm ,∵AB =AC ,∴AB =AC =2∴BC的长=90102180π⋅=52π,∴扇形ABC的周长=(202+52)cm.(2)S阴=S圆O﹣S扇形ABC=π•102﹣290(102)360π⋅⋅=50πcm2.【点睛】本题考查了弧长计算和不规则图形的面积计算,熟练掌握弧长公式与扇形面积公式是解题的关键.21.如图,在△ABC中,AB=AC,点D为BC的中点,经过AD两点的圆分别与AB,AC交于点E、F,连接DE,DF.(1)求证:DE=DF;(2)求证:以线段BE+CF,BD,DC为边围成的三角形与△ABC相似,【答案】(1)详见解析;(2)详见解析【解析】分析】(1)连接AD,证明∠BAD=∠CAD即可得出DE DF=,则结论得出;(2)在AE上截取EG=CF,连接DG,证明△GED≌△CFD,得出DG=CD,∠EGD=∠C,则可得出结论△DBG∽△ABC.【详解】(1)证明:连接AD,∵AB=AC,BD=DC,∴∠BAD=∠CAD,∴DE DF=,∴DE =DF .(2)证明:在AE 上截取EG =CF ,连接DG ,∵四边形AEDF 内接于圆,∴∠DFC =∠DEG ,∵DE =DF ,∴△GED ≌△CFD (SAS ),∴DG =CD ,∠EGD =∠C ,∵AB =AC ,∴∠B =∠C ,∴△DBG ∽△ABC ,即以线段BE +CF ,BD ,DC 为边围成的三角形与△ABC 相似.【点睛】本题考查了圆的综合问题,熟练掌握圆的内接四边形性质与相似三角形的判定是解题的关键. 22.已知函数y =mx 2﹣(2m +1)x +2(m ≠0),请判断下列结论是否正确,并说明理由.(1)当m <0时,函数y =mx 2﹣(2m +1)x +2在x >1时,y 随x 的增大而减小;(2)当m >0时,函数y =mx 2﹣(2m +1)x +2图象截x 轴上的线段长度小于2.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)先确定抛物线的对称轴为直线x =1+12m ,利用二次函数的性质得当m >1+12m 时,y 随x 的增大而减小,从而可对(1)的结论进行判断;(2)设抛物线与x 轴的两交的横坐标为x 1、x 2,则根据根与系数的关系得到x 1+x 2=21m m+,x 1x 2=2m ,利用完全平方公式得到|x 1﹣x 2|()212124x x x x +-212m ⎛⎫- ⎪⎝⎭=|2﹣1m |,然后m 取15时可对(2)的结论进行判断. 【详解】解:(1)的结论正确.理由如下:抛物线的对称轴为直线(21)1122-+=-=+mxm m,∵m<0,∴当m>1+12m时,y随x的增大而减小,而1>1+12m,∴当m<0时,函数y=mx2﹣(2m+1)x+2在x>1时,y随x的增大而减小;(2)的结论错误.理由如下:设抛物线与x轴的两交的横坐标为x1、x2,则x1+x2=21mm+,x1x2=2m,|x1﹣x2|=|2﹣1m|,而m>0,若m取15时,|x1﹣x2|=3,∴当m>0时,函数y=mx2﹣(2m+1)x+2图象截x轴上的线段长度小于2不正确.【点睛】本题考查了二次函数的增减性问题,与x轴的交点问题,熟练掌握二次函数的性质是解题的关键.23.如图,在矩形ABCD中,AB=3,BC=4,点E是线段AC上的一个动点且AEAC=k(0<k<1),点F在线段BC上,且DEFH为矩形;过点E作MN⊥BC,分别交AD,BC于点M,N.(1)求证:△MED∽△NFE;(2)当EF=FC时,求k的值.(3)当矩形EFHD的面积最小时,求k的值,并求出矩形EFHD面积的最小值.【答案】(1)见解析;(2)725;(3)矩形EFHD 的面积最小值为10825,k =1625. 【解析】【分析】 (1)由矩形的性质得出∠B =90°,AD =BC =4,DC =AB =3,AD ∥BC ,证出∠EMD =∠FNE =90°,∠NEF=∠MDE ,即可得出△MED ∽△NFE ;(2)设AM =x ,则MD =NC =4﹣x ,由三角函数得出ME =34x ,得出NE =3﹣34x ,由相似三角形的性质得出NF ME =EN MD ,求出NF =916x ,得出FC =4﹣x ﹣916x =4﹣2516x ,由勾股定理得出EF 22NE NF +22393416⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭x x 当EF =FC 时,得出方程4﹣2516x 22393416⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭x x 解得x =4(舍去),或x =2825,进而得出答案; (3)由相似三角形的性质得出DE EF =ME NF =43,得出DE =43EF ,求出矩形EFHD 的面积=DE ×EF =43EF 2=2243933416⎡⎤⎛⎫⎛⎫-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦x x =24151281316525⎡⎤⎛⎫-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦x ,由二次函数的性质进而得出答案. 【详解】(1)证明:∵四边形ABCD 是矩形,∴∠B =90°,AD =BC =4,DC =AB =3,AD ∥BC ,∵MN ⊥BC ,∴MN ⊥AD ,∴∠EMD =∠FNE =90°,∵四边形DEFH 是矩形,∴∠MED +∠NEF =90°,∴∠NEF =∠MDE ,∴△MED ∽△NFE ;(2)解:设AM =x ,则MD =NC =4﹣x ,∵tan∠DAC=tan∠MAE=MEAM=DCAD=34,∴ME=34 x,∴NE=3﹣34 x,∵△MED∽△NFE,∴NFME=ENMD,即NF3x4=3344--xx,解得:NF=916x,∴FC=4﹣x﹣916x=4﹣2516x,EF当EF=FC时,4﹣25 16x解得:x=4或x=28 25,由题意可知x=4不合题意,当x=2825时,AE=75,∵AC5,∴k=AEAC=725;(3)解:由(1)可知:△MED∽△NFE,∴DE ME4 EF NF3==,∴DE=43 EF,∴矩形EFHD的面积=DE×EF=43EF2=2243933416⎡⎤⎛⎫⎛⎫-+⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦x x=24151281316525⎡⎤⎛⎫-+⎢⎥⎪⎝⎭⎢⎥⎣⎦x∴当1516x﹣125=0时,即x=6425时,矩形EFHD的面积最小,最小值为:48110832525⨯=,∵cos∠MAE=AMAF=ADAC=45,∴AE=54AM=54×6425=165,此时k=AEAC=1625.【点睛】本题考查了矩形与相似三角形,以及二次函数的应用,解题的关键是利用相似三角形的性质建立二次函数模型是解题的关键.。
2018—2019学年度九年级第一学期期末教学质量检测数 学 试 卷考试时间:120分钟;满分:120分.选择题答题卡一、选择题(本大题共16个小题,1—10小题,每小题3分;11—16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列方程是一元二次方程的是( ) A .x 2﹣y =1 B .x 2+2x ﹣3=0 C .x 2+x1=3 D .x ﹣5y =6 2.方程x 2-2x -3=0经过配方法化为(x +a )2=b 的形式,正确的是( ) A .()412=-xB .()412=+xC .()1612=-xD .()1612=+x3.有两个事件,事件A :367人中至少有2人生日相同;事件B :抛掷一枚均匀的骰子,朝上的面的点数为偶数.下列说法正确的是( ) A .事件A 、B 都是随机事件 B .事件A 、B 都是必然事件C .事件A 是随机事件,事件B 是必然事件D .事件A 是必然事件,事件B 是随机事件4.如图,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A .15B .25C .35D .455.下列关系式中,属于二次函数的是(x 是自变量)( ) A .y =31x 2B .y =12-xC .y =21xD .y =ax 2+bx +c6.下列关于二次函数y =-12x 2图象的说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点坐标为(0,0).其中正确的有( )A .1个B .2个C .3个D .4个7.二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是( )A .直线x =-3B .直线x =-2C .直线x =-1D .直线x =08.已知⊙O 的直径是10,圆心O 到直线l 的距离是5,则直线l 和⊙O的位置关系是( )A .相离B .相交C .相切D .外切9.已知:如图,AB 是⊙O 的直径,C ,D 是BE ︵的三等分点,∠AOE =60°,则∠COE 等于 ( )A .40°B .60°C .80°D .120°10.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r ,扇形的圆心角等于120°,则围成的圆锥模型的高为( )A .r B .C D .3r 11.已知反比例函数y =x6-,下列结论中不正确的是() A .图象必经过点(-3,2) B .图象位于第二、四象限 C .若x <-2,则0<y <3D .在每一个象限内,y 随x 值的增大而减小 12.如图所示,反比例函数y =xk(k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为( ) A .2 B .22 C .23 D .25AOBEDC (9题图) (10题图)13.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图,有下列5个结论:①abc <0;②3a+c>0;③4a +2b +c >0;④2a+b =0;⑤b 2>4ac .其中正确的结论有( )A .1个B .2个C .3个D .4个14.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在平面内,可作为旋转中心的点的个数是( )A .1个B .2个C .3个D .4个(13题图) 15.如图所示,长为8cm ,宽为6cm 的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是( )A .28cm 2B .27cm 2C .21cm 2D .20cm 216.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,AC =43,BC 的中点为D .将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG .在旋转过程中,DG 的最大值是 ( )A .4 3B .6C .2+2 3D .8二、填空题(本大题共有3个小题,共12分,17~18小题各3分,19小题有2个空,每空3分.把答案写在题中横线上)17.关于x 的一元二次方程ax 2+bx +1=0有两个相等的实数根,写出一组满足条件的实数a ,b 的值:a = ,b = .18.如图,已知⊙P 的半径为2,圆心P 在抛物线y =21x 2﹣1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .19.如图,P A ,PB 分别切⊙O 于A ,B ,并与⊙O 的切线,分别相交于C ,D ,已知△PCD 的周长等于8cm ,则P A =__________ cm ;已知⊙O 的直径是6cm ,PO =______cm .三、解答题(本大题有7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分10分) 选择适当的方法解下列方程(1)(3x -1)2=(x -1)2(2)3x (x -1)=2-2x21.(本小题满分8分)定义新运算:对于任意实数m ,n 都有m ☆n =m 2n +n ,等式右边是常用的加法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a 的值小于0,请判断方程:2x 2-bx +a =0的根的情况.22.(本小题满分9分)在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机取出一个棋子,它是黑色棋子的概率是83. (1)试写出y 与x 的函数解析式;(2)若往盒子中再放入10颗黑色棋子,则取得黑色棋子的概率变为21,求x 与y 的值.ABCD E F(14题图)(15题图)ABCD EF G(16题图) (18题图)(19题图)(22题图)(26题图)(23题图)ADE23.(本小题满分9分)如图,一次函数y =kx +b 与反比例函数y =xm(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A (-1,3)和点B (-3,n ).(1)填空:m =_________,n =__________. (2)求一次函数的解析式和△AOB 的面积. (3)根据图象回答:当x 为何值时,kx +b ≥xm(请直接写出答案)____________24.(本小题满分9分)如图,△BAD 是由△BEC 在平面内绕点B 旋转60°而得,且AB ⊥BC ,BE =CE ,连接DE . (1)求证:△BDE ≌△BCE ;(2)试判断四边形ABED 的形状,并说明理由.25.(本小题满分10分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°. (1)求∠ABC 的度数; (2)求证:AE 是⊙O 的切线; (3)当BC =4时,求劣弧AC 的长.26.(本小题满分11分) 如图,已知抛物线y =41x 2+bx +4与x 轴相交于A 、B 两点,与y 轴相交于点C ,若已知A 点的坐标为A (-2,0). (1)求抛物线的解析式及它的对称轴;(2)求点C 的坐标,连接AC 、BC 并求线段BC 所在直线的解析式;(3)在抛物线的对称轴上是否存在点Q ,使△ACQ 为等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.ABCDOE(25题图)18—19学年度九年级(上)期末考试数学答案二、填空题17.1 2; 18.(6,2)或(﹣6,2); 19.4,5. 三、解答题20.解:∵2☆a 的值小于0,∴22·a +a =5a <0.解得a <0. ………………………3分在方程2x 2-bx +a =0中,Δ=(-b )2-8a ≥-8a >0,………………………6分 ∴方程2x 2-bx +a =0有两个不相等的实数根.………………………………8分 21.解:(1)由题意得x x +y =38,得y =53x …………………………………………4分(2)由题意得x +10x +y +10=12,结合y =53x ,联立方程组可求得⎩⎪⎨⎪⎧x =15,y =25………9分22.解:(1)∵反比例函数y =xm过点A (﹣1,3),B (﹣3,n ) ∴m =3×(﹣1)=﹣3,m =﹣3n∴n =1…………………………………………………………………………………2分 故答案为﹣3,1(2)设一次函数解析式y =kx +b ,且过(﹣1,3),B (﹣3,1)∴⎩⎨⎧+-=+-=b k b k 31,3解得:⎩⎨⎧==41b k ∴解析式y =x +4………………………………………………………………………5分 ∵一次函数图象与x 轴交点为C∴0=x +4 ∴x =﹣4 ∴C (﹣4,0) ∵S △AOB =S △AOC ﹣S △BOC ∴S △AOB =21×4×3﹣21×4×1=4…………………………………………………………7分 (3)∵kx +b ≥xm∴一次函数图象在反比例函数图象上方 ∴﹣3≤x ≤﹣1…………………………………………………………………………9分 故答案为﹣3≤x ≤﹣123.解:(1)证明:∵△BAD 是由△BEC 在平面内绕点B 旋转60°而得,∴DB =CB ,∠ABD =∠EBC ,∠ABE =60°. ……………………………………2分 ∵AB ⊥BC ,∴∠ABC =90°.∴∠DBE =∠CBE =30°. ……………………………3分在△BDE 和△BCE 中,⎩⎪⎨⎪⎧DB =CB ,∠DBE =∠CBE ,BE =BE ,∴△BDE ≌△BCE (SAS ).……………………………………………………………5分 (2)四边形ABED 为菱形.……………………………………………………………6分 理由如下:由(1)得△BDE ≌△BCE ,∵△BAD 是由△BEC 旋转而得,∴△BAD ≌△BE C. ∴BA =BE ,AD =EC =E D. 又∵BE =CE ,∴BA =BE =AD =E D.∴四边形ABED 为菱形.……………………………………………………………9分 24.25.解:(1)∵∠ABC 与∠D 都是弧AC 所对的圆周角,∴∠B =∠D =60°. ……2分(2)∵AB 是⊙O 的直径,∴∠ACB =90°.又∠B =60°∴∠BAC =30°. ∴∠BAE =∠BAC +∠EAC =30°+60°=90°,即BA ⊥AE .∴AE 是⊙O 的切线. ……………………………………………6分 (3)如图,连接OC ,∵∠ABC =60°,∴∠AOC =120°.∴劣弧AC 的长为1804120⋅π=38π.……………………………10分 26.解:(1)因为抛物线过点A ,所以将A (-2,0)代入 y =41-x 2+bx +4得:0=41-×(-2)2+b ×(-2)+4,解得b =23,所以,抛物线解析式为:y =-41x 2+23x +4,……………………………………2分由上得:y =-41 (x -3)2+425,对称轴是x =3;………4分 (2)C (0,4);………………………………………5分 由A 点坐标和对称轴可求出B 点坐标为:B (8,0) 由B 、C 两点的坐标可求出:y =−21x +4.……………7分 (3)Q 1(3,0),Q 2(3,4+11),Q 3(3,4-11).………………………11分 如求Q 2,由A ,C 两点的坐标,可求出AC =25, (由于5>2,25>4)以C 为圆心,AC 为半径画弧交对称轴于E ,过C 点 作CD ⊥对称轴于点D ,CE = AC =25,CD =3, 则DE =11,所以,E 点的坐标为(3,4+11)。
美好的未来不是等待,而是孜孜不倦的攀登。 浙教版数学九年级(上)期末模拟试卷(一) 题次 一 二 三 1~10 11~16 17 18 19 20 21 22 23 24 得分 一、选择题(每小题3分,共30分) 1. 已知yx32,则yx等于 ( ) A. 2 B. 3 C.32 D. 23 2. 下列函数的图象,一定经过原点的是 ( ) A. xy2 B. xxy352 C. 12xy D. 73xy
3. 不等式组313xx的解为 ( ) A.3x B.31x C.313x D. 31x或3x 4. 如果A是正三角形的一个内角,那么Asin的值等于 ( )
A.21 B.22 C.23 D.1 街
道(镇)_
________________学校_________________ 班级___________________ 姓名___________________ 座号_________________ ………………………………密……………………………………封…………………………………线……………………………………… 美好的未来不是等待,而是孜孜不倦的攀登。
B A C O
D F E
5. 晚上,小明出去散步,在经过一盏路灯时,他发现自己的身影是 ( ) A. 变长 B. 变短 C. 先变长后变短 D. 先变短后变长 6. 如图,△ABC与△DEF是位似图形,位似比为2 : 3, 已知4AB,则DE的长等于 ( ) A. 6 B. 5 C. 9 D. 38 7. 下列命题中,是真命题的为 ( ) A. 三个点确定一个圆 B. 一个圆中可以有无数条弦,但只有一条直径 C. 圆既是轴对称图形,又是中心对称图形 D. 同弧所对的圆周角与圆心角相等 8. 抛物线2xy向右平移2个单位,再向上平移3个单位,得到的抛物线的解析式为
( ) A.3)2(2xy B. 3)2(2xy C.3)2(2xy D. 3)2(2xy 9. 2007年12月份,瓯海区将军桥一周空气质量报告中某项污染指数的数据是: 31 35 31 34 30 32 31,这组数据的中位数、众数分别是 ( ) A.32,31 B. 31,32 C. 31,31 D. 32,35 10. 如图,小正方形的边长均为l,则下列图中的三角形(阴影部分)与△ ABC相似的美好的未来不是等待,而是孜孜不倦的攀登。
C D
A E B
(第15题)
(第16题)
是 ( )
二、填空题(每小题4分,共24分) 11. 函数22xy的自变量x的取值范围是____________. 12. 已知反比例函数xky,当3x时,4y,则k______. 13. 已知圆锥的母线长是10cm,侧面展开图的面积是60cm2时, 则这个圆锥的底面半径是 cm.
14. 如图,小亮同学从A地沿北偏西60º方向走100m到B地, 再从B地向正南方向走200m到C地,此时小亮同学离A地 ___________ m(精确到个位数) 15. 如图,D、E分别是△ABC的边BC和AB上的点,且 EBDECD,ADEADC,80C,
则B___________度. 16. 如图,若干个正方体形状的积木摆成如右图所示的塔形, 平放于桌面上,上面正方体下底的四个顶点是下面相邻 正方体的上底各边的中点,最下面的正方体棱长为1.
(第14题) 美好的未来不是等待,而是孜孜不倦的攀登。
200 150 100 50
O 0.5 1 1.5 2
V(m3)
A(0.8,120)
P(kPa)
如果塔形露在外面的面积超过8,则正方体的个数至少是_______. 三、解答题(本题有8小题,共66分) 17. (6分)计算:60cos45tan30sin2
18. (6分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压)(kPap是气体体积)(3mV的反比例函数,其图象如图所示. (1)求这一函数的解析式; (2)当气体体积为31m时,气压是多少? (3)当气球内的气压大于kPa140时,气球将爆炸, 为了安全起见,气体的体积应不小于多少? (精确到301.0m)
19.(6分)如图,⊙O半径为6厘米,弦AB与半径OA的夹角为30°. 求:弦AB的长.
A B
O 美好的未来不是等待,而是孜孜不倦的攀登。
D A B C
E
20. (8分)如图,在△ABC中,D、E分别是AB、AC上的点,且BCDE//,3AD,2BD.
(1)若4BC,求DE的长 (2)若△ADE的面积为2,求△ABC的面积.
21. (8分)如图,△ ABC是⊙O的内接三角形,AD是⊙O 的直径,若∠ABC=50°, 求∠CAD的度数.
A
B C D O 美好的未来不是等待,而是孜孜不倦的攀登。
22. (10分)不透明的口袋里装有红、黄、绿三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),绿球1个。若从中任意摸出一个球,它是绿球的概率为14. (1)写出袋中黄球的个数; (2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.
23. (10分)如图(1),某建筑物有一抛物线形的大门,小强想知道这道门的高度. 他先测出门的宽度mAB8,然后用一根长为m4的小竹杆CD竖直地接触地面和门的内壁,并测得mAC1. 小强画出了如图(2)的草图,请你帮他算一算门的高度OE(精确到0.1m). 美好的未来不是等待,而是孜孜不倦的攀登。
A G O D
B F C H
E
A C
D E y x B O
(2)
24. (12分)如图,已知:等边三角形ABC的边长为6,点D、E分别在边AB、AC上,且2AEAD. 点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设点F运动的时间为t秒. 当0t时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB与GH相交于点O. (1)用t的代数式表示AG; (2)设△AGE的面积为S,写出S与t的函数关系式; (3)当t为何值时,点F和点C是线段BH的三等分点?
………………………………密……………………………………封…………………………………线………………………………………
…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………
C A D B (1)