高等代数行列式计算的方法小结18页PPT
- 格式:ppt
- 大小:5.15 MB
- 文档页数:18
特殊行列式及行列式计算方法总结一、几类特殊行列式1.上(下)三角行列式、对角行列式(教材P7例5、例6)2.以副对角线为标准的行列式000a1na a a00a11121n1n00a a2,n12na a00a021222,n10000a a an1,2n1,n1n1,na000a00 nn n1a a a an1n2n,n1nnn(n1)(1)2a a a1n2,n1n13.分块行列式(教材P14例10)一般化结果:A C A0n n m n n m 0B C B m n m m n m A B n m0A C An m n n m n mn(1)B C B0m m n m m n A Bn m4.范德蒙行列式(教材P18例12)注:4种特殊行列式的结果需牢记!以下几种行列式的特殊解法必须熟练掌握!!!二、低阶行列式计算二阶、三阶行列式——对角线法则(教材P2、P3)三、高阶行列式的计算【五种解题方法】1)利用行列式定义直接计算特殊行列式;2)利用行列式的性质将高阶行列式化成已知结果的特殊行列式;3)利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算;4)递推法或数学归纳法;5)升阶法(又称加边法)【常见的化简行列式的方法】5.利用行列式定义直接计算特殊行列式例1 (2001年考研题)0001000200D019990002000000000002001分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。
解法一:定义法D(n1,n2,...,2,1,n)012 (19990)(1)2001!(1)2001!2001!解法二:行列式性质法利用行列式性质2把最后一行依次与第n-1,n-2,⋯,2,1行交换(这里n=2001),即进行2000次换行以后,变成副对角行列式。
行列式的计算方法总结:1. 利用行列式性质把行列式化为上、下三角形行列式.2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace 定理). 几个特别的行列式:B A BC A BC A ==0021,B A BA D DB Amn )1(0021-==,其中B A ,分别是n m ,阶的方阵. 例子: nn abab ab b a b abaD 22=,利用Laplace 定理,按第1,+n n 行展开,除2级子式ab ba 外其余由第1,+n n 行所得的2级子式均为零. 故222222112)()1(--+++++-=-=n n n n n n n D b a D ab b a D ,此为递推公式,应用可得n n n n b a D b a D b a D )()()(224222222222-==-=-=-- .3. 箭头形行列式或者可以化为箭头形的行列式.例:nn n n n n n a x x a a x x a a x x a a a a x x a a a a x a a a a x a a a a x ------=0001133112211321321321321321 -----(倍加到其余各行第一行的1-) 100101010011)(3332221111-------⋅-=∏=nn n n i i i a x a a x a a x a a x x a x --------(每一列提出相应的公因子i i a x -) 1001000010)(33322221111nn n ni ii i n i i i a x a a x a a x a a x a a x x a x ----+-⋅-=∑∏== --------(将第n ,,3,2 列加到第一列)其它的例子:特点是除了主对角线,其余位置上的元素各行或各列都相同.n x a aa a a x a a a a a x a a a aa x a ++++ 321,nn n n a x a a a a a x a a a a a x a a a a a x ++++ 321321321321. 4. 逐行逐列相减法.行列式特点是每相邻两行(列)之间有许多元素相同.用逐行(列)相减可以化出零. 5. 升阶法(或加边法, 添加一行一列,利于计算,但同时保持行列式不变).例子:nn n n nnn n nn n n nn b a b a b a a b a b a b a a b a b a b a a b b b b a b a b a b a b a b a b a b a b a ++++-++++-++++----=++++++++++++10101010000011112122212212111121212221212111∑∑∑∑∑∑======+--+=---+--+=------=ni in i i i ni in ni i n i i i ni in n b b a na b b b b b a na a a ab b b 1112111121211110100000101111111010100111011101∑∑∑∑∑∑∑=≠======-+++=-++=nj nji i j i j ni i ni i ni i i ni i ni i a a b b a b a n b a 1111111)(1)1)(1(.例子:nnx a aaaa x a a a a a x a a a a a x a a a a a x a aaaa x a a a a a x a aa a a x a ++++=++++0001321321).1(00000000000010100010001000111213211321∑∑==+=+=----=ni in nni inx a x x x x x x x a a a a x a x x x x a a a a6. 利用范德蒙德行列式.计算行列式: n nn n nn nn n n nnx x x x x x x x x x x x x x x x D321223222122322213211111----=解: 令: nnnn nn n nn n n n nn n n ny x x x y x x x y x x x y x x x y x x x D211112112222212222212111111--------=,这是一个1+n 级范德蒙德行列式. 一方面,由范德蒙德行列式得)())(()(2111n ni j j ix y x y x y x xD ---⋅-=∏≤<≤ .可看做是关于y 的一个n 次多项式.另一方面,将1D 按最后一列展开,可得一个关于y 的多项式01111p y p y p y p D n n n n ++++=-- ,其中1-n y 的系数1-n p 与所求行列式D 的关系为1--=n p D .由)())(()(2111n ni j j ix y x y x y x xD ---⋅-=∏≤<≤ 来计算1-n y的系数1-n p 得:∑∏=≤<≤-⋅--=ni i ni j j in x x xp 111)(,故有∑∏=≤<≤-⋅-=-=ni i ni j j in x x xp D 111)(其它的例子:=+-+++-++-++------n n n n n n n n n n n n n n n n n n nn n n nb b a b a b a a b b a b a b a a b b a b a b a a 111121211111212222222122111121211111……每一行提公因子n i a ,nn n n n n n n n n n n n n nn n n a b a b a b a b a ba b a b a b a b a b a ba b a a a )()()()(1)()()()(1)()()()(1111112111122122222221111121111121++-++++++--+=).(1121∏≤<≤+-=n i j j j ii nn n n a b a b a a a7.利用数学归纳法证明行列式.(对行列式的级数归纳)证明当βα≠时,,1000001000100011βαβαβααββαβααββααββα--=+++++=++n n n D证明时,将n D 按第一行(或第一列)展开得21)(---+=n n n D D D αββα,利用归纳假设可得. 8. 利用递推公式.例子: 计算行列式,10000010001000βααββαβααββααββα+++++=n D 解: 按第一行展开得: 21)(---+=n n n D D D αββα,将此式化为:(1) )(211----=-n n n n D D D D αβα或 (2) )(211----=-n n n n D D D D βαβ 利用递推公式(1)得:n n n n n n n n D D D D D D D D βαβαβαβα=-==-=-=-------)()()(122322211 ,即n n n D D βα+=-1. (3)利用递推公式(2)得:n n n n n n n n D D D D D D D D αβαβαβαβ=-==-=-=-------)()()(122322211 ,即n n n D D αβ+=-1. (4)由(3)(4) 解得: ,,)1(,11⎪⎩⎪⎨⎧=+≠--=++βααβαβαβαn n n n n D其它的例子nn acb a ac b a c b a D00000000000=,按第一行展开可得21---=n n n bcD aD D ,此时令,,bc a ==+αββα则21)(---+=n n n D D D αββα,变形为211)(----=-n n n n D D D D αβα,此为递推公式.利用刚才的例子可求得结果. 这里,,bc a ==+αββα即βα,是方程02=+-bc ax x 的两个根.9. 分拆法.将行列式的其中一行或者一列拆成两个数的和,将行列式分解成两个容易求的行列式的和.例子:accccb ac c c bb ac c bbbac b b b b c a c accccb ac c c bb ac c bbbacb b b b a D n-+==210000V V acccb ac c b b a c b b b a b b b b c a accccb ac c c b b a c c b b b a c b b b b c +=-+=1V : 除第一行外,其余各行加上第一行的1-倍,所得行列式按第一列展开,2V 按第一列展开.11)(0000000--=----------=n b a c ba b c b c bc ba b c b c b b b a b c ba b b b b c V12)(--=n D c a V , 故11)()(---+-=n n n D c a b a c D ,由c b ,的对称性质,亦可得11)()(---+-=n n n D b a c a b D ,这两个式子中削去1-n D ,可得结论,bc c a b b a c D nn n ----=)()(.注: (1) 同一个行列式,可有多种计算方法.要利用行列式自身元素的特点,选择合适的计算方法. (2) 以上的各种方法并不是互相独立的,计算一个行列式时,有时需要综合运用以上方法,。
行列式的计算方法1 引言行列式的计算是《线性代数》和《高等代数》的一个重要内容.同时也是工程应用中具有很高价值的数学工具,本文针对几种常见的类型给出了计算行列式的几种典型的方法.2 一般行列式的计算方法2.1 三角化法利用行列式的性质把原来的行列式化为上(下)三角行列式,那么,上(下)三角行列式的值就是对角线各项的积.例 1 计算行列式12311212332125113311231 ------=n n n n n nn n n n D对这个行列式的计算可以用三角化方法将第1行乘以(-1)加到第2,3,n 行,得0001002000200010001231 ---=n n n n D再将其第1,2,1, -n n 列通过相邻两列互换依次调为第n ,,2,1 列,则得102001321)1(2)1(--=-n n D n n=)!1()1(2)1(---n n n2.2 加边法有时为了便于计算行列式,特意把行列式加边升阶进行计算,这种方法称之为升阶法.它的一般方法是:nn n n n n n n n a a a a a a a a a a a a a a a a D 321333323122322211131211==nnn n n n na a ab a a a b a a a b 212222121121110001(n b b b ,,21任意数)例如下面的例题: 例2 计算行列式nn a a a a D ++++=11111111111111111111321现将行列式n D 加边升阶,得na a a D +++=111011101110111121第1行乘以(-1)加到第1,3,2+n 行,得na a a D10001001001111121----=第2列乘以11a 加到第1列,第3列乘以21a 加到第1列,依次下去直到第1+n 列乘以n a 1加到第1列,得)11(00011111121211∑∑==+=+=ni in nni ia a a a a a a a D2.3 降阶法利用按一行(列)展开定理或Laplace 展开定理将n 阶行列式降为阶较小且容易计算的行列式来计算行列式的方法称为降阶法. 例 3 计算nD 222232222222221=解 首先我们应考虑D 能不能化为上(下)三角形式,若将第一行乘以(-2)加到第n ,3,2 行,数字反而复杂了,要使行列式出现更多的“0”,将D 的第一行乘以(-1)加到第第n ,3,2 行,得2001010100012221-=n D这样仍然不是上(下)三角行列式,我们注意到,第二行除了第一项是1,后面的项全是0,这样我们按第二行展开,降阶得到:201222)1(21--=+n D)!2(2--=n2.4 对于所谓二条线的行列式,可直接展开降阶,再利用三角或次三角行列式的结果直接计算. 例4 计算行列式nnn n n a b b a b a b a D 112211--=解 按第1列展开,得11221111221)1(--+---+=n n n n nn n n b a b ab b a b a b a a Dn n n b b b a a a 21121)1(+-+=2.5 递推法通过降阶等途径,建立所求n 阶行列式n D 和比它低阶的但是结构相同的行列式之间的关系,并求得n D 的方法叫递推法.当n D 与1-n D 是同型的行列式,可考虑用递推法.例 5 计算n 级行列式 2112000002100012100012------=n D 对于形如这样的三角或次三角行列式,按第1行(列)或第n 行(列)展开得到两项的递推关系式,再利用变形递推的技巧求解.解 按第1行展开,得210120000012000011)1)(1(2211-------+=+-n n D D212---=n n D D 直接递推不易得到结果,变形得1221121232211=---=-==-=-=------D D D D D D D D n n n n n n于是 1)1(2)1(21121+=-+=-+==+=+=--n n n D D D D n n n例6 计算n 2级行列式nnn n n n nnn d c d c d c b a b a b a D 111111112----=对于形如这样的所谓两条线行列式,可直接展开得到递推公式. 解 按第1行展开,得)1(1111111121111111112nn n n n nn n n n n nn c d c d c b a b a b d c d c b a b a a D ----+-----+=1111111111111111---------=n n n n nn n n n n nn d c d c b a b a c b d c d c b a b a d a)1(2)(--=n n n n n D c b d a)1(22)(--=n n n n n n D c b d a D)2(21111))((-------=n n n n n n n n n D c b d a c b d a)())((11111111c b d a c b d a c b d a n n n n n n n n ---=----2.6 连加法 例 7 计算mx x x x m x x x x m x D n n n n ---=212121这种行列式的特点是:各行元素之和都相等.先把第2列到第n 列元素同时加到第1列,并提出公因式,得mx x x m x x x m x D n n n ni i n ---=∑=2221111)(然后将第1行乘以(-1)加到第n ,3,2行,得mm x x m x D n ni i n ---=∑=001)(21)()(11m x m ni i n --=∑=-2.7 乘积法根据拉普拉斯定理,所得行列式乘法运算规则如下:nnn nnn n n nn n n c c c c b b b b a a a a 111111111111=⋅ (其中tj ni it ij b a c ∑==1)两个行列式的乘积可以像矩阵的乘法一样来计算,假若两个行列式的阶数不同,只要把它们的阶数化为相同就可以应用上面的公式了.这种方法的关键是寻找有特殊结构的已知行列式去乘原行列式,从而简化原行列式的计算,这也是较为常用的方法.例 8 计算行列式 ab c db a dc cd a bd c b aD =解 取行列式 1111111111111111------=H显然 0≠H ,由行列式的乘法规则:=DH ⋅ab c d ba d c c d a bd c b a 1111111111111111------ H d c b a d c b a d c b a d c b a d c b a ))()()()((+---+--++--++++=等式两边消去,H 得=D ))()()()((d c b a d c b a d c b a d c b a d c b a +---+--++--++++2.8 对称法这是解决具有对称关系的数学问题的常用方法. 例 9 计算n 阶行列式βαβααββααββα++++=1010001000 n D解 按第1行展开,得21)(---+=n n n D D D αββα即 )(211----=-n n n n D D D D αβα由此递推,即得 nn n D D βα=--1因为n D 中αβ与对称,又有 nn n D D αβ=--1当 βα≠ 时,从上两式中消去1-n D ,得 11n n n D αβαβ++-=-当 βα= 时,1-+=n nn D D ββ)(21--++=n n n D ββββ 222-+=n n D ββ11)1(D n n n-+-=ββ )()1(1βαββ++-=-n n nnn β)1(+= 2.9 数学归纳法当n D 与1-n D 是同型的行列式,可考虑用数学归纳法. 例 10 计算n 级行列式ααααcos 2100cos 210001cos 210001cos =n D解 当2=n 时,ααcos 211cos 2=D αα2cos 1cos 22=-=结论成立,假设对级数小于n 的行列式结论成立,则n D 按第n 行展开,得21cos 2---=n n n D D D α由假设αααααααsin )1sin(cos )1cos(])1cos[()2cos(2-+-=--=-=-n n n n D n代入前一式,得]sin )1sin(cos )1[cos()1cos(cos 2αααααα-+---=n n n D nαααααn n n cos sin )1sin(cos )1cos(=---=故对一切自然数n ,结论成立.2.10 拆项法这是计算行列式常用的方法.一般地,当行列式的一列(行)或一列(行)以上的元素能有规律地表示为两项或多项和的形式,就可以考虑用拆为和的方法来进行计算.例 11 在平面上,以点),(),(),(233332332232222221311211x x x x M x x x x M x x x x M ------,,为顶点的三角形面积D S =,其中11121323233322222321212131x x x x x x x x x x x x D ------= )1()1()1()1()1()1(11121323222121332211------=x x x x x x x x x x x x )1()1()1()1()1()1()1()1()1(21323222121332211332211------+--+--+--=x x x x x x x x x x x x x x x x x x解 第1行拆为)1()1()1(11111121111)1)(1)(1(21332211321321232221321321------+----=x x x x x x x x x x x x x x x x x x x x x D32112132332121))()()(1)(1)(1(21x x x x x x x x x x x x +-------=232221321111x x x x x x )]1)(1)(1([))()((21321321121323----⋅---=x x x x x x x x x x x x 3 分块矩阵行列式的计算方法我们学习了矩阵的分块,知道一个矩阵⎥⎦⎤⎢⎣⎡B A 00通过分块若能转化成对角矩阵或上(下)三角矩阵⎥⎦⎤⎢⎣⎡B C A 0,那么行列式B A B C A B A ⋅==000,其中B A ,分别是r s ,阶可逆矩阵,C 是s r ⨯阶矩阵,0是n s ⨯阶矩阵.可以看出,这样可以把r s +阶行列式的计算问题通过矩阵分块转化为较低阶的s 阶和r 阶行列式计算问题,下面先根据上面的途径给出计算公式.设矩阵 ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=B C D A b b c c b b c c d d a a d d a a G rr r rsr r s sr s ss s r s 1111111111111111其中B A ,分别是s 阶和r 阶的可逆矩阵,C 是s r ⨯阶矩阵,D 是r s ⨯阶矩阵,则有下面公式成立. C DB A B BCD A G 1--⋅==或C DA B A BCD A G 1--⋅==下面推导公式,事实上,当0≠A 时,有⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---D BCA D A B C D A E CA E 1100 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---B C C DB A B C D A E DB E 0011 上面两式两边同取行列式即可得出上面的公式.例 12 计算 8710650143102101=D这道题的常规解法是将其化为上三角行列式进行计算,若用前面介绍的公式则可以直接得出结果.令 ⎥⎦⎤⎢⎣⎡=1001A ,⎥⎦⎤⎢⎣⎡=8765B , ⎥⎦⎤⎢⎣⎡=1001C , ⎥⎦⎤⎢⎣⎡=4321D 则 ⎥⎦⎤⎢⎣⎡=1001'A ,由公式(1) 知原行列式D CA B A BCD A 1--⋅==⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=43211001100187651001 ⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=432187651 4444==0这个题还有个特点,那就是C A =,如果我们把公式变形,即D CA B A BCD A 1--⋅=D ACA AB D CA B A 11)(---=-=当C A =时,D ACA AB 1--CD AB D CAA AB -=-=-1,所以当C A =时,我们有CD AB BCD A -=,这样例题就可以直接写出答案了.参考文献:[1] 北京大学数学系,高等代数[M] (第三版).北京:高等教育出版社,2003,9.[2] 张禾瑞,高等代数[M] (第四版).北京:高等教育出版社,1997.[3] 丘维生,高等代数[M].北京:高等教育出版社,1996,12.[4] 杨子胥,高等代数[M].山东:山东科学技术出版社,2001,9.[5] 王萼芳,高等代数题解[M].北京:北京大学出版社,1983,10.[6] Gelfand I M, Kapranov M M and Celvinskij A V. Discriminaants, redultants,and multidimensional determinants[M].Mathematics: Theory&Applications,Birkhauser Verlag,1994.[7] 徐仲,陆全等.高等代数导教·导学·导考.西安::西北工业大学出版社,2004.[8] 陈黎钦.福建:福建商业高等专科学校学报,2007年2月第1期.11。