小学五年级奥数数学时钟问题课件
- 格式:pptx
- 大小:12.01 MB
- 文档页数:80
时钟问题1.行程问题中时钟的标准制定;2.时钟的时针与分针的追及与相遇问题的判断及计算;3.时钟的周期问题.时钟问题是研究钟面上时针和分针关系的问题。
钟面的一周分为60格。
当分针60÷(1-5/60)=65+5/11(分),与时针重合一次,时钟问题变化多端,也存在着不少学问。
这里列出一个基本的公式:在初始时刻需追赶的格数÷(1-1/12)=追及时间(分钟),其中,1-1/12为每分钟分针比时针多走的格数。
一分钟分针可以走6度,时针可以走0.5度。
常见的时钟问题:求某一时刻时针与分针的夹角,两针重合,两针垂直,两针成直线等类型,此外还有快慢钟问题。
1:钟表的时针与分针在4点多少分第一次重合?【解析】此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。
2:【小试牛刀】2点钟以后,什么时刻分针与时针第一次成直角?【解析】根据题意可知,2点时,时针与分针成60度,第一次垂直需要90度,即分针追了90+60=150(度),3150(60.5)2711÷-=(分)3:现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【解析】时针的速度是360÷12÷60=0.5(度/分),分针的速度是360÷60=6(度/分),即分针与时针的速度差是 6-0.5=5.5(度/分),10点时,分针与时针的夹角是60度, ,第一次在一条直线时,分针与时针的夹角是180度,,即分针与时针从60度到180度经过的时间为所求。
,所以答案为9(18060) 5.52111-÷=(分)4:【例4】★★在9点与10点之间的什么时刻,分针与时针在一条直线上?【解析】可知,9点时,时针与分针成90度,第一次在一条直线上需要分针追90度,第二次在一条直线上需要分针追270度,答案为490(60.5)1611÷-=(分)和1270(60.5)4911÷-=(分)5:多外出买东西,出门时看手表,发现表的时针和分针的夹角为1100,七时前回家时又看手表,发现时针和分针的夹角仍是1100.那么此人外出多少分钟?【解析】开始分针在时针左边1100位置,后来追至时针右边1100位置.于是,分针追上了1100+1100=2200,对应2206格.所需时间为2201(1)40612÷-=分钟.所以此人外出40分钟.6:到9时之间时针和分针在“8”的两边,并且两针所形成的射线到“8”的距离相等.问这时是8时多少分?【解析】时针较分针顺时针方向多40格,设在满足题意时,时针走过x格,那么分针走过40-x格,所以时针、分针共走过x+(40-x)=40格.于是,所需时间为11240(1)361213÷+=分钟,即在8点123613分钟为题中所求时刻.7:一个闹钟,每时比标准时间快2分。
时钟问题时钟问题知识点说明时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度1时针速度:每分钟走小格,每分钟走0.5度12注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为65 -分。
11模块一、时针与分针的追及与相遇问题【例1】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟, 分针与时针第二次重合?【解析】在10点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上501 1 6个小刻度,设分针速度为“I ”有时针速度为“”,于是需要时间:50 (1 ) 54 •所12 12 11以,再过54 -分钟,时针与分针将第一次重合•第二次重合时显然为12点整,所以再经过11(12 10) 60 54 6 65 5分钟,时针与分针第二次重合•标准的时钟,每隔65 —分钟,时11 11 11针与分针重合一次. 我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数•所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的—.如果设分针的速度为单位“I那么时针的速度为“ —”.12 12【巩固】钟表的时针与分针在4点多少分第一次重合?、 1 11 11 9 【解析】此题属于追及问题,追及路程是20格,速度差是1 ——,所以追及时间是:20 — 21 —12 12 12 11(分)。
时钟问题本章知识1、简单的钟面角度问题2、钟表中的相遇与追及问题3、坏钟问题前铺知识1、相遇问题2、追及问题课前加油站1、请默写出直线相遇与追及问题的两个公式。
2、甲、乙两人同时同地同向在400米长的环形跑道上跑步,甲的速度为6米/秒,乙的速度为4米/秒。
(1)开始后多长时间,甲乙第一次处于跑道的某直径的两端?(2)开始后多长时间,甲第一次超过乙?(3)开始后多长时间,甲乙第一次处于起点所在的直径对称的位置?要研究时钟某个时刻时针与分针成什么角度,我们首先要知道时针与分针行走的速度。
它们的速度有两种表达形式:以小格/分钟为单位或以角度/分钟为单位。
格 度 时钟一圈 60格360度时针速度 121格/分钟 21度/分钟 分针速度 1格/分钟6度/分钟时针速度:分针速度=1:12。
牢记它有助于我们记忆时针和分针的速度。
1、已知:钟表上60小格,一圈是360度,则分针1小时转多少度?时针1小时转多少度?分针速度是时针速度的多少倍?【演练】分针1分转多少度?时针1分转多少度?时针速度是分针速度的几分之几?2、3:00时,分针落后时针 度,15分钟内,分针走 度,时针走 度,因此3:15时,时针与分针的夹角是 度。
模块1简单的钟面角度问题【演练】在下表中仿照第二行的例子填入适当的算式。
X :Y (X 点Y 分) X 点时两针的角度 Y 分时时针走的度数 Y 分时分针走的度数 X 点Y 分时两针的度数 4:16 4×30=120 16×6=96 16×0.5=8 120-96+8=32 8:12 3:40 9:10【演练】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【演练】在16点16分这个时刻,钟表盘面上时针和分针的夹角是多少度?3、小明家的时钟正对着衣柜上的镜子,某天早上起床时,小明看到镜子中的时钟两针指向5点20分的位置,那么现在真正的时钟显示的时间是?题型一 重合问题公式:分针到时针相差的格数÷(1-121)=重合分钟数分针到时针相差的度数÷(6-0.5)=重合分钟数1、现在是2点,从现在开始,分针与时针什么时刻第一次重合在一起?第二次呢?模块2钟表中的相遇与追及问题【演练】现在是7点40分,从现在开始过多长时间时针与分针第一次重合?【演练】有一座时钟现在显示10时整。
第十一讲时钟问题内容提要【基本概念】基本思路:封闭曲线上的追及或者相遇问题关键问题:①确定分针与时针的路程差②确定分针与时针的初始位置【基本知识点】具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度小格,每分钟走0.5度时针速度:每分钟走112【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【巩固1】小强家有一个闹钟,每时比标准时间快3分。
有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【巩固2】小翔家有一个闹钟,每时比标准时间慢3分。
有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6∶30起床,于是他就将闹钟的铃定在了6∶30。
这个闹钟响铃的时间是标准时间的几点几分?【巩固3】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【例2】现在是3点,什么时候时针与分针第一次重合?【巩固1】钟表的时针与分针在4点多少分第一次重合?【巩固2】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【例3】在10点与11点之间,钟面上时针和分针在什么时刻垂直?【巩固1】钟表的时针与分针在8点多少分第一次垂直?【巩固2】2点钟以后,什么时刻分针与时针第一次成直角?【例4】在9点与10点之间的什么时刻,分针与时针在一条直线上?【巩固1】现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【例4 】小明在7点与8点之间解了一道题,开始时分针与时针正好成一条直线,解完题时两针正好重合,小明解题的起始时间?小明解题共用了多少时间?【巩固1】晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。
做完作业再看钟,还不到9点,而且分针与时针恰好重合。
时钟追及与相遇问题知识框架时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
例题精讲【例 1】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【巩固】在16点16分这个时刻,钟表盘面上时针和分针的夹角是____度.【例 2】在一段时间里,时针、分钟、秒针转动的圈数之和恰好是1466圈,那么这段时间有秒。
【巩固】在一段时间里,时针、分钟、秒针正好走了3665小格,那么这段时间有秒。
【例 3】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【巩固】钟表的时针与分针在4点多少分第一次重合?【例 4】钟表的时针与分针在8点多少分第一次垂直?【巩固】2点钟以后,什么时刻分针与时针第一次成直角?【例 5】时钟的时针和分针在6点钟反向成一直线,问:它们下—次反向成—直线是在什么时间?(准确到秒)【巩固】时钟的时针和分针在9点多反向成一直线,问:下—次反向成—直线经过了多长时间?【例 6】现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【巩固】在9点与10点之间的什么时刻,分针与时针在一条直线上?【例 7】晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。
- 1 - 精品资料之奥数培优讲义适用:华杯、希望、年级:五年级科目:小学奥数内容:奥数培优教程(资料来源于学校内部,供各位老师学习交流使用,欢迎大家下载参考)时钟问题是研究钟面上时针和分针关系的问题。
钟面的一周分为60格。
当分针走60格时,时针正好走5格,所以时针的速度是分针的5÷60=1/12,分针每走60÷(1-5/60)=65+5/11(分),与时针重合一次,时钟问题变化多端,也存在着不少学问。
这里列出一个基本的公式:在初始时刻需追赶的格数÷(1-1/12)=追及时间(分钟),其中,1-1/12为每分钟分针比时针多走的格数。
一分钟分针可以走6度,时针可以走0.5度。
常见的时钟问题:求某一时刻时针与分针的夹角,两针重合,两针垂直,两针成直线等类型,此外还有快慢钟问题。
【例1】★有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】在lO点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“112”,于是需要时间:1650(1)541211÷-=.所以,再过65411分钟,时针与分针将第一次重合.第二次重合时显典型例题知识梳理然为12点整,所以再经过65(1210)6054651111-⨯-=分钟,时针与分针第二次重合.标准的时钟,每隔56511分钟,时针与分针重合一次.我们来熟悉一下常见钟表(机械)的构成:一般时钟的表盘大刻度有12个,即为小时数;小刻度有60个,即为分钟数.所以时针一圈需要12小时,分针一圈需要60分钟(1小时),时针的速度为分针速度的112.如果设分针的速度为单位“l”,那么时针的速度为“112”.【小试牛刀】钟表的时针与分针在4点多少分第一次重合?【解析】此题属于追及问题,追及路程是20格,速度差是11111212-=,所以追及时间是:11920211211÷=(分)。
五年级奥数时钟问题1、简单的钟面角度问题2、钟表中的相遇与追及问题3、坏钟问题1、相遇问题2、追及问题课前加油站1、请默写出直线相遇与追及问题的两个公式。
2、甲、乙两人同时同地同向在400米长的环形跑道上跑步,甲的速度为6米/秒,乙的速度为4米/秒。
(1)开始后多长时间,甲乙第一次处于跑道的某直径的两端?时钟问题本章知识前铺知识(2)开始后多长时间,甲第一次超过乙?(3)开始后多长时间,甲乙第一次处于起点所在的直径对称的位置?要研究时钟某个时刻时针与分针成什么角度,我们首先要知道时针与分针行走的速度。
它们的速度有两种表达形式:以小格/分钟为单位或以角度/分钟为单位。
时针速度:分针速度=1:12。
牢记它有助于我们记忆时针和分针的速度。
1、已知:钟表上60小格,一圈是360度,则分针1小时转多少度?时针1小时转多少度?分针速度是时针速度的多少倍?【演练】分针1分转多少度?时针1分转多少度?时针速度是分针速度的几分之几?2、3:00时,分针落后时针度,15分钟内,分针走度,时针走度,因此3:15时,时针与分针的夹角是度。
模块1简单的钟面角度问题【演练】在下表中仿照第二行的例子填入适当的算式。
【演练】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【演练】在16点16分这个时刻,钟表盘面上时针和分针的夹角是多少度?3、小明家的时钟正对着衣柜上的镜子,某天早上起床时,小明看到镜子中的时钟两针指向5点20分的位置,那么现在真正的时钟显示的时间是?题型一重合问题公式:分针到时针相差的格数÷(1-121)=重合分钟数分针到时针相差的度数÷(6-0.5)=重合分钟数1、现在是2点,从现在开始,分针与时针什么时刻第一次重合在一起?第二次呢?模块2 钟表中的相遇与追及问题【演练】现在是7点40分,从现在开始过多长时间时针与分针第一次重合?【演练】有一座时钟现在显示10时整。
那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?2、一昼夜中,时针的时针与分针共重合多少次?提示:除了第一次重合之外,每次重合所需的时间的一样的。
时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟, 具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度 时针速度:每分钟走112小格,每分钟走0.5度 注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
【例 1】小明上午 8点要到学校上课,可是家里的闹钟早晨 6点10分就停了,他上足发条但忘了对表就急急忙忙上学去了,到学校一看还提前了10分。
中午12点放学,小明回到家一看钟才11点整。
如果小明上学、下学在路上用的时间相同,那么,他家的闹钟停了多少分?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】 根据题意可知,小明从上学到放学一共经过的时间是290分钟(11点减去6点10分),在校时间为250分钟(8点到12点,再加上提前到的10分钟)所以上下学共经过290-250=40(分钟),例题精讲知识框架时钟问题即从家到学校需要20分钟,所以从家出来的时间为7:30(8:00-10分-20分)即他家的闹钟停了1小时20分钟,即80分钟。
【答案】80分钟【巩固】—辆汽车的速度是每小时121千米,现有一块每小时快30秒的表,若用该表计时,测得这辆汽车的时速是多少?【考点】行程问题之时钟问题【难度】☆☆【题型】解答【解析】正常表走1小时,快表走了:60.5分,因此,用快表测速度,这辆汽车的速度是:⨯÷=(千米/小时)1216060.5120【答案】120千米/小时【例 2】小春有一块手表,这块表每小时比标准时间慢2分钟。
1.行程问题中时钟的标准制定;2.时钟的时针与分针的追及与相遇问题的判断及计算;3.时钟的周期问题.时钟问题知识点说明 时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
分针速度:每分钟走1小格,每分钟走6度时针速度:每分钟走112小格,每分钟走0.5度 注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
要把时钟问题当做行程问题来看,分针快,时针慢,所以分针与时针的问题,就是他们之间的追及问题。
另外,在解时钟的快慢问题中,要学会十字交叉法。
例如:时钟问题需要记住标准的钟,时针与分针从一次重合到下一次重合,所需时间为56511分。
模块一、时针与分针的追及与相遇问题【例 1】 当时钟表示1点45分时,时针和分针所成的钝角是多少度?【巩固】 在16点16分这个时刻,钟表盘面上时针和分针的夹角是____度.例题精讲知识点拨教学目标时钟问题【例 2】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【巩固】钟表的时针与分针在4点多少分第一次重合?【巩固】现在是3点,什么时候时针与分针第一次重合?【例 3】钟表的时针与分针在8点多少分第一次垂直?【巩固】2点钟以后,什么时刻分针与时针第一次成直角?【例 4】时钟的时针和分针在6点钟反向成一直线,问:它们下—次反向成—直线是在什么时间?(准确到秒)【例 5】8时到9时之间时针和分针在“8”的两边,并且两针所形成的射线到“8”的距离相等.问这时是8时多少分?【例 6】现在是10点,再过多长时间,时针与分针将第一次在一条直线上?【巩固】在9点与10点之间的什么时刻,分针与时针在一条直线上?【例 7】晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。