第八章材料的热学性能
- 格式:ppt
- 大小:444.00 KB
- 文档页数:37
名词解释第九章材料的磁学性能磁化:物质在磁场中由于受到磁场作用都呈现出一定的磁性,这种现象叫做磁化现象自发磁化:在没有外磁场的情况下,材料所发生的磁化。
技术磁化:铁磁材料心爱外加磁场的作用下所产生的磁化现象。
抗磁性:材料被磁化后,磁化矢量与外加磁场方向相反的成为抗磁性。
顺磁性:材料被磁化后,磁化矢量与外加磁场方向相同的成为抗磁性。
铁磁性:铁磁材料在外加磁场的作用下,可以产生很强的磁化,这是由于铁磁材料的原子组态所决定的。
铁磁性来源于原子违背抵消的自旋磁矩和自发磁化。
亚铁磁性:反铁磁性:交换积分常数A<0,相邻原子间的自旋趋于反相平行排列原子磁矩相互抵消,不鞥形成自发磁化区域。
固有磁矩:只有原子中存在的未被排满的电子层时,由于未被排满的电子层电子磁矩之和不为0,原子才具有磁矩,这种磁矩叫做~最大磁滞回线:磁滞损失:由于磁滞效应的存在,磁化一周得到一个封闭回线,称之为磁滞回线,回线所包围的面积相当于磁化一周所产生的能量损耗,称为~退磁能:磁铁产生的外力磁场与内磁场方向相反,从而使铁磁体减弱,磁化能力增加。
磁畴:在铁磁性物质中,此你在着许多微小自发磁化区域,成为~剩磁:磁化达到饱和后,在逐渐减小到H的强度,M将随之减小。
当H=0时,磁感应强度并不等于0,而是保持一定大小的数值,这时铁磁金属的剩磁现象。
矫顽力:要使M值继续减小,必须加反向磁场-H, 当H等一定值Hc时,M值才等于0。
Hc 为去掉剩磁的临界外磁场,称为~~居里点:磁晶各向异性:当贴此物质磁化时,沿不同方向磁化所产生的磁化强度不同,即沿着不同方向磁化所消耗的磁化功不同。
这说明磁化矢量(M)在不同的晶向上有不同的能量,M沿易磁化方向时能量最高。
磁化强度沿不同晶轴方向的不同称为磁晶磁晶的各向异性。
磁致伸缩(效应):铁磁物质收缩时,沿磁化方向发生长度伸长或缩短的现象称为~~自发体积磁致伸缩:最大磁能积:第十章材料的电学性能电导率:为电阻率的倒数超导临界转变温度:材料由正常状态转变为超导状态的温度超导临界磁场强度:能破环超导态的最小磁场强度超导临界电流密度:输入电流所产生的磁场一外磁场之和超过临界磁场,超导呗破坏。
材料性能学材料性能学第⼀章材料单向静拉伸的⼒学性能1.屈服是材料由弹性变形向弹-塑性变形过度的明显标志。
2.低碳钢单向静拉伸曲线特征及形变过程在低碳钢的单向静拉伸试验中,整个拉伸过程中的变形可分为弹性变形、屈服变形、均匀塑性变形以及不均匀集中塑性变形4个阶段3.真应⼒/应变与⼯程应⼒/应变的换算4.弹性变形的本质:构成材料的原⼦(离⼦)或分⼦⾃平衡位置产⽣可逆位移的反映。
5.弹性模量的影响因素答:键合⽅式和原⼦结构、晶体结构、化学成分、微观组织、温度、加载条件和负荷持续时间6.滞弹性:是指材料在快速加载或卸载后,随时间的延长⽽产⽣的附加弹性应变的性能。
7.包申格效应:⾦属材料经预先加载产⽣少量塑性变形,⽽后同向加载,规定残余伸长应⼒增加,反向加载,规定残余拉伸应⼒降低的现象。
(包申格效应可以通过热处理来消除。
)8.弹性滞后环:在⾮理想弹性的情况下,由于应⼒和应变不同步,使加载线与卸载线不重合⽽形成⼀封闭回线,这个封闭回线称为弹性滞后环。
9.内耗:在⾮理想弹性的情况下,由于应⼒和应变不同步,使加载线与卸载线不重合⽽形成⼀封闭回线,这个封闭回线称为弹性滞后环。
存在弹性滞后环的现象说明加载时材料吸收的变形功⼤于卸载时材料释放的变形功,有⼀部分加载变形功被材料吸收。
这部分在变形过程中被材料吸收的功称为材料的内耗。
10.⽆机⾮⾦属材料的塑性特点论述⼤多数⽆机⾮⾦属材料在常温下不能产⽣塑性形变的原因【答案】⽆机⾮⾦属材料滑移系统少,不易产⽣塑性形变,主要原因有:(1)离⼦键或共价键,具有明显的⽅向性。
(2)同号离⼦相遇,斥⼒极⼤,只有个别滑移系统能满⾜位错运动的⼏何条件和静电作⽤条件。
(3)晶体结构愈复杂,满⾜这种条件就愈困难。
陶瓷材料⼀般呈多晶状态,⽽且还存在⽓孔、微裂纹、玻璃相等。
其晶粒在空间随机分布,不同⽅向的晶粒,其滑移⾯上的剪应⼒差别很⼤。
即使个别晶粒已达到临界剪应⼒⽽发⽣滑移,也会受到周围晶粒的制约,使滑移受到阻碍⽽终⽌,所以多晶材料更不容易产⽣滑移。
第八章纳米材料的热学性能重点:纳米材料的热学性质及尺寸效应纳米晶体的熔化纳米晶体的热稳定性纳米晶体的点阵热力学性质纳米晶体的界面热力学重点材料的热性能是材料最重要的物理性能之一表现出一系列与块体材料明显不同的热学特性,如:比热容值升高热膨胀系数增大熔点降低纳米材料的热学性质与其晶粒尺寸直接相关Why?材料的热性能是材料最重要的物理性能之一8.1 纳米材料的热学性质及尺寸效应8.1.1纳米材料的热学性质纳米材料的熔点材料中分子、原子的运动行为决定材料的热性能当热载子(电子、声子及光子)的各种特征运动尺寸与材料尺度相当时,反映物质热性能的物性参数(如熔化温度、热容等)会体现出鲜明的尺寸依赖性。
特别是,低温下热载子的平均自由程将变长,使材料热学性质的尺寸效应更为明显。
8.1.2 纳米晶体的热容及特征温度热容是指材料分子或原子热运动的能量Q随温度T的变化率,与材料的结构密切相关。
在温度T时,材料的热容量C的表达式为:若加热过程中材料的体积不变,则测得的热容量为定容热容(CV);若加热过程中材料的压强不变,则测得的为定压热容(CP)。
晶界的过剩体积ΔV其中,V和V分别为完整单晶体和晶界的体积。
在纳米材料中,很大一部分原子处于晶界上,界面原子的最近邻原子构型与晶粒内部原子的显著不同,使晶界相对于完整晶格存在一定的过剩体积热力学计算表明:纳米晶的热容随着晶界过剩体积的增加而增加,因而亦随着晶界能的增加而增加。
由于高比例晶界组元的贡献,纳米材料的比热容会比其粗晶材料的高。
注意区分:纳米材料定容热容与比热容的特点2、德拜特征温度由固体物理,德拜特征温度的定义为:ωm表征晶格振动的最高频率;kB为玻尔兹曼常数。
纳米晶体材料的德拜特征温度θnc相对于粗晶的θc的变化率Δθnc可由下式给出:目前,对于纳米晶体材料特征温度的减小还无确切解释。
但可见,晶格振动达到最高频率变得容易了。
8.1.3纳米晶体的热膨胀热膨胀是指材料的长度或体积在不加压力时随温度的升高而变大的现象。