复杂网络及其在国内研究进展的综述
- 格式:pdf
- 大小:288.83 KB
- 文档页数:7
复杂网络理论研究的现状与未来网络已经成为了人们生活中不可或缺的一部分。
无论是个人的社交网络还是全球的互联网,网络连接了我们的生活,也改变了我们的生活方式。
随着互联网的不断发展,网络已经从简单的连接工具演变成了复杂的系统。
因此,复杂网络理论的研究成为了当前的热点之一。
本文将探讨复杂网络理论的现状和未来发展方向。
一、复杂网络理论的概念和基本特征复杂网络是指由大量节点和边构成,具有复杂结构、多样性、非线性、动力学特征、自组织性、鲁棒性和鲜明的小世界效应、无标度特性等基本特征的网络。
通常情况下,复杂网络分为三类:随机网络、小世界网络和无标度网络。
随机网络是指所有节点的度数都差不多的网络,其中每个节点与其他节点随机连接。
小世界网络是指带有高度聚集性的连通性网络,即绝大部分节点都连接在一起,少数节点之间存在着远距离的联系。
无标度网络是指网络中有少部分节点拥有大量边缘连接的特性,即一小部分节点拥有着绝大部分的节点连接。
二、复杂网络理论的研究现状复杂网络理论的研究已经成为了跨学科研究的重要领域,包括数学、物理、计算机科学、生物学等。
近年来,随着人们对网络数据的深入研究,社交网络、生物网络、交通运输网络等越来越多的网络数据被发现,这些网络的存在和演变规律与我们生活中的许多重要问题相关。
比如,在社交网络中,人们如何形成朋友圈,如何通过朋友圈传播信息;在生物网络中,多种生物体之间的相互作用方式及其对生物群落演化的影响等等。
在复杂网络理论的研究中,目前主要的研究方向包括网络结构的建模和分析、网络中的动态演化过程、网络的鲁棒性和动力学过程。
在网络结构的建模和分析方面,研究者们主要从拓扑结构及其参数、形成机理、应用场景等方面展开探索。
在动态演化过程的研究中,主要探索网络中的复杂动态行为以及动态行为的建模。
在网络鲁棒性的研究中,主要探讨网络的鲁棒性如何改进和优化。
最后,在网络的动力学过程的研究中,主要是探讨网络的动态演化行为如何对网络中的元素产生影响,以及如何对网络整体产生作用。
复杂网络演化博弈理论研究综述一、本文概述Overview of this article随着信息技术的飞速发展,复杂网络作为一种描述现实世界中各种复杂系统的有效工具,已经引起了广泛关注。
而在复杂网络中,演化博弈理论则为我们提供了一种深入理解和分析网络动态行为的重要视角。
本文旨在全面综述复杂网络演化博弈理论的研究现状和发展趋势,以期能为相关领域的学者和研究人员提供有益的参考和启示。
With the rapid development of information technology, complex networks have attracted widespread attention as an effective tool for describing various complex systems in the real world. In complex networks, evolutionary game theory provides us with an important perspective to deeply understand and analyze the dynamic behavior of networks. This article aims to comprehensively review the research status and development trends of complex network evolutionary game theory, in order to provide useful reference and inspiration for scholars and researchers in related fields.本文首先回顾了复杂网络和演化博弈理论的基本概念和研究背景,阐述了两者结合的必要性和重要性。
接着,文章从网络结构、博弈规则、动态演化等多个方面对复杂网络演化博弈理论进行了深入的分析和讨论。
复杂网络的性质及研究进展随着互联网技术的进步,现代社会中出现了大量复杂网络。
复杂网络是一类由大量节点和连接构成的复杂结构,如社交网络、互联网、物流网络等。
复杂网络中的节点可以是人、机器、城市、物品等,节点间的连接可以是关系、交易、信息传递等。
复杂网络的性质及研究进展成为当前网络科学热门话题。
一、复杂网络的性质复杂网络具有许多独特的性质。
其中最著名的是小世界现象和无尺度性。
小世界现象指的是在相对较少的步数内,两个节点间可以通过少量的中间节点相互连接。
这个现象源于节点个数巨大的复杂网络中所存在的“短路”现象。
无尺度性则指的是复杂网络中存在少数节点拥有极高的度数,这些度数相对较低的节点则占据大多数。
这个现象发生的原因是特定节点的度数与网络结构有关,而网络结构可以不断扩大,使得度数与网络尺寸成幂律分布。
另外,复杂网络还具有同配性和社团结构这些特征。
同配性指的是节点之间存在相似的连接方式。
也就是说,度数大的节点会与度数大的节点相连,而度数小的节点会与度数小的节点相连。
在社交网络中,身份地位相近的人之间也会有相似的交际方式。
社团结构则指的是节点在网络中的归属群体。
网络社团结构不仅有助于分析节点间的关系,而且有助于我们更好地理解复杂网络的拓扑性质。
二、复杂网络研究进展近年来,复杂网络的研究取得了非常显著的进展。
1. 复杂网络模型为了更好地研究复杂网络,科学家提出了一些复杂网络模型。
比较常用的模型有随机图模型、小世界模型、无尺度网络模型等。
这些模型的提出极大地推动了复杂网络的研究,使得我们能够更加深入地理解复杂网络的性质和演化规律。
2. 复杂网络在社会与生命科学中的应用复杂网络不仅被广泛应用于计算机科学领域,而且在社会网络与生命科学领域也有着广泛的应用。
例如,社交网络分析被广泛应用于研究社交关系、信息传播和个人信任等问题;基因调控网络分析被应用于研究生物调控机制和疾病发生机理等重要问题。
复杂网络为社会与生命科学领域的研究提供了一个全新的视角,使得我们能够更加全面地了解问题背后的本质。
复杂网络结构及其在社交网络中的应用研究随着互联网的发展,社交网络的兴起和普及,网络中各种信息和资源得到了方便的传播,也有了更丰富的交互和协同。
然而,网络的节点和边并不是简单的线性关系,而是复杂的网络结构。
在社交网络中,人们的联系和交互呈现出复杂的网络结构,因此,研究和分析复杂网络结构对于理解社交网络在信息传播、社交互动和集体行为等方面的作用具有重要的意义。
一、复杂网络结构的特点复杂网络结构是指由大量节点和边构成,节点之间具有相互联系和作用的复杂系统。
与传统的线性系统不同,复杂网络结构具有以下几个特点:1. 非线性关系:节点之间的连接不一定是直接的,而可能是间接的或非线性的。
例如,在社交网络中,A、B 两人之间可能并不认识,但他们都认识C,因此通过C这个中介节点,A和B之间也会有间接联系。
2. 小世界现象:复杂网络中仅需经过少数几个节点,就可以将整个网络连接起来。
这种现象称为小世界现象,它是网络结构紧密而不断的重要表现。
3. 稳健性:复杂网络中节点之间的联系具有一定的韧性,即使某些节点失效或断开连接,网络仍能保持连通性。
4. 度分布的幂律分布性质:复杂网络中节点的度(即连接数)分布呈幂律分布,即少数节点具有高度连接性,而大多数节点并没有太多的联系。
以上特征使得复杂网络具有广泛的适应性和韧性,使其在信息传播、社交互动、集体行为等方面具有重要的应用价值。
二、应用领域在社交网络中,复杂网络结构广泛应用于以下几个方面:1. 社交网络分析社交网络分析是指通过图形化、可视化和统计分析等手段,对社交网络结构进行建模、量化和分析。
利用复杂网络分析工具,可以探索社交网络中的节点、边、子图和社区等特征,了解网络的结构、拓扑和演化,更深入地了解社交网络的行为和功能。
2. 信息传播在社交网络中,信息的传播具有广泛的潜力和变革性。
通过复杂网络分析,我们可以了解信息在网络中的传播路径、速度和影响力等特征,并根据这些特征推测出在网络中引发和加速传播的因素。
复杂网络链路预测研究现状与展望复杂网络链路预测研究已经成为网络科学的热点领域之一、在复杂网络中,链路预测是指通过已知网络的一部分链接信息,来推测未知链接的过程。
链路预测技术对于社交网络、生物信息学、蛋白质网络等领域具有重要意义。
本文将介绍复杂网络链路预测的研究现状和展望。
目前,链路预测的研究已经取得了一些成果。
最早的链路预测方法是基于网络的拓扑结构,通过计算节点之间的相似度来进行预测。
其中,最经典的方法是基于共同邻居的链路预测方法。
该方法认为,如果两个节点有很多共同的邻居节点,那么它们之间的链接的可能性就很高。
除了共同邻居方法外,还有许多其他基于拓扑结构的链路预测方法,如Adamic-Adar指数、Jaccard系数等。
然而,基于拓扑结构的链路预测方法并不能很好地处理复杂网络中存在的动态变化和噪声干扰等问题。
因此,研究者们提出了一系列新的链路预测方法。
例如,基于图嵌入的链路预测方法可以将网络的结构信息映射到低维空间中,从而更好地捕捉网络的特征。
此外,一些基于机器学习的方法,如支持向量机、随机森林等,也被应用于链路预测,取得了不错的效果。
除了方法的创新,研究者们还提出了一些新的评价指标来评估链路预测的效果。
最常用的指标是精确率、召回率和F1值。
此外,还有一些基于信息论的指标,如平均相对信息增益和信息熵等。
这些指标可以帮助研究者更准确地评估链路预测方法的性能。
未来,复杂网络链路预测仍然存在一些挑战和机遇。
首先,复杂网络往往具有重叠社区结构,即节点可能同时属于多个社区。
如何在这种网络中进行准确的链路预测是一个有待解决的问题。
其次,目前大多数链路预测方法还是基于静态网络的,缺乏对网络动态变化的建模能力。
因此,如何将链路预测方法与动态网络模型结合起来,将是未来的研究方向。
此外,由于现实网络中存在大量的噪声和缺失数据,如何处理噪声和缺失数据对链路预测的影响也是一个重要的研究方向。
总之,复杂网络链路预测研究已经取得了一些重要的进展,但仍然存在一些挑战和机遇。
复杂网络及其在国内研究进展的综述一、本文概述随着信息技术的飞速发展,复杂网络作为一种描述现实世界中复杂系统的有效工具,正逐渐受到学术界的广泛关注。
复杂网络广泛存在于我们的生活中,包括社交网络、生物网络、互联网、交通网络等,它们以复杂而多样的方式连接着世界的各个角落。
因此,对复杂网络的研究不仅具有理论价值,也具有深远的现实意义。
本文旨在全面综述复杂网络的基本理论、研究方法以及在国内的研究进展。
我们将对复杂网络的基本概念和特性进行介绍,包括网络的拓扑结构、节点间的连接关系、网络的动态演化等。
然后,我们将重点介绍复杂网络研究中的一些重要理论和方法,如网络模型、网络动力学、网络演化、网络同步等。
在此基础上,我们将对国内复杂网络研究的现状进行梳理和评价,包括研究成果、研究热点、存在问题以及未来发展趋势等。
通过对复杂网络及其在国内研究进展的综述,我们希望能够为相关领域的研究者提供一个全面的参考,推动复杂网络研究的深入发展,同时也为我国在该领域的创新研究提供有益的借鉴和启示。
二、复杂网络的基本理论复杂网络,作为一种描述现实世界中各种复杂系统的有力工具,其基本理论涵盖了图论、统计物理、非线性科学等多个学科。
其基本构成元素包括节点(Node)和边(Edge),节点通常代表系统中的个体,而边则代表个体之间的联系或相互作用。
网络中的节点和边的组合方式以及它们所承载的信息,决定了网络的复杂性和多样性。
在复杂网络理论中,有几个核心的概念和度量指标。
首先是网络的度分布(Degree Distribution),它描述了网络中节点连接数的分布情况,对于理解网络的拓扑结构和动力学行为至关重要。
其次是网络的聚类系数(Clustering Coefficient),它反映了网络中节点的聚集程度,即一个节点的邻居节点之间也成为邻居的可能性。
网络的路径长度(Path Length)和介数中心性(Betweenness Centrality)等也是重要的度量指标,它们分别描述了网络中信息传播的效率和节点在网络中的影响力。
大规模复杂网络的研究与应用随着互联网的普及和数字化时代的到来,网络已经成为我们日常生活中不可或缺的一部分。
大规模复杂网络作为一种网络形态,近年来受到了广泛的研究和应用。
本文将对大规模复杂网络的研究和应用进行探讨。
一、大规模复杂网络的定义大规模复杂网络是指由大量节点和连接组成的网络系统,节点之间的连接关系较为复杂,其结构具有复杂性、随机性和自组织性等特点。
大规模复杂网络是一种抽象的数学模型,可以用来描述现实生活中的许多网络形态,如社交网络、交通网络、通讯网络等。
二、大规模复杂网络的特点1.复杂性大规模复杂网络的节点数量很大,连接关系也较为复杂,具有非线性、不连续、不可预测等特点,因此其分析和研究相对较为困难。
2.随机性大规模复杂网络的节点连接关系具有一定的随机性,可能出现一些非常规的行为模式。
3.自组织性大规模复杂网络的结构和性质是由网络中各个节点的自组织行为所决定的,具有自发性和非线性的动态演化特征。
三、大规模复杂网络的研究内容1.复杂网络的结构和演化复杂网络的结构和演化是复杂网络研究的核心内容之一。
研究复杂网络的结构和演化规律,可以揭示网络的发展和变化趋势,为网络设计和优化提供理论基础。
2.复杂网络的动力学和控制复杂网络的动力学和控制是针对网络的各个节点之间的非线性关系,以及整个网络的自组织特性进行研究。
通过研究复杂网络的动力学模型和变化规律,可以有效地控制网络的行为和发展方向。
3.复杂网络的信息处理和传输复杂网络的信息处理和传输是指在复杂网络中实现信息传输和处理的方法和技术。
研究复杂网络的信息处理和传输技术,可以为网络应用及其安全、性能、可靠性提供支持。
四、大规模复杂网络的应用1.社交网络随着社交网络的兴起,大规模复杂网络已经成为社交网络研究的重要方向。
通过深入研究社交网络的结构和性质,可以更好地理解人类社会和行为模式,并为社会政策和商业运营提供支持。
2.交通网络交通网络是现代城市的重要组成部分,其高效运作对城市的发展和经济的增长起着重要作用。
复杂网络理论及其应用研究概述一、本文概述随着信息技术的飞速发展,复杂网络理论及其应用研究已成为当今科学研究的热点之一。
复杂网络无处不在,从社交网络到生物网络,从互联网到交通网络,它们构成了我们现代社会的基础架构。
复杂网络理论不仅关注网络的结构和性质,还致力于探索网络的行为和演化规律,以及如何利用网络进行优化和控制。
本文旨在全面概述复杂网络理论的基本概念、主要研究方法及其在各领域的应用实践,以期为读者提供一个清晰、系统的复杂网络研究视角。
在本文中,我们首先介绍复杂网络理论的基本概念,包括网络的定义、分类和性质。
然后,我们将重点介绍复杂网络的主要研究方法,包括网络建模、网络分析、网络演化等。
在此基础上,我们将探讨复杂网络理论在各领域的应用实践,包括社交网络分析、生物网络研究、互联网拓扑结构分析、交通网络优化等。
我们将对复杂网络理论的发展趋势和未来挑战进行展望,以期为读者提供一个全面了解复杂网络理论及其应用研究的框架。
二、复杂网络理论基础知识复杂网络理论作为图论和统计物理学的交叉学科,旨在揭示现实世界中复杂系统的结构和动力学行为。
其理论基础主要源自图论、统计物理、非线性科学以及计算机科学等多个学科。
图论为复杂网络提供了基本的数学语言和描述工具。
在网络中,节点代表系统中的个体,边则代表个体之间的关系或交互。
基于图论,可以定义诸如度、路径、聚类系数、平均路径长度等关键的网络参数,从而量化网络的拓扑结构和性质。
统计物理学的概念和方法为复杂网络提供了深入分析大规模网络结构的工具。
例如,通过引入概率分布来描述网络中的节点度、路径长度等属性,可以揭示网络的全局统计特性。
网络中的相变、自组织临界性等现象也为复杂网络理论带来了新的视角和思考。
非线性科学则为复杂网络的动力学行为提供了理论支撑。
在网络中,节点之间的相互作用和演化往往是非线性的,这导致网络的动力学行为表现出复杂的时空特征。
通过研究网络的稳定性、同步性、演化机制等,可以深入理解复杂系统的动力学行为。
复杂网络的结构和功能研究进展复杂网络是由许多相互连接的节点和边组成的网络结构。
这种网络可以用来研究不同系统中的交互关系,如社交网络、互联网、大脑网络和交通网络等。
研究人员们一直致力于深入了解复杂网络的结构和功能,以揭示其中的奥秘。
复杂网络的结构研究主要关注网络中节点之间的连接方式和拓扑结构。
最早的研究是由数学家Erdös和Rényi在1960年代提出的随机网络模型,他们随机地连接节点,研究了网络的平均路径长度和网络连通性等性质。
然而,这种模型不能很好地解释真实世界中的网络,因为它们缺乏聚类特性和度分布的非均匀性。
随后,研究者们提出了小世界网络模型,其中节点之间的连接在短距离上呈现出高聚类度,而在长距离上保持较短的平均路径长度。
小世界网络模型可以很好地解释社交网络和互联网等实际网络的特性。
另一方面,复杂网络的功能研究关注的是节点和网络的动态行为,旨在了解网络的信息传递、同步和稳定性等特性。
例如,研究人员们发现一些节点在网络中具有重要的作用,被称为关键节点。
这些关键节点的移除或瘫痪可能导致网络的崩溃,因此对它们的研究非常重要。
此外,研究人员还研究了节点的动态行为,如节点的自适应性和响应性。
这些研究有助于我们理解节点如何在网络中相互影响和适应外界变化。
最近几年,复杂网络的结构和功能研究取得了许多重要进展。
首先,通过引入复杂网络模型和算法,研究人员能够更好地理解真实世界中不同网络的特征和行为。
例如,基于小世界网络模型的研究揭示了社交网络和互联网等网络的拓扑特性,这为我们设计更好的网络架构提供了指导。
其次,随着大数据和机器学习的发展,研究者们可以更好地分析和预测复杂网络的行为。
通过分析已有网络数据,我们可以找到网络中的模式和规律,并预测未来的发展趋势。
这些预测有助于我们制定网络管理和优化策略。
第三,研究人员们开始研究多层次和多重网络系统的结构和功能。
例如,大脑可以视为一个多层次的复杂网络系统,研究人员通过揭示不同层次之间的关系,增进了对大脑功能的理解。
第17卷第4期2009年10月系统科学学报JOURNAL OF SYSTEMS SCIENCEVo1.17No.4oct ,2009复杂网络及其在国内研究进展的综述刘建香(华东理工大学商学院上海200237)摘要:从复杂网络模型的演化入手,在简要介绍复杂网络统计特征的基础上,对国内关于复杂网络理论及其应用的研究现状从两方面进行综述:一是对国外复杂网络理论及应用研究的介绍,包括复杂网络理论研究进展的总体概括、复杂网络动力学行为以及基于复杂网络理论的应用研究介绍;二是国内根植于本土的复杂网络的研究,包括复杂网络的演化模型,复杂网络拓扑性质、动力学行为,以及复杂网络理论的应用研究等。
并结合复杂网络的主要研究内容,对今后的研究重点进行了分析。
关键词:复杂网络;演化;拓扑;动力学行为中图分类号:N941文献标识码:A文章编号:1005-6408(2009)04-0031-07收稿日期:2009-01-05作者简介:刘建香(1974—),女,华东理工大学商学院讲师,研究方向:系统工程。
E-mail :jxliu@0引言系统是由相互作用和相互依赖的若干组成部分结合的具有特定功能的有机整体[1]。
而网络是由节点和连线所组成的。
如果用节点表示系统的各个组成部分即系统的元素,两节点之间的连线表示系统元素之间的相互作用,那么网络就为研究系统提供了一种新的描述方式[2、3]。
复杂网络作为大量真实复杂系统的高度抽象[4、5],近年来成为国际学术界一个新兴的研究热点,随着复杂网络逐渐引起国内学术界的关注,国内已有学者开始这方面的研究,其中有学者对国外的研究进展情况给出了有价值的文献综述,而方锦清[6]也从局域小世界模型、含权网络与交通流驱动的机制、混合择优模型、动力学行为的同步与控制、广义的同步等方面对国内的研究进展进行了简要概括,但是到目前为止还没有系统介绍国内关于复杂网络理论及应用研究现状的综述文献。
本文从复杂网络模型的演化入手,在简要介绍复杂网络统计特征的基础上,对国内研究现状进行综述,希望对国内关于复杂网络的研究起到进一步的推动作用。
1.复杂网络模型的发展演化网络的一种最简单的情况就是规则网络[7],它是指系统各元素之间的关系可以用一些规则的结构来表示,也就是说网络中任意两个节点之间的联系遵循既定的规则。
但是对于大规模网络而言由于其复杂性并不能完全用规则网络来表示。
20世纪50年代末,Erdos 和Renyi 提出了一种完全随机的网络模型———随机网络(ER 随机网络),它指在由N 个节点构成的图中以概率p 随机连接任意两个节点而成的网络,即两个节点之间连边与否不再是确定的事,而是由概率p 决定。
或简单地说,在由N 个节点构成的图中,可以存在条边,从中随机连接M 条边所构成的网络就叫随机网络。
如果选择M =p ,这两种构造随机网络模型的方法就可以联系起来。
规则网络和随机网络是两种极端的情况,对于大量真实的网络系统而言,它们既不是规则网络也不是随机网络,而是介于两者之间。
1998年,Watts 和Strogatz [8]提出了WS 网络模型,通过以概率p 切断规则网络中原始的边并选择新的端点重新连接31--构造出一种介于规则网络和随机网络之间的网络———小世界网络(‘small-world’networks)。
显然,当p=0时,相当于各边未动,还是规则网络;当p=1时就成了随机网络。
小世界网络模型的理论分析表明,其节点的度分布(degree distribution)服从指数分布,而实证结果表明,大多数大规模真实网络的节点度用幂律(power-law)分布来描述更加精确。
1999年,Barabasi和Albert[9]提出了BA网络模型,在网络的构造中引入了增长性和择优连接性:增长性指网络中不断有新的节点加入进来;择优连接性则指新的节点进来后优先选择网络中度数大的节点进行连接。
BA网络是无标度网络(scale-free networks)模型,其节点度服从幂律分布。
除了经典的小世界网络模型和无标度网络模型之外,也有学者提出了一些其他的网络模型来描述真实的网络系统。
如Barabasi, A.建立的确定性无标度网络模型[10],Francesc Comellas和Michael Sampels建立的确定性小世界网络模型[11]以及Fan等考虑某些现实网络具有局域特性而建立的多局域世界演化网络模型[12]等等。
2.复杂网络的统计特征2.1平均路径长度L在网络中,两点之间的距离为连接两点的最短路径上所包含的边的数目。
网络的平均路径长度指网络中所有节点对的平均距离,它表明网络中节点间的分离程度,反映了网络的全局特性。
不同的网络结构可赋予L不同的含义。
如在疾病传播模型中L可定义为疾病传播时间,交通网络模型中L可定义为站点之间的距离[13]等。
2.2聚集系数C在网络中,节点的聚集系数是指与该节点相邻的所有节点之间连边的数目占这些相邻节点之间最大可能连边数目的比例。
而网络的聚集系数则是指网络中所有节点聚集系数的平均值,它表明网络中节点的聚集情况即网络的聚集性,也就是说同一个节点的两个相邻节点仍然是相邻节点的概率有多大,它反映了网络的局部特性。
2.3度及度分布在网络中,节点的度是指与该节点相邻的节点的数目,即连接该节点的边的数目。
而网络的度<k>指网络中所有节点度的平均值。
度分布P(k)指网络中一个任意选择的节点,它的度恰好为k的概率。
2.4介数包括节点介数和边介数。
节点介数指网络中所有最短路径中经过该节点的数量比例,边介数则指网络中所有最短路径中经过该边的数量比例。
介数反映了相应的节点或边在整个网络中的作用和影响力。
2.5小世界效应复杂网络的小世界效应是指尽管网络的规模很大(网络节点数目N很大),但是两个节点之间的距离比我们想象的要小得多。
也就是网络的平均路径长度L随网络的规模呈对数增长,即L~lnN。
大量的实证研究表明,真实网络几乎都具有小世界效应。
2.6无标度特性对于随机网络和规则网络,度分布区间非常狭窄,大多数节点都集中在节点度均值<k>的附近,说明节点具有同质性,因此<k>可以被看作是节点度的一个特征标度。
而在节点度服从幂律分布的网络中,大多数节点的度都很小,而少数节点的度很大,说明节点具有异质性,这时特征标度消失。
这种节点度的幂律分布为网络的无标度特性。
3.国内对复杂网络理论及应用研究现状的概括性介绍3.1复杂网络理论研究进展的介绍国内学者对国外复杂网络理论研究的介绍最早始于汪小帆(2002)发表在国外杂志上的一篇文章[14],文中回顾了近年来国外复杂网络研究所取得的重要成果,其中包括平均路径长度、聚集系数、度分布等网络度量,Internet、WWW和科学合作网络等现实系统,规则网络、随机网络、小世界网络、无标度网络等网络模型,以及复杂网络上的同步等。
而在国内刊物上对国外复杂网络理论研究的介绍可追溯到朱涵(2003)[15]在《物理》杂志上发表的“网络‘建筑学’”,文章以小世界、集团化和无标度等概念为中心,介绍了复杂网络的研究进展。
之后,吴金闪等[16]从统计物理学的角度总结了复杂网络的主要研究结果,对无向网络、有向网络和加权网络等三种不同网络统计性质研究的现状分别作了综述,对规则网络、完全随机网络、小世界网络和无标度网络等网络机制模型进行了总结,并对网络演化的统计规律、网络上的动力学性质的研究进行了概括。
周涛等(2005)围绕小世界效应和无标度特性等复杂网络的统计特征及复杂网络上的物理过程等问题,概述了复杂网络的研究进展。
刘涛等[17]从平均路径长度、聚集系数、度分布等复杂网络的统计性质,小世界网络和无标度网络等网络模型等层面简述了复杂网络领域的相关研究。
史定华[18]从对32 --网络节点度和度分布的理解入手,对网络分类、网络的演化机理和模型及结构涌现等方面取得的进展进行了总结。
总的来说,这些介绍都突出了对复杂网络上的统计性质、复杂网络经典模型的阐释和描述,对复杂网络理论在国外研究进展的介绍试图全面但却较为笼统。
3.2复杂网络动力学行为研究的介绍一般将建立在网络上的系统动态性质称为网络上的动力学行为。
研究复杂网络的拓扑结构也是为了理解和解释发生在网络上的动力学行为或过程。
赵明等[19]总结了近年来复杂网络上动力学系统同步的研究进展,主要包括复杂网络同步的稳定性分析,复杂网络上动力学系统同步的特点,网络的几何特征量对同步稳定性的影响等。
另外,由于复杂网络中的社区发现成为近几年复杂网络领域的一个研究热点,王林(2005)等全面综述了社区结构的性质以及社区发现的若干算法等。
鲁棒性作为复杂系统的一种属性,已经成为人们关注的一个热点。
接婧[20]对鲁棒性在国际学术界的研究状况进行了介绍,包括鲁棒性的定义、鲁棒性的特点、鲁棒性的研究方向及鲁棒性的应用等。
在对复杂网络展开的研究中,有一类应用性很强的网络行为日益引起人们的关注,如计算机病毒在计算机网络的传播、传染病在人群中的流行、信息或谣言在社会中的扩散等等,实际上它们都表现为一种网络上的传播。
周涛等[21]对复杂网络上传播动力学的研究进行了综述,讨论了小世界网络和无标度网络的传播特性以及相应的网络免疫技术。
复杂网络上的动力学行为涉及面非常广泛,如渗流、传播、网络搜索、相变等等,而与网络拓扑结构的研究相比,这些领域的研究进展相对缓慢,因此国内关于这些领域研究的介绍也就相对较少。
3.3基于复杂网络理论应用研究的介绍近几年由于随着复杂网络理论的迅速发展,其理论方法在真实网络的研究也得到广泛的应用。
生物学的研究表明,大多数生物功能都是由许多细胞分子相互作用共同完成的。
因此,对多种分子的相互作用网络进行分析,理解细胞内复杂的网络结构和动力学,对研究生物的功能具有重要作用。
王冰等[22]介绍了国外应用复杂网络理论研究代谢网络的进展情况,主要包括代谢网络的小世界和无标度特性,以及网络的子集团和功能。
互联网是一个典型的复杂网络,由于计算机病毒在互联网上的传播,其安全性问题正日益受到关注,而网络的拓扑结构对于病毒的传播行为有着十分重要的影响,不同的网络拓扑结构中传播行为呈现出不同的特性。
许丹等[23]围绕计算机病毒在互联网上的传播,对已有的研究成果进行了回顾。
介绍了包括流行病学模型、电子邮件病毒传播模型、随机常数传播模型和间隔模型等在内的计算机病毒传播模型,计算机病毒在不同网络中的传播所表现出的不同性质,以及病毒传播机制对网络拓扑结构的影响等。
复杂网络理论在现实系统中应用的范围非常广泛,涉及到社会、生物、技术、经济等许多领域,如演员合作网、科研合作网、代谢网、电话网、Internet、WWW、商业网络[7、24-26]等等,而在国内对这些研究结果的介绍还相对较少。