(优选)第储层敏感性分析
- 格式:ppt
- 大小:607.50 KB
- 文档页数:20
储层的敏感性特征及开发过程中的变化摘要:由于储层岩石和流体的性质,储层往往存在多种敏感性,即速敏、水敏、盐敏、酸敏、碱敏、应力敏感性和温度敏感性等七种敏感性。
不同的敏感性产生的条件和产生的影响都有各自的特点。
本文主要从三个部分研究分析了储层的敏感性特征。
即:粘土矿物的敏感性;储层敏感性特征;储层敏感性在开发过程中的变化。
通过这三个方面的研究,希望能给生产实际提供理论依据,进而指导合理的生产。
关键词:粘土矿物;储层;敏感性1.粘土矿物的敏感性特征随着对储层研究进一步加深,除了进行常规的空隙结构和空隙度、渗透率、饱和度等的研究外,还必须对储层岩心进行敏感性分析,以确定储层与入井工作液接触时,可能产生的潜在危险和对储层可能造成伤害的程度。
由于各种敏感性多来至于砂岩中粘土矿物,因此它们的矿物组成、含量、分布以及在空隙中的产出状态等将直接影响储层的各种敏感性。
1.1 粘土含量在粒度分析中粒径小于5um者皆称为粘土,其含量即为粘土总含量。
当粘土矿物含量在1%~5%时,则是较好的油气层,粘土矿物超过10%的一般为较差的油气层[1]。
1.2 粘土矿物类型粘土矿物的类型较多,常见的有蒙皂石、高岭石、绿泥石、伊利石以及它们的混层粘土[2]。
粘土矿物的类型和含量与物源、沉积环境和成岩作用阶段有关。
不同类型的粘土矿物对流体的敏感性不同,因此要分别测定不同储集层出现的粘土矿物类型,以及各类粘土矿物的相对含量。
目前多彩采用X射线衍射法分析粘土矿物。
常见粘土矿物及其敏感性如表1所示。
1.3 粘土矿物的产状粘土矿物的产状对储层内油气运动影响较大,其产状一般分为散状(充填式)、薄层状(衬底状)和搭桥状[1]。
在三种粘土矿物类型中,以分散式储渗条件最好;薄层式次之;搭桥式由于孔喉变窄变小,其储渗条件最差。
除此之外,还有高岭石叠片状,伊/蒙混层的絮凝状等,而且集中粘土矿物的产状类型也不是单一出现的,有时是以某种类型为主,与其它几种类型共存。
2010年精细管理油水井动态分析比赛试题库一、填空题1、石油主要是由三种烃类组成:即烷烃、环烷烃和(芳香烃)。
2、根据油田水与油﹑气分布的相对位置,分为(底水)﹑边水和夹层水。
3、在现场油水井动态分析中,经常应用油田水的水型和(总矿化度)的变化来判断油井的见水情况。
4、由油管向油层注水称为(正注)。
5、采油井水淹状况资料可直接反映油层的(剩余油)及储量动用状况。
6、含水率是表示油田油井含水多少的指标,它在一定程度上反映油层的(水淹程度)。
7、沉积旋回有(正旋回、反旋回、复合旋回)三种类型。
8、注水调剖要达到调整(吸水剖面)、改善水驱开发效果的目的。
9、砂岩的主要胶结物为(泥质)和灰质。
10、表示含油性好坏的指标用含油(饱和度)。
11、褶皱分为背斜和(向斜)。
13、开发方式一般可分为两大类,一类是利用油藏的(天然)能量进行开采,另一类是采取人工补充油层能量进行开发。
14、七点法面积注采井网中,1口采油井受周围(6)注水井的影响。
15、保持一定的(沉没度)可以防止抽油泵受气体影响或抽空,有利于提高泵效。
16、电潜泵排量是单位时间内油泵排出液体的(体积)。
17、在油井生产过程中,所测得的油层中部压力叫(流动)压力。
19、地层条件下的原油粘度除受油藏温度和油藏压力影响外,还受构成原油的(组分)和天然气在原油中的(溶解度)的影响。
21、聚合物提高采收率的主要机理是(提高驱油剂的波及系数),表面活性剂驱提高采收率的主要机理是(提高驱油剂的洗油效率)。
22、油井流入动态关系IPR曲线是指(油井产量)与(井底流压)的关系,它表示油层向井底的供液能力,它是分析油井动态和进行油井生产系统设计的基础。
23、注水井的洗井方式包括(正洗)、(反洗)、(正反洗)。
24、通过水井压力测试测得的资料可算出单井的(吸水指数)和(注水压差)。
25、油气藏内的油水界面与油层顶界的交线称为(外含油边界)。
26、油层本身的产液能力用(采液指数)来衡量的。
储层的五种敏感性:
几乎所有井的油层都会受到不同程度的损害,油层损害必然导致产能损失及产量下降。
储层对于各种类型地层损害的敏感性程度,即为储层敏感性。
1、速敏性是指因流体流动速度变化引起地层微粒运移、堵塞喉道,导致渗透率下降的现象。
速敏性研究的目的是在于了解储层的临界流速及渗透率的变化与储层中液体流动速度的关系。
地层微粒是指地层中包括粘土微粒和其它矿物的碎屑微粒在内的所有可移动微粒,它的存在是引起速敏性的内因。
2、水敏性储层中粘土矿物及其它自生矿物在原始地层条件下处于一种含有一定矿化度的盐水环境中,当淡水或低矿化度的水进入地层后,由于环境条件的改变,这些矿物就会发生膨胀、分散、脱落和运移,减小或堵塞储层喉道,造成储层渗透率降低,地层这种遇淡水降低渗透率的现象称水敏性。
3、酸敏性:用各种酸液处理地层,已成为油气田开发改造过程中的常用措施,它可以清除井筒附近地层的酸溶性堵塞,溶蚀岩石矿物,扩大油气流通通道,改善油气层渗流能力。
在酸处理过程中,如果酸液选择或施工程序不合理,也会对地层造成损害。
酸液进入地层后,与地层中的酸敏性矿物发生反应,产生沉淀或释放出微粒,使地层渗透率下降的现象称为酸敏性。
4、碱敏性是指碱性工作液进入储层后,与储层岩石或储层液体接触,并使储层渗流能力下降的现象。
5、压敏性:应力敏感性是指岩石渗透率随有效应力(或称净围压)的增加而下降的现象。
中国石油大学(华东)22春“石油工程”《采油工程方案设计》期末考试高频考点版(带答案)一.综合考核(共50题)1.盐敏评价实验的目的是找出孔隙度明显下降的临界矿化度,以及由盐敏引起的油气层损害程度。
()A、错误B、正确参考答案:A2.射孔参数与油井产能比关系正确的有()。
A、孔密越大产能比越小B、孔深越大产能比越大C、油藏越均质产能比越大D、孔径越大产能比越小参考答案:BC3.生产套管设计的主要内容在于套管尺寸、强度和密封性设计。
()参考答案:正确4.采油工程方案设计的基础资料包括油田地质资料、油藏工程资料以及采油工程方案中所涉及的各单项工程设计的基础资料等。
()参考答案:正确5.砾石充填完井砾石用量等于充填部位的体积。
()参考答案:A6.下列说法正确的是()。
A.化学防砂一般适用于薄层短井段粉细砂B.机械防砂一般成功率低,有效期短C.机械防砂一般比化学防砂产能损失小D.机械防砂一般比化学防砂产能损失大参考答案:AC7.下列稠油分类说法正确的是()。
A、地面脱气原油粘度大于50mPa·sB、地层条件下脱气原油粘度大于50mPa·sC、特稠油20℃时原油密度大于980kg/m3D、20℃时脱气原油密度大于920kg/m3参考答案:BD8.土酸处理油气层时盐酸预处理有利用降低酸化成本、提高酸化效果。
()参考答案:正确9.简述注水井试注中排液的目的。
参考答案:1、排出钻井,完井过程中产生的不同程度的伤害与堵塞;2、在井底附近造成适当地低压区,为注水创造有利的条件;3、可以采出注水井井底附近部分原油,减少地层储量损失。
10.B、正确参考答案:A11.射孔孔眼方位平行于射孔井段的最大应力方向,则()。
A.节流表皮效应大B.流动效应高C.易出砂D.破裂压力低参考答案:BD12.采油工程方案设计时需要收集的油藏工程资料主要包括什么?参考答案:1、油藏流体的组成及性质,包括地面原油性质,天然气性质、油田地层水性质以及地层原油“PVT”等分析资料。
用测井确定储层敏感性用测井确定储层敏感性文章编号:025322697(1999) 0420214238用测井确定储层敏感性孙建孟3 李召成(塔里木石油勘探开发指挥部)应用测井确定储层敏感性是一个全新的课题。
在收集薄片、铸体薄片、粒度、压汞、扫描电镜、物性、敏感性X —衍射、流动实验等各种岩心分析资料的基础上, 首次探讨了应用测井确定储层敏感性的问题。
从测井信息中提取的石英骨架、长石骨架、岩屑骨架、泥质、蒙脱石、绿泥石、伊利石、高岭石、粒度中值、地层水总矿化度、综合物性参数、孔隙度、渗透率、毛细管半径中值等14个参数, 经过岩心标定(即测井建模) 后, 都可由测井信息连续处理获得。
以这些参数为基础进行了储层敏感性与各参数的单相关分析, 提出了理论排序表, 并提出了单相关系数加权的方法来实现由测井预测储层敏感性。
应用该方法对我国西部某油田进行了实际处理分析, 结果表明由测井连续处理得到的速敏、水敏、盐敏、与该地区的敏感性流动实验结果基本吻合。
它对指导探井泥浆配方设计、层保护有重要意义。
主题词:储层敏感性; 自然伽马能谱测井; ; 1 前言。
它是一个贯穿油气田勘探开发始终的问题。
在钻前或钻进过程中, 研究储层敏感性对指导泥浆配方设计、及时发现有工业价值的油气层和及时进行油气层保护有重要意义。
常规的储层敏感性分析研究是建立在岩心分析基础之上, 直接由各种岩心分析资料(如薄片、铸体薄片、粒度、压汞、扫描电镜、物性、敏感性流动实验等) 得出结论。
这样取得的结果一般从时间上来不及X —衍射、用于取样分析井, 因为完成这些实验过程需要较长的实验周期和资金投入。
用测井确定储层敏感性是一个全新的课题。
它的研究成功提高了时效、省去对大部分井的岩心分析实验, 通过测井与地震结合还可实现探井钻前预测敏感性。
因此本文具有较强生产实用价值。
2 储层敏感性及其影响因素储层敏感性是储层对于各类地层伤害的敏感性程度。
敏感性主要分为速敏、水敏、盐敏、酸敏、碱敏及结垢。
储集层敏感性及五敏试验1.基本概念所谓储集层敏感性,是指储集层岩石的物性参数随环境条件(温度,压力)和流动条件(流速,酸,碱,盐,水等)而变化的性质。
岩石的物性参数,我们主要研究孔隙度和渗透率。
衡量储集层岩石的敏感程度我们常用敏感指数来,敏感指数被定义为在条件参数变化一定数值时,岩石物性减小的百分数,习惯上用SI 来表示。
我们以渗透率这个物性参数为例,给出其一个基本公式:i ik p K K K SI -= (1-1)上标表示岩石物性参数,用下标表示条件参数。
上式定义的是渗透率对地层压力的敏感指数。
敏感指数的物理含义是指条件参数变化一定数值以后,岩石物性参数损失的百分数(主要是孔隙度和渗透率)。
所以我们要想了解油藏的敏感指数就必须了解条件参数的变化幅度,从而我们可以求出敏感指数。
在实际矿场中,渗透率比孔隙度更能影响储集层产能。
因此渗透率的研究尤为重要。
储集层渗透率因为地层压力的改变而呈现出的敏感性质,称作储集层的压力敏感,压力敏感指数用符号P SI 表示。
由以上可以知道下面的概念。
储集层渗透率因为地层温度的改变而呈现出的敏感性质,称作储集层的温度敏感,简称热敏,用T SI 表示。
储集层渗透率因为渗流速度的改变而呈现出的敏感性质,称作储集层的温度敏感,简称热敏,用v SI 表示。
储集层渗透率因为注入液体的盐度的改变而呈现出的敏感性质,称作储集层的盐度敏感,简称盐敏,用salSI 表示。
储集层渗透率因为注入液体的酸度的改变而呈现出的敏感性质,称作储集层的酸度敏感,简称酸敏,用aciSI 表示。
储集层渗透率因为注入液体的碱度的改变而呈现出的敏感性质,称作储集层的碱度敏感,简称酸敏,用alk SI 表示。
储集层渗透率因为注入淡水而呈现出的敏感性质,称作储集层的水敏性质,简称水敏,用w SI 表示。
其中我们最常用的就是五敏:速敏,水敏,盐敏,酸敏,碱敏,实验室常做五敏实验来判断油藏性质。
如果一个油藏水敏,那么我们一定要对其做盐敏实验。
粘土矿物分析在储层潜在敏感性评价中的应用一、粘土矿物类型粘土矿物(clay minerals)是粘土和粘土岩中晶体一般小于2微米,主要是含水的铝、铁和镁的层状结构硅酸盐矿物。
有的在其成分中还有某些碱金属或碱土金属存在。
粘土矿物包括高岭石族矿物、蒙皂石、蛭石、粘土级云母、伊利石、海绿石、绿泥石和膨胀绿泥石以及有关的混层结构矿物,此外还包括具过渡性的层链状结构的坡缕石(凹凸棒石)和海泡石以及非晶质的水铝英石。
除水铝英石外均属层状或层链状结构硅酸盐,因此粘土矿物可按层状结构硅酸盐矿物的分类来划分。
粘土矿物按成因可分为他生粘土矿物和自生粘土矿物两类,他生粘土矿物主要是来自沉积物源区的陆源矿物,矿物成分与母源区岩石类型关系密切;自生粘土矿物为储层在特定成岩阶段化学反应析出的矿物,如自生绿泥石、自生高岭石等。
不同成因粘土矿物通常具有不同的矿物组合、产状、晶形和分布规律等特征。
粘土矿物的粒度细小,其大小和形态需用电子显微镜才能测定。
多数粘土矿物如伊利石等呈鳞片状,结晶良好的高岭石则呈完整的假六方片状。
少数粘土矿物呈管状(埃洛石)或纤维状(坡缕石和海泡石)。
晶体结构与晶体化学特点决定了它们的如下一些性质。
①离子交换性。
具有吸着某些阳离子和阴离子并保持于交换状态的特性。
一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、CI-、(PO4)3-、(NO3)-。
产生阳离子交换性的原因是破键和晶格内类质同象置换引起的不饱和电荷需要通过吸附阳离子而取得平衡。
阴离子交换则是晶格外露羟基离子的交代作用。
②粘土-水系统特点。
粘土矿物中的水以吸附水、层间水和结构水的形式存在。
结构水只有在高温下结构破坏时才失去,但是吸附水、层间水以及海泡石结构孔洞中的沸石水都是低温水,经低温(100~150℃)加热后就可脱出,同时象蒙皂石族矿物失水后还可以复水,这是一个重要的特点。
粘土矿物与水的作用所产生的膨胀性、分散和凝聚性、粘性、触变性和可塑性等特点在工业上得到广泛应用。
考虑温度因素的储层敏感性预测方法近年来,随着石油资源的日益枯竭和环境污染的加剧,对油气储层的有效开发和管理日益成为焦点。
而储层敏感性预测是油气勘探开发中关键的一环,其能够为储层优化开发和管理提供科学依据和指导。
而在考虑储层温度因素的情况下,预测储层敏感性的方法就显得尤为重要。
储层敏感性是指储层岩石对采油活动的敏感程度,这种敏感程度反映了岩石物性与采油活动之间的相互影响关系。
储层敏感性预测方法可以通过分析储层岩石的物性参数及层位结构、耐受破坏能力等方面,对储层对采油活动的响应进行定量分析和评估。
传统的储层敏感性预测方法主要以地质统计分析为主,忽略了温度因素对储层敏感性的影响。
实际上,储层温度是影响储层敏感性的重要因素之一。
温度会改变储层岩石的物性参数和层位结构,从而影响储层的响应。
针对这种情况,本文提出了一种考虑储层温度因素的敏感性预测方法,其主要包括以下步骤:(1)储层物性参数测试和分析首先,对储层进行物性测试,包括孔隙度、渗透率、饱和度、流体粘度等参数的测定,并对测得的数据进行分析和处理。
这些参数是决定储层敏感性的关键因素,可以通过统计分析等手段研究其变化规律和敏感性关系。
(2)搜集和分析温度数据通过地质勘探和测井工作,获取储层的温度数据,分析其分布规律和变化趋势。
同时,将获得的温度数据与物性参数进行匹配,以研究温度对物性参数变化的影响,进而评估储层敏感性。
(3)储层敏感性评估模型构建针对以上收集和分析的数据,可以建立储层敏感性评估模型,该模型可以通过统计学方法建模,并考虑到温度对储层敏感性的影响,从而对储层敏感性进行更加准确的预测和评估。
(4)预测模型验证建立模型后,需要对模型进行验证,以确定模型的准确性和可靠性。
其中,可以通过地球物理数据和实际开采数据和采油实验数据作为参考,评估模型的准确性、稳定性和预测效果。
综上所述,考虑温度因素的储层敏感性预测方法可以更全面地评估储层的响应,提高储层的开发和管理效率,具有重要的研究价值。