高中数学最常用公式及结论(非常有用)
- 格式:doc
- 大小:2.94 MB
- 文档页数:30
完整版)高中数学公式大全完整版高中数学常用公式及常用结论1.包含关系若集合A包含于集合B,则AB=B;若AB=B,则A为B 的子集;若C为A和B的并集,则B包含于C;若A和B的交集为∅,则AB=∅;若AB=R,则A和B互为补集。
2.集合的子集集合{a1,a2,…,an}的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个。
3.充要条件1)充分条件:若p→q,则p是q的充分条件。
2)必要条件:若q→p,则p是q的必要条件。
3)充要条件:若p→q,且q→p,则p是q的充要条件。
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然。
4.函数的单调性1)设x1≠x2,且x1,x2∈[a,b],则有:f(x1)−f(x2)>0 ⇔ f(x)在[a,b]上是增函数;f(x1)−f(x2)<0 ⇔ f(x)在[a,b]上是减函数。
2)设函数y=f(x)在某个区间内可导,如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。
5.函数的性质如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)+g(x)也是减函数;如果函数y=f(u)和u=g(x)在其对应的定义域上都是减函数,则复合函数y=f[g(x)]是增函数。
6.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,则这个函数是奇函数;如果一个函数的图象关于y轴对称,则这个函数是偶函数。
7.函数的对称轴对于函数y=f(x)(x∈R),若f(x+a)=f(b−x)恒成立,则函数f(x)的对称轴是函数x=a+b/2;函数y=f(x+a)与y=f(b−x)的图象关于直线x=a+b/2对称。
8.几个函数方程的周期(约定a>0)1)f(x)=f(x+a),则f(x)的周期T=a;2)f(x+a)=−f(x),或f(x+a)=f(−x)(f(x)≠0),则f(x)的周期T=2a。
高中数学常用公式及结论1. 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅Ø2.德摩根公式 :();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系:A B ⊆⇔A B A A B B =⇔= U U C B C A ⇔⊆U A C B ⇔=Φ U C A B R ⇔= 5.集合12{,,,}n a a a 的子集个数共有2n个;真子集有21n-个;非空子集有21n-个;非空的真子集有22n-个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式)(3)零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。
(当已知抛物线与直线y kx d =+相切且切点的横坐标为0x 时,设为此式)7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔()0()f x NM f x ->-()()f x N f x M⇔><⎧⎨⎩.8.方程)0(02≠=++a c bx ax 在),(21k k 内有且只有一个实根,等价于12()()0f k f k <或122240b k k a b ac ⎧<-<⎪⎨⎪∆=-=⎩。
9.闭区间上的二次函数的最值 二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在a b x 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p abx ,2∈-=,则 {}min max max ()(),()(),()2bf x f f x f p f q a =-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.(2)当a<0时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =, 若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程2()f x x px q =++=0的实根分布(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或22240()0p m n m p q f n +⎧<-<⎪⎪-≥⎨⎪>⎪⎩或22240()0m n p n p q f m +⎧≤-<⎪⎪-≥⎨⎪>⎪⎩;(3)方程0)(=x f 在区间(,)m -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互否互11.定区间上含参数的不等式恒成立(或有解)的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的不等式()f x t ≥(t 为参数)恒成立的充要条件是min (),()f x t x L ≥∈。
高中数学重要公式、定理与结论第一章 集合与常用逻辑用语1.集合 对A x ∈∀,都有B x ∈,则B A ⊆.2.①如果“若p ,则q ”,那么p 是q 成立的充分条件; ②如果“若q ,则p ”,那么p 是q 成立的必要条件.3.①命题的否命题:“若p ,则q ” 的否命题为“若p ⌝,则q ⌝” ②命题的否定:“若p ,则q ” 的否定为“若p ,则q ⌝” ③命题的否定:∀的否定为∃,∃的否定为∀,≤的否定为>第二章 函数1.增函数 对⊆∈∀D x x 21,定义域I,当21x x <时,都有⇔<)()(21x f x f )(x f 为增函数0)(0)()(1212>'⇔>--⇔x f x x x f x f2.奇偶性 ①设)(x f 定义域D 关于原点对称,若D x ∈∀,有⇔-=-)()(x f x f )(x f 为奇函数;又有⇔==-|)(|)()(x f x f x f )(x f 为偶函数②xxy -+=11lg,)1(log 2x x y a -+=,|2|212+--=x x y 均为奇函数③奇函数的图象关于原点对称;奇函数的偶次项系数为0④偶函数的图象关于y 轴对称;偶函数的奇次项系数为0⑤奇±奇=奇 偶±偶=偶 奇⨯偶=奇3.对称性 ①点),(y x P 关于x 轴、y 轴、原点对称的点分别为),(y x Q -、),(y x R -、),(y x S --②点)3,2(A 关于1-=x y 的对称点是)1,4(B 点)3,2(A 关于1--=x y 的对称点是)3,4(--C③)(x f 关于a x =对称⇔)()(x a f x a f +=-⇔)()2(x f x a f =-(2014山东文科9题))(x f 关于)0,(a A 对称⇔)()(x a f x a f +-=-⇔)()2(x f x a f -=-4.周期性 ①对)(x f ,若∃常数0≠T ,对∈∀x 定义域D ,都有)()(x f T x f =+⇔)(x f 的周期为T ②若)()1(x f x f -=+,则2=T 若)(1)2(x f x f =+,则4=T 证明: ③若)(1)3(x f x f -=+,则6=T 若)5()4(-=+x f x f ,则9=T证明:④函数的对称性与周期性的关系: 对+对=周 5.指、对数函数 ①当0>a,1≠a 时,N x N a a x log =⇔=.)0(>N②101log 0=⇔=a a ,a a a a =⇔=11log ,对数恒等式N aNa =log③若0>a,1≠a ,0>M ,0>N ,则N M N M a a a log log )(log +=⋅,N M NMa a alog log log -=, Mn M a n alog log =, M nM a nalog 1log =④对数换底公式 若0>a ,1≠a ,0>c ,1≠c ,0>b ,1≠b 则abb c c a log log log =;1log log log 1log =⋅⇔=a b ab b a b a⑤b mnb a na mlog log =,b b b aa a log log log 22==6.幂函数αx y =,1,21,3,2,1-=α. 7.函数与方程 ①方程0)(=x f 有实根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点②如果函数)(x f y =在区间],[b a 上图象是连续的一条曲线,并且有0)()(<⋅b f a f ,那么,函数)(x f y =在区间),(b a 内有零点,即),(b a c ∈∃,使得0)(=c f ,这个c 就是方程0)(=x f 的根.第三章 导数及其应用1.切点),(00y x P 、切线、曲线)(x f y =三句话: ①切点),(00y x P 在切线上;②切点),(00y x P 在曲线)(x f y =上;③导函数)(x f '在切点),(00y x P 横坐标0x 处的值=')(0x f 切线的斜率.2.x a y =的导函数为a a y x ln =';x y a log =的导函数为e xy a log 1='. 第四章 三角函数一、任意角与弧度制 1.正、负、零角. 2.与角α终边相同的角 }360|{Z k k S ∈⋅+==,终 αββ3.轴线角}90|{Z k k S ∈⋅==,轴 αα },36090360|{1Z k k k S ∈⋅+<<⋅= αα4.象限角),36018036090|(2Z k k k S ∈⋅+<<⋅+= αα5弧度制 (1)把长度等于半径长的弧所对的圆心角叫做1弧度角π2360=(2)弧长与扇形面积公式R Rn l ⋅==||180απ,lR R n S 213602==π扇形 二、任意角的三角函数及正弦、余弦的诱导公式 1.设α是一个任意角,),(y x P 在α的终边上,0||22>+==y x PO r ,则αsin =r y ,αcos =r x ,αtan =xy,αcot =y x .2.三角函数线 MP =αsin ,OM =αcos ,AT =αtan .设2πα<<,证明:αααtan sin <<.证明:3.三角函数的符号 一、全为正;二、正弦正;三、正(余)切正;四、余弦正.4.同角关系式及正弦、余弦的诱导公式 奇变偶不变,符号看象限1829=⨯个公式1cos sin 22=+αα,αααtan cos sin =,1cot tan =αα,αα22tan 11cos +=三、正弦函数、余弦函数的图象和性质 1.x y sin =的关键五点:)0,0(,)1,2(π,)0,(π,)1,23(-π,)0,2(π.x y cos =的关键五点:)1,0(,)0,2(π,)1,(-π,)0,23(π,)1,2(π.2.主要性质(1)定义域均为R ,(2)值域均为]1,1[-,(3)最大、最小值为x y sin =当且仅当Z k k x ∈+=,22ππ时,1max =y ,x y sin =当且仅当Z k k x ∈+-=,22ππ时,1min -=y .x y cos =当且仅当Zk k x ∈=,2π时,1max =y ,x y cos =当且仅当Z k k x ∈+=,2ππ时,1min -=y .(4)对称性x y sin =的对称轴方程为Z k k x ∈+=,2ππ,对称中心为)0,(πk A )(Z k ∈.x y cos =的对称轴方程为Z k k x ∈=,π,对称中心为)0,2(ππ+k B )(Z k ∈.(5)周期性)sin(ϕω+=x A y 及)cos(ϕω+=x A y 的周期均为||2ωπ=T . (6)奇偶性⇒-=-x x sin )sin(x y sin =为奇函数,⇒=-x x cos )cos(x y cos =为偶函数. (7)单调性x y sin =的递增区间为)](22,22[Z k k k ∈++-ππππx y sin =的递减区间为)](223,22[Z k k k ∈++ππππx y cos =的增区间为)](2,2[Z k k k ∈+-πππx y cos =的减区间为)](2,2[Z k k k ∈+πππ四、函数)sin(ϕω+=x A y 的图象 1.平移与伸缩 将x y sin =变为)32sin(3π+=x y (两法)2.五点作图)62sin(π+=x y3.函数)sin(ϕω+=x A y )0,0(>>ωA 中,A 叫振幅,ωπ2=T 叫周期,Tf 1=叫频率,ϕω+x 叫相位,ϕ叫初相. 4.正切函数的图象和性质x y tan =的定义域为},2|{Z k k x x ∈+≠ππ,值域为R ,周期为π,⇒-=-x x tan )tan(x y tan =为奇函数,)tan(ϕω+=x A y 的周期为||ωπ=T , x y tan =的递增区间为))(2,2(Z k k k ∈++-ππππ5.已知三角函数值求角 (1)若21sin =x ,且],0[π∈x ,则=x . 65,6ππ;(2)若23cos -=x,且],[ππ-∈x ,则=x . 65π±;(3)若1|tan |3=x ,且)2,2(ππ-∈x ,则=x . 6π±;六、两角和与差的正弦、余弦、正切;二倍角的正弦、余弦、正切;降幂公式. 1.βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=-(新教材必修4,125108,P P 两次证明此公式)βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin cos cos sin )sin(-=- βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-2.)6sin(2sin 3cos πααα+=+ )4sin(2cos sin π-=-x x x3.)tan tan 1)(tan(tan tan βαβαβα-+=+4.二倍角的正弦、余弦、正切 1.αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=,ααα2tan 1tan 22tan -=5.降幂公式22cos 1sin 2θθ-=,22cos 1cos2θθ+=2cos 12sin 2αα-=,2cos 12cos2αα+=,αααααsin cos 1cos 1sin 2tan-=+=第五章 平面向量设),(11y x =,),(22y x =,则①),(2121y y x x ±±=±,2121y y x x +=⋅;②||212121z y x ++=,><=⋅,cos ||||,π>≤≤<,0,22||=;③222222212121212121||||,cos zy x z y x z z y y x x b a ++⋅++++=⋅>=<,2222||bb a a b a +±=±;④0)0(//1221=-⇔≠=⇔y x y x b b a ba λ;⑤002121=+⇔=⋅⇔⊥y y x xb a b a ;⑥在ABC ∆中,BA BC BC AB AC -=+=;在四边形ABCD 中,⇔=平行四边形ABCD ,⇔-=+||||矩形ABCD ;⑦在上的投影等于><,cos ||;⑧(11陕西)叙述并证明余弦定理.A bc c b a cos 2222-+=,cab ac B 2cos 222-+=(两种叙述法、三种证明方法:向量加法、向量减法、建系坐标法) 证明:叙述并证明正弦定理.R CcB b A a 2sin sin sin ===,(两种叙述法、三种证明方法:向量加法、等面积法、三角形外接圆直径法) 证明:⑨仰角、俯角:视线与水平线所成角;方位角:从正北方向顺时针转到目标方向线的水平角.第六章 数列数列(递推、规律、等差、等比、裂项、错位)常用公式与方法(设n S 为数列{}n a 的前n 项和)一.设n n na a a a S ++++=-121 ,1211--+++=n n a a a S ,则⎩⎨⎧≥-==-)2()1(11n S S n S a n nn(2015课标Ⅱ理科16题) 二.等差数列 1.定义:}{1n n n a d a a ⇔=-+是等差数列212+++=⇔n n n a a a .2.通项公式:d m n a d n a a m n )()1(1-+=-+=,mn a a d mn --=.3.求和公式:d n n na a a n S n n 2)1(2)(11-+=+=,要用倒序求和法证明第一公式.证明:4.性质:(1)若)2(t q p m n =+=+,则)2(t q p m n a a a a a =+=+.有n n a n S )12(12-=-.(2)n S ,n nS S -2,n n S S 23-也成等差数列.三.等比数列 1. 定义:}{1n n n a q a a ⇔=+是等比数列221++=⇔n n n a a a .2. 通项公式:2211--==n n nq a q a a .3.求和公式:⎪⎩⎪⎨⎧--=≠--==q q a a q q q a q na S n n n 1)1(1)1()1(111,要用错位相减法证明第一公式.证明:4.性质:(1)若)2(t q p m n =+=+,则)(2t q p m n a a a a a =⋅=⋅.(2)n S ,n n S S -2,n n S S 23-)0(≠n S 也成等比数列.四.求和方法 1.用等差、等比数列的求和公式求和或分类求和;3.“差比”数列,错位相减求和. 2.裂项相消求和,若da a n n =-+1,则)11(11++-=n n n n a a d m a a m ;五. 通项公式的求法(“整式”篇),设数列{}n a 中,11=a . 关键:想方设法变成等差数列或等比数列.1.n n a a 21=+. 12-=n n a ;2.31+=+n n a a . 23-=n a n ;3.n a a n n 21+=+(差后等差,累加求和) 12+-=n n a n ;4.n n n a a 31+=+. (差后等比,累加求和) )13(21-=nn a ; 5.321+=+n n a a .(一次等比,观察法或待定系数法) 321-=+n n a ; 6.n n n a a 221+=+.(除以n 2后,变成等差数列) 12-⋅=n n n a ; 7.n n n a a 321+=+. (除以n 2后,变成差后等比,累加求和) n n n a 23-=;8.)12(331+⋅+=+n a a n n n .(除以n 3后,变成差后等差,累加求和) 123-⋅=n n n a .解答:结论:若n a 等差,则na nb 2=等比. 即指数等差,则幂等比;若n a 等比,则n na b 2log =等差. 即真数等比,则对数等差.第七章 不等式基本不等式:设b a ≤<0,则b b a b a ab ba a ≤+≤+≤≤+≤<22112022 第八章 立体几何点、直线、平面之间的位置关系1.公理、推论、定理①公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内. ②公理2 过不在一条直线上的三点,有且只有一个平面.(以下推论新教材没有) 推论1 经过一条直线和直线外的一点有且只有一个平面 推论2 经过两条相交直线有且只有一个平面 推论3 经过两条平行直线有且只有一个平面 画图:③公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. ④公理4 平行于同一条直线的两条直线互相平行.⑤定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 2.直线、平面平行的判定及其性质①线面平行判定定理:α⊄a ,α⊂b ,且α////a b a ⇒. ②面面平行判定定理:β⊂a,β⊂b ,P b a = ,α//a ,αβα////⇒b .结论:(新教材没有)P b a = 确定平面α,Q d c = 确定平面β,c a //,βα////⇒db .③线面平行性质定理:α//a ,β⊂a ,b a b //⇒=αβ . ④面面平行性质定理:βα//,a =γα,b a b //⇒=γβ .画图:3.直线、平面垂直的判定及其性质①线面垂直判定定理:P ba = 确定平面α,a l⊥,α⊥⇒⊥l b l . 结论:三垂线定理及其逆定理(新教材没有):α⊥PO 于O ,A PA =α ,α⊂a ,于是,若OA a ⊥,则PA a ⊥;若PA a ⊥,则OA a ⊥.画图:②面面垂直判定定理:α⊥l ,αββ⊥⇒⊂l . ③线面垂直性质定理:α⊥a ,b a b //⇒⊥α.④面面垂直性质定理:βα⊥于l ,β⊂a ,α⊥⇒⊥a l a .画图:二面角的平面角的常见求法1.定义法:直接按《书下B 》第50页找出并证明l OBl OA ⊥⊥,,可得AOB ∠为二面角βα--l 的平面角.2.三垂线法:(必要条件:其中一个面有垂线)如图,α⊥1AA 于1A ,作BC D A ⊥1于D ,连结AD ,由三垂线定理,BC AD ⊥,则1ADA ∠就是二面角1A BC A --的平面角.或者,当α⊥1AA 于1A 时,作BC AD ⊥于D ,连结D A 1,由三垂线定理的逆定理,BC D A ⊥1,则1ADA ∠就是二面角1A BC A --的平面角.3.射影面积公式法:如图,设二面角1A BC A --的平面角1ADA ∠=ϑ,因为ABCBC A S S AD D A ∆∆==11cos ϑ,所以可用公式原射S S =ϑcos 求ϑ.4.空间一点垂面法:如图,设B PB A PA l 于,于βαβα⊥⊥=⋂,,则PAB l 平面⊥,设垂足为C ,连结BC AC ,,由线面垂直定义,l BC l AC ⊥⊥,,所以ACB ∠就是二面角βα--l 的平面角.5.异面直线距离公式法:详细请见《书下B 》55P 例2,ϑcos 22222mn n m d l ±++=,其中ϑ既是异面直线A E '与FA 所成角,又是二面角F A A E -'-的平面角.6.向量坐标公式法:详细请看:求角、求距离的向量坐标公式1.设异面直线b a ,所成角为ϑ,2,0(πϑ∈],则k b a =⋅>=<||||,cos ,||arccos k =ϑ(若0>k ,则k arccos =ϑ;若0<k ,则)arccos(k -=ϑ)2.设二面角βα--l 的平面角为ϑ,],0[πϑ∈,设21,n n分PA βαlCB别为βα,的法向量,则k n n n n =⋅>=<||||,cos 212121(1) 若ϑ为锐角,则||arccos k =ϑ; (2) 若ϑ为钝角,则|)|arccos(k -=ϑ(0>k,)arccos(k -=ϑ;0<k ,k arccos =ϑ) 3.设斜线AB 与平面α所成角为β,)2,0(πβ∈,为α的法向量,)sin (||||,cos β==⋅>=<k n AB(1) 若0>k 时,则k arcsin =β;(2) 若0<k 时,则)arccos(2k --=πβ4.设点P到平面α的距离为d,设点A为α的任一点,为α的法向量,因为||||||||cos ||n n AP d =⋅=⋅=ϑ)0(>⋅但无论⋅的正、负,均有:||n d =第九章 直线与圆的方程1.直线的倾斜角与斜率 ①αtan =k,),0[πα∈ ②1212x x y y k --=③BAk -=2.两直线垂直与平行 ①12121-=⋅⇔⊥k k l l ;0212121=+⇔⊥B B A A l l②2121//k k l l =⇔且21b b ≠;0//122121=-⇔B A B A l l 且1221C B C B ≠3.直线方程 ①点斜式 )(00x x k y y -=- ②斜截式b kx y += ③截距式1=+bya x ④一般式0=++C By Ax (A 、B 不同时为0) ⑤斜率不存在式0x x =4.距离公式①21221221)()(||y y x x P P -+-=②2200||BA C By Ax d +++=③2221||BA C C d +-=5.圆的一般方程022=++++F Ey Dx y x ,圆心)2,2(E D --,F E D r 42122-+=结论:设),(111y x P ,),(222y x P ,以21P P 为直径的圆的方程为0))(())((2121=--+--y y y y x x x x结论:将两圆方程相减所得的二元一次方程为两圆公共弦所在直线方程或两圆的公切线方程 第十章 圆锥曲线1.求曲线的方程方法 ①直译法 ②转移法或代人法 ③定义法2.弦长公式:||11||1||12122212y y ka k x x k L -+=∆+=-+= 证明:3.椭圆定义:设M 为动点,1F 、2F 为两定点,||2||||2121F F a MF MF >=+⇔点M 的轨迹为以1F 、2F 为焦点的椭圆.4.椭圆)0(12222>>=+b a by a x 的性质①范围(用放缩法推出)a x a ≤≤-,b y b ≤≤-;②对称性(用代换法推出)椭圆关于x 轴、y 轴、原点对称;③顶点(用解方程组法推出))0,(a ±、),0(b ±,b a ,分别为长、短半轴长,222c b a +=;④离心率(比值法))1,0(∈=ace5.椭圆第二定义:到定点)0,(c F 与到定直线l :ca x 2=距离之比是)1,0(∈ac的点的轨迹为椭圆. 结论:焦半径公式设点),(00y x M 是椭圆)0(12222>>=+b a by a x 的点,1F 、2F 为左、右焦点,则01||ex a MF +=,02||ex a MF -=. 近地点长为c a -,远地点长为c a +.证明:6.三个小性质 ①半通径长为ab 2; ②准线方程为c a x 2±=; ③焦准距长为cb 2证明:7.焦点三角形 设点P 在椭圆)0(12222>>=+b a by a x 上,1F 、2F 为两焦点,α=∠21PF F ,则三角形21PF F 的面积为2tan 2αb .在双曲线)0,0(12222>>=-b a b y a x 中,其面积为2cot2αb .证明:8.点差法(2015课标Ⅱ理科20题(1))与弦中点斜率公式设点M 是椭圆)0(12222>>=+b a b y a x 的弦AB 的中点,则22ab k k OM AB -=⋅.又设AB 是椭圆)0(12222>>=+b a b y a x 过原点的弦,点P 在此椭圆上,则22a b k k PB PA -=⋅.设点M 是双曲线)0,0(12222>>=-b a b y a x 的弦AB 的中点,则22ab k k OM AB =⋅.(2010课标理科12题) 证明:9.①双曲线)0,0(12222>>=-b a b y a x 的渐近线为x ab y ±=;222b a c +=②等轴双曲线⇔b a =⇔222a y x =-⇔x y ±=⇔2=e③从双曲线的一个焦点到一条渐近线的距离等于虚半轴长. 10.抛物线定义:动点M 到定点F 的距离等于M 到定直线l (l F ∉)的距离⇔点M 的轨迹为以F为焦点、直线l 为准线的抛物线. 11.抛物线的焦半径、焦点弦 设直线AB 过抛物线)0(22>=p px y 的焦点F 与其交于),(11y x A 、),(22y x B ,A 、B 到准线的距离分别为||AD 、||BC ,M 、N 分别为AB 、CD 的中点,则①4221p x x =,221p y y -=;②焦半径2||1px AF +=,2||2px BF +=; ③p BF AF 211=+; ⑥ 90=∠CFD ; ④焦点弦长为α221sin 2||pp x x AB =++=(α为AB 的倾斜角);(2014课标Ⅱ文科10题) ⑤三角形ABO 的面积为αsin 22p (α为AB 的倾斜角);(2014课标Ⅱ理科10题) ⑦90=∠ANB 证明:12.设直线AB 过抛物线)0(22>=p px y 的焦点F 与其交于A 、B ,① 若AO 交其准线于点D ,则x BD //轴; ②若⊥BD 准线于点D ,则A 、O 、D 三点共线.证明:第十一章 概率与统计1.①若B A 为不可能事件(φ=B A )⇒A 、B 互斥⇒)()()(B P A P B A P +=②若B A 为不可能事件,且B A 为必然事件⇒A 、B 对立⇒1)()(=+B P A P2.方差])()()[(1222212x x x x x x nsn -++-+-= 3.频率分布直方图公式:频率÷组距=纵坐标;频率=.频数÷样本容量第十二章 极坐标与参数方程1.极坐标与直角坐标的互化:θρθρsin ,cos ==y x ;)0(tan ,222≠=+=x xyy x θρ; 2.简单曲线的极坐标方程:圆r ==ρθρ,cos 2;射线)0(4≥=ρπθ,直线)(4R ∈=ρπθ3.参数方程①圆⎩⎨⎧+=+=θθsin cos r b y r a x (θ为参数);②椭圆⎩⎨⎧==ϕϕsin cos b y a x (ϕ为参数);③经过点),(000y x M 倾斜角为α的直线l 的参数方程为⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数);(2015课标Ⅱ理科23题)设),(y x M 为直线l 上的任一点,则t M =||0;设B A ,直线l 上的任两点,则||||21t t AB -=(2014江苏21题C ;)且||||||2100t t B M A M =⋅;(2015湖南16题(2);)第十三章不等式选讲1.绝对值三角不等式 设R b a ∈,,则||||||b a b a +≤+,当且仅当0≥ab 时,等号成立.2.柯西不等式 ①设R d c b a ∈,,,,则22222)())((bd ac d c b a +≥++,当且仅当bc ad =时,等号成立②设R b a ii ∈,,n i ,,2,1 =,则222112222122221)())((n n n n b a b a b a b b b a a a +++≥++++++ ,当且仅当=i b 或R k ∈∃,使得i i kb a =时,等号成立.(2015福建理科21题(3)) 初中圆的10个定理1.一推三(38P ):在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等. 结论:在同圆或等圆中,弦越长,则弦心距越短.2.二推二(垂径定理及推论40P ):经过圆心且垂直于弦的直线平分这条弦,并且平分这条弦所对的优、劣弧.(2015课标Ⅱ理科7题)结论:过圆内一点P 的最长弦是直径,最短弦是过点P 与直径垂直的那条弦. 画图:3.圆心角的度数定理:圆心角的度数等于它所对的弧的度数.4.圆周角的度数定理(43P ):圆周角的度数等于它所对的弧的度数的一半. 结论(41P ):同弧所对的圆周角相等;直径所对的圆周角是直角,反之也成立;结论:圆外角的度数等于它所对的弧的度数的差的一半;圆内角的度数等于它所对的弧的度数的和的一半. 画图:5.圆的切线的定义、判定、性质:①定义(49P ):直线与圆只有一个公共点,则此直线叫做圆的切线. ②圆的切线的判定定理(51P ):经过圆的半径的外端且垂直于这条半径的直线是圆的切线. ③圆的切线的性质定理(52P ):圆的切线垂直于过切点的半径. 画图:6.圆的弦切角度数定理:圆的弦切角的度数等于它所夹的弧所对的圆周角的度数. 证明:7.圆的切线长定理(53P ):从圆O 外一点P 引圆的两条切线PA 、PB (A 、B 为切点),则切线长相等,且PO 平分APB ∠. 证明:8.圆的切割线定理:PA 切圆O 于A ,PBC 与圆O 交于B 、C ,PDE 与圆O 交于D 、E ,则PE PD PC PB PA ⋅=⋅=2结论:圆的相交弦定理:圆O 的弦AB 、CD 相交P ,则PD PC PB PA ⋅=⋅.证明:9.四点共圆:在四边形ABCD 中,若对角互补,则A 、B 、C 、D 四点在同一圆上. 结论:在四边形ABCD 中,若外角等于内对角,则A 、B 、C 、D 四点在同一圆上. 结论:若A 、B 、C 、D 四点在同一圆上,则对角互补、外角等于内对角.画图:10.两圆位置关系 设圆1O 、圆2O 的半径分别为R 、r ,圆心距d O O =21,①两圆外离⇔r R d +>; ②两圆外切⇔r R d +=;③两圆相交⇔r R d r R +<<-;结论:两圆相交连心线21O O 垂直平分公共弦. ④两圆内切⇔r R d -=;结论:两圆相切连心线21O O 过切点;⑤两圆内含(同心圆)⇔r R d -<≤0.画图:11.①初中射影定理:在三角形ABC 中, 90=∠C ,CD 是高,则BD AD CD ⋅=2,且AB AD AC ⋅=2,AB BD BC ⋅=2.据此可证明勾股定理.②结论:直角三角形的斜边上的中线等于斜边的一半.结论:在一个三角形中,若一边上的中线等于这边的一半,则这个三角形是直角三角形. 画图:③三角形内角平分线性质定理:三角形的内角平分线分对边所得两条线段的比等于角的两边的比 (2011全国大纲15题;2015课标Ⅱ文、理科17题;2015重庆理科13题;) 证明:④在平行四边形ABCD 中,)(22222BC AB BD AC +=+.(2015四川理科19题考此结论证明方法)证明:12.三角形的四心:①三角形ABC 的三条中线AD 、BE 、CF 的交点G 叫做三角形ABC 的重心.若G 是三角形ABC 的重心,则GD AG 2=,BE BG 32=,GF CF 3=.②三角形ABC 的三条内角平分线的交点I 叫做三角形ABC 的内心. 内心I 是三角形ABC 的内切圆的圆心,内心I 到三边的距离相等.③三角形ABC 的三条边的中垂线的交点O 叫做三角形ABC 的外心. 外心O 是三角形ABC 的外接圆的圆心,外心O 到三顶点的距离相等.直角三角形的外心O 是其斜边的中点. (2015课标Ⅱ文科7题) ④三角形ABC 的三条高线的交点H 叫做三角形ABC 的垂心.直角三角形的垂心是其直角顶点.13.设O 是三角形ABC 平面内任一点,则0=⋅+⋅+⋅∆∆∆OC S OB S OA S OAB OCA OBC .画图:初步认识课标(2010年起)卷Ⅱ宜宾三中 欧建兵1.从2010年起,请(文理科)考生在第22、23、24三题中任选一做答,若多做,则按所做的第一题计分. 22题(选修4-1):几何证明选讲;23题(选修4-4):坐标系与参数方程;24(选修4-1):不等式选讲2.从2010年起,考数列大题,就不考三角函数大题,而考两道三角函数小题;反之,考三角函数大题,就不考数列大题,而考两道数列小题;2010年:17题考数列大题,考两道三角函数小题;(文、理科考法相同,但题不同) 2011年:17题考数列大题,考两道三角函数小题;(文、理科考法相同,但题不同) 2012年:17题考三角函数大题,考两道数列小题;(文、理科考法相同,但题不同) 2013年:课标卷Ⅰ理科17题考三角函数大题,考两道数列小题;课标卷Ⅰ文科17题考数列大题,考两道三角函数小题; 课标卷Ⅱ理科17题考三角函数大题,考两道数列小题; 课标卷Ⅱ文科17题考数列大题,考两道三角函数小题;2014年:课标卷Ⅰ 17题考数列大题,考两道三角函数小题;(文、理科考法相同,但题不同) 课标卷Ⅱ理科17题考数列大题,考两道三角函数小题;课标卷Ⅱ文科17题考三角函数大题,考两道数列小题;2015年:课标卷Ⅰ理科17题考数列大题,考两道三角函数小题; 课标卷Ⅰ文科17题考三角函数大题,考两道数列小题; 课标卷Ⅱ理科17题考三角函数大题,考两道数列小题;课标卷Ⅱ文科17题考三角函数大题,考两道数列小题;3.既要直接考常见结论或公式,例如①设点M 是双曲线)0,0(12222>>=-b a b y a x 的弦AB 的中点,则22ab k k OM AB =⋅.(2010课标理科12题) 设直线AB 过抛物线)0(22>=p px y 的焦点F 与其交于),(11y x A 、),(22y x B②焦点弦长为α221sin 2||pp x x AB =++=(α为AB 的倾斜角);(2014课标Ⅱ文科10题) ③三角形ABO 的面积为αsin 22p (α为AB 的倾斜角);(2014课标Ⅱ理科10题) 又要考常见结论或公式的证明方法,例如点差法(2015课标Ⅱ理科20题(1))与弦中点斜率公式设点M 是椭圆)0(12222>>=+b a b y a x 的弦AB 的中点,则22ab k k OM AB -=⋅.4.加强了对平面几何的考查 例如 ①两次考三角形ABC 的外心:(2015课标Ⅱ文科7题);(2015课标Ⅱ理科7题); ②三次考三角形内角平分线性质定理:三角形的内角平分线分对边所得两条线段的比等于角的两边的比 (2011全国大纲15题;2015课标Ⅱ文、理科17题;2015重庆理科13题;) ③在平行四边形ABCD 中,)(22222BC AB BD AC +=+.(2015四川理科19题考此结论证明方法)5.选择题、填空题的最后一题均没有四川卷那么难、那么怪,有利于高中数学教学①(2014课标Ⅱ理科12题)设mxx f πsin3)(=有极值点0x 满足2202)]([m x f x <+,则∈mA.),6()6,(+∞--∞B. ),4()4,(+∞--∞C. ),2()2,(+∞--∞D. ),1()1,(+∞--∞②(2014课标Ⅱ理科16题)设点)1,(0x M ,若在圆O :122=+y x 上存在点N ,使得 45=∠OMN ,则0x 的取值范围是 . (也是2014课标Ⅱ文科12题)③(2014课标Ⅱ文科16题)数列}{n a 满足nn a a -=+111,28=a ,则=1a .④(2015课标Ⅱ理科12题)设函数)(x f '是奇函数))((R x x f ∈的导函数,0)1(=-f ,当0>x 时,0)()(<-'x f x f x ,则使得0)(>x f 成立的x 的取值范围是 A.)1,0()1,( --∞B.),1()0,1(+∞-C. )0,1()1,(---∞D. ),1()1,0(+∞ ⑤(2015课标Ⅱ理科16题)设n S 是数列}{n a 的前n 项和,且11-=a ,11++=n n n S S a ,则=n S⑥(2015课标Ⅱ文科12题)设函数211|)|1ln()(x x x f +-+=,则使得)12()(->x f x f 成立的x 的取值范围是 A.)1,31( B.),1()31,(+∞-∞ C.)31,31(- D. ),31()31,(+∞--∞⑦(2015课标Ⅱ文科16题)已知曲线x x y ln +=在点)1,1(处的切线与曲线1)2(2+++=x a ax y 相切,则=a. (答:C ;]1,1[-;21;A ;n1-;A ;8;)6.在传统考法(由三视图考表面积、体积的计算;证明直线与平面平行与重直;求三种角或距离;)的基础上增加了一点新意,就是在证明直线与平面平行与重直之前(之后)增加作图(2015课标Ⅱ文科19题(1));增加标点(2015四川理科1、文科18题(1));增加识图(2015湖北理科19题、文科20题(1))7.理科对二项式定理的考查比四川难 ①(2015课标Ⅰ理科10题)52)(y x x++的展开式中,25y x 的系数为( )A.10 B.20 C.30 D.60②(2015课标Ⅱ理科15题)4)1)((x x a ++的展开式中,x 的奇数次幂项的系数之和为32,则=a .(答:C ;3;)8.对线性规划小题的考查考得简单,对向量小题的考查也考得简单;9.2010理10.设三棱柱侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为BA.2a π B.237a π C.2311a π D. 25a π 2010文7.设长方体的长、宽、高分别为a 2、a 、a ,其顶点都在一个球面上,则该球的表面积为BA. 23a πB.26a πC. 212a πD. 224a π2010文15.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 .①②③⑤; ①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱 2010理科18.四棱锥ABCD P -的底面为等腰梯形,CD AB //,BD AC ⊥,垂足为H ,PH 为四棱锥的高,E 为AD 中点.(1)证明:BC PE ⊥;(2)若60=∠=∠ADB APB ,求直线PA 与平面PEH 所成角的正弦值.(42)2010文科18.四棱锥ABCD P -的底面为等腰梯形,CD AB //,BD AC ⊥,垂足为H ,PH 为四棱锥的高.(1)证明:平面PAC⊥平面PBD ;(2)若6=AB ,60=∠=∠ADB APB ,求四棱锥ABCD P -的体积.(3323+) 2011理科6(文8).已知正视图、俯视图,选择侧视图 2011理科15.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6=AB ,32=BC ,则棱锥ABCD O -的体积为 .(38)2011文16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一球面上.若圆锥底面面积是这个球面面积的163,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .(31)2011理科18.四棱锥ABCD P -的底面为平行四边形, 60=∠DAB ,AD AB 2=,PD ⊥底面ABCD .(1)证明:BD PA ⊥;(2)若AD PD =,求二面角C PB A --的余弦值.(772-)2011文科18.四棱锥ABCD P -的底面为平行四边形, 60=∠DAB ,AD AB 2=,PD ⊥底面ABCD .(1)证明:BD PA ⊥;(2)若1==AD PD ,求棱锥PBC D -的高.(23)2012理科7.(2016五三144页14题) 2012理科11.已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC为球O 的直径,且2=SC,则此棱锥的体积为(A ) A.62B.63 C.32 D.222012理科19.直三棱柱111C B A ABC -中,121AA BC AC ==,D 是棱1AA 的中点,BD DC ⊥1.(1)证明:BC DC ⊥1;(2)求二面角C BD A --1的大小.(30)2012文科19.(2016五三172页10题)2013理科Ⅱ4.已知n m ,为异面直线,⊥m 平面α,⊥n平面β,直线βα⊄⊄⊥⊥l l n l m l ,,,,则( D ) A.βα//且α//l B.βα⊥且β⊥lC.α与β相交,且交线垂直于lD. α与β相交,且交线平行于l 2013理科Ⅱ7.(2013文科9.即2016五三144页12题) 2013文科15.已知正四棱锥ABCD O -的体积为223,底面边长为3,则以O 为球心,OA 为半径的表面积为 .(π24) 2013理科Ⅱ18.直三棱柱111C B A ABC -中,D、E分别是AB、1BB 的中点,AB CB AC AA 221===.(1)证明://1BC 平面CD A 1.(2)求二面角E C A D --1的正弦值.(36)2013文科Ⅱ(2016五三153页16题)2014理科Ⅱ6(2014文科Ⅱ6即2016五三143页5题) 2014理科Ⅱ11.直三棱柱111C B A ABC-中, 90=∠BCA ,M 、N 分别是11B A 、11C A 的中点,1CC CA BC ==,则BM 与AN 所成角的余弦值为(C ) A.101 B.52C.1030 D.222014文科Ⅱ.正三棱柱111C B A ABC -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11DC B A -的体积为(C ) A.3 B.23C.1D.232014理科Ⅱ18.四棱锥ABCD P -的底面为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设二面角C AE D --为60,1=AP ,3=AD ,求=-ACD E V ?(83)2014文科Ⅱ18.(2016五三158页7题)2015理科Ⅱ6.(2015文科Ⅱ6.即2016五三143页1题) 2015理科Ⅱ9.(2015文科Ⅱ10.即2016五三150页2题) 2015理科Ⅱ19.长方体1111D C B A ABCD-中,16=AB ,10=BC ,81=AA ,点F E ,分别在1111,C D B A 上,411==F D E A .过点F E ,的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.(1554)2015文科Ⅱ19.即2016五三152页13题。
高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n –2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠;(3)零点式12()()()(0)f x a x x x x a =--≠.7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k ab k k <-<+. 9.闭区间上的二次函数的最值 二次函数)0()(2≠++=ac bx ax x f 在闭区间[]q p ,上的最值只能在ab x 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a b x ,2∈-=,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p ab x ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p ab x ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若[]q p a b x ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩. 12.真值表13.常见结论的否定形式14.四种命题的相互关系逆命题原命题互逆逆逆否否否命题逆否命题若非p则非q互逆若非q则非p15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m +=对称. (3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+, 0()(0)1,lim 1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f , 或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂 (1)mna =(0,,a m n N *>∈,且1n >).(2)1mn mn a a -=(0,,a m n N *>∈,且1n >).31.根式的性质(1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩. 32.有理指数幂的运算性质(1) (0,,)r s r s a a a a r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m N N a= (0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a n b b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数. , (2)当a b <时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为减函数. 推论:设1n m >>,0p >,0a >,且1a ≠,则(1)log ()log m p m n p n ++<.(2)2log log log 2a a am n m n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-.41.等比数列的通项公式1*11()n n n a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a q q q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩; 其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q d b n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款) 每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<. (2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-. 22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈.cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈. tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ; (2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.53. a 与b 的数量积(或内积)a ·b =|a ||b |cos θ.61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.平面两点间的距离公式,A B d =||AB ==11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== . (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>> (4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;80.夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π. 82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0a x b y c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b +=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b +=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b -=>>与直线0A x B yC ++=相切的条件是22222A a B b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 101.抛物线px y 22=上的动点可设为P ),2(2y py 或或)2,2(2pt pt P P (,)x y ,其中22y px = .102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>.点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直.113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直.114.证明平面与平面的垂直的思考途径(1)转化为判断二面角是直二面角;(2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律(1)加法交换律:a+b=b+a.(2)加法结合律:(a+b)+c=a+(b+c).(3)数乘分配律:λ(a+b)=λa+λb.116.平面向量加法的平行四边形法则向空间的推广始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)OP t OA tOB =-+. ||AB CD ⇔AB 、CD共线且AB CD 、不共线⇔AB tCD = 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++ .119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC=++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD xAB yAC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r r rr(其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin ||||AB m arc AB m β⋅=(m为平面α的法向量). 129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=.131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+ (当且仅当90θ= 时等号成立).134.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB = =.135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式dd =d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =).139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱. 143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则 其体积343V R π=, 其表面积24S R π=. 147.球的组合体 (1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a 的正四面体的内切球的半径为12a ,外接球的半径为4a . 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理)12n N m m m =+++ .150.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯ .151.排列数公式mnA =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 152.排列恒等式(1)1(1)m m n nA n m A -=-+; (2)1mmn n n A A n m-=-; (3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5)11m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- . 153.组合数公式m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 154.组合数的两个性质(1)m n C =mn n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-; (3)11mm n n n C C m--=;(4)∑=nr r nC=n2;(5)1121++++=++++r n r n r r r r r r C C C C C . (6)n n n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9)r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)n n n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m mn nA m C =⋅! . 157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nnm C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m=⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!! (2)11c b a m C C C N m mn n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.。
高中数学常用公式及结论高中数学常用公式及结论(计数原理、概率、随机变量及其分布)一、计数原理1、分类计数原理(加法原理):2、分步计数原理(乘法原理):3、排列数公式:4、组合数公式:组合数的两个性质:5、二项式定理:二项展开式的通项公式:二、概率1、事件的关系与运算① 关系:如果事件 a 的组成部分也是事件 b 的组成部分,(a发生必有事件b发生):a ㄷ b ;并事件(和事件):a、b中至少有一个发生的事件:a ∪b ,或者 a+b 。
且事件(积事件):a、b同时发生:a ∩ b,或者 ab。
互斥事件:a ∩ b = φ ,表示 a 与 b 不可能同时发生。
基本事件是互斥的。
对立事件:属于 a 而不属于 b 的部分所构成的事件,称为 a 与 b 的差,记为 a - b,也可表示为 a - ab ,它表示a发生而b不发生的事件。
② 运算:结合率:a(bc)=(ab)c a∪(b∪c)=(a∪b)∪c ;分配率:(ab)∪c=(a∪c)∩(b∪c) (a∪b)∩c=(ac)∪(bc) 。
2、古典概型设任一事件 a ,它是由ω1 ,ω2 ,... ωm , 组成的,则有3、几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。
对任一事件a,其中 l 为几何度量(长度、面积、体积)。
4、条件概率设 a、b 是两个事件,且p(a) > 0,则称为事件 a 发生条件下,事件 b 发生的条件概率,条件概率是概率的一种,所有概率的性质都适合于条件概率。
5、互斥事件a,b分别发生的概率的和:p(a+b)=p(a)+p(b)。
n 个互斥事件分别发生的概率的和:p(a1+a2+…+an)=p(a1)+p(a2)+…+p(an)。
6、独立事件a,b同时发生的概率:p(a·b)= p(a)·p(b)。
高中数学所有常用公式结论高中数学中常用的公式和结论是指在课程中经常出现的公式和结论。
这些公式和结论在高中数学的学习和应用中起着重要的作用。
下面是一些高中数学中常用的公式和结论的例子:1.二项式定理:$(a+b)^n=C^n_0a^nb^0+C^n_1a^{n-1}b^1+C^n_2a^{n-2}b^2+...+C^n_na^0b^n$2.三角函数的和差公式:$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$3.三角函数的倍角公式:$\sin 2A = 2 \sin A \cos A$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2\sin^2 A$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$4.三角函数的半角公式:$\sin \frac{A}{2} = \pm \sqrt{\frac{1 - \cos A}{2}}$$\cos \frac{A}{2} = \pm \sqrt{\frac{1 + \cos A}{2}}$$\tan \frac{A}{2} = \pm \sqrt{\frac{1 - \cos A}{1 + \cos A}}$5.三角函数的和化积公式:$\sin A + \sin B = 2 \sin \left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$$\sin A - \sin B = 2 \cos \left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$$\cos A - \cos B = -2 \sin \left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$6. 余弦定理:在任意三角形ABC中,三边的长度分别为$a, b, c$,$\angle A, \angle B, \angle C$为对应的内角,则有$c^2 = a^2 + b^2 - 2ab \cos C$7. 正弦定理:在任意三角形ABC中,三边的长度分别为$a, b, c$,$\angle A, \angle B, \angle C$为对应的内角,则有$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$8.直角三角形中的勾股定理:在直角三角形ABC中,AB是斜边,AC和BC是两条直角边,则有$AB^2=AC^2+BC^2$9.关于数列和数列的常用公式:*等差数列的通项公式:$a_n=a_1+(n-1)d$*等差数列的前n项和公式:$S_n = \frac{n}{2}(a_1 + a_n)$*等比数列的通项公式:$a_n = a_1 \cdot q^{n-1}$*等比数列的前n项和公式(当$q \neq 1$):$S_n =\frac{a_1(q^n-1)}{q-1}$以上只是一些高中数学中常用的公式和结论的例子,还有很多其他的公式和结论没有一一列举。
高中数学常用结论及公式大全高中数学作为数学学科中的一个重要组成部分,涵盖的范围非常广泛,包括数学思维、数学方法、数学工具等多个方面。
在高中数学学习中,结论和公式都是必不可少的内容,可以说是数学知识的核心。
本文将为大家介绍一些高中数学中常用的结论及公式,希望对读者的数学学习有所帮助。
一、几何中的结论及公式1.1 三角形中位线定理:三角形中位线的交点是三角形重心,重心到顶点的距离是中位线长度的二分之一。
1.2 直角三角形斜边上的高:一个直角三角形中,斜边上的高等于两直角边的乘积除以斜边长。
1.3 圆周角定理:圆周角等于其所对的弧的一半。
1.4 相似三角形定理:两个三角形相似的条件为它们的对应角度相等,或者说,两三角形相似的充要条件是它们的对应角度相等。
1.5 三角形内角和定理:任意一个三角形的三个内角和等于180度。
1.6 圆的面积公式:一个半径为r的圆的面积等于πr的平方。
1.7 圆的周长公式:一个半径为r的圆的周长等于2πr。
二、代数中的结论及公式2.1 一次函数的斜率公式:一次函数y=kx+b中,k为斜率,等于任意两点的纵坐标之差与横坐标之差的比。
2.2 二次函数解析式:二次函数y=ax的平方+bx+c的解析式为:y=a(x-h)的平方+k,其中h=-b/2a,k=c-b的平方/4a。
2.3 勾股定理:勾股定理指的是直角三角形中,斜边上的平方等于另外两条直角边上的平方和。
即c的平方=a的平方+b的平方。
2.4 平方差公式:(a+b)(a-b)=a的平方-b的平方。
这个公式在化简代数式的时候非常有用。
2.5 解一元二次方程:若一元二次方程ax的平方+bx+c=0的判别式D=b 的平方-4ac>0,则方程的两个实根为:x1=(-b+√D)/2a,x2=(-b-√D)/2a。
2.6 二次函数的根与系数之间的关系:对于一个二次函数y=ax的平方+bx+c,其根的公式为x1,x2=(-b±√(b的平方-4ac))/2a,其中根的个数依靠判别式D=b的平方-4ac的正负来决定。
高中数学常用公式及结论1 元素与集合的关系: x∈A⇔x∉C U A , U x∈C A⇔x∉A .∅Ø A⇔A ≠∅2 集合1 2 { , , , } n a a L a 的子集个数共有2n 个;真子集有2n −1个;非空子集有2n −1个;非空的真子集有2n −2个.3 二次函数的解析式的三种形式:(1) 一般式f (x) = ax2 + bx + c(a ≠0) ;(2) 顶点式f (x) = a(x −h)2 + k(a ≠0) ;(当已知抛物线的顶点坐标(h, k)时,设为此式)(3) 零点式1 2 f (x) = a(x −x )(x −x )(a ≠0);(当已知抛物线与x轴的交点坐标为1 2 (x ,0), (x ,0)时,设为此式)(4)切线式:0f (x) = a(x −x )2 + (kx + d),(a ≠0)。
(当已知抛物线与直线y = kx + d 相切且切点的横坐标为0 x 时,设为此式)4 真值表:同真且真,同假或假5 常见结论的否定形式;原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有n个至多有(n −1)个小于不小于至多有n个至少有(n +1)个对所有x,成立存在某x,不成立p 或q ¬p 且¬q对任何x,不成立存在某x,成立p 且q ¬p 或¬q6 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)原命题互逆逆命题若p则q若q则p互互互为为互否否逆逆否否否命题逆否命题若非p则非q互逆若非q则非p充要条件: (1)、p⇒q,则P是q 的充分条件,反之,q 是p 的必要条件;(2)、p⇒q,且q ≠> p,则P是q 的充分不必要条件;(3)、p ≠> p ,且q⇒p,则P是q 的必要不充分条件;4、p ≠> p ,且q ≠> p,则P 是q 的既不充分又不必要条件。
⾼中数学最常⽤公式及结论(⾮常有⽤)⾼中数学常⽤公式及结论1. 元素与集合的关系:U x A x C A ∈??,U x C A x A ∈??.A A ??≠??2.德摩根公式 :();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系:A B ??A B A A B B =?=U U C B C A ??U A C B ?=ΦU C A B R ?=4.元素个数关系:()()card A B cardA cardB card A B =+- ()card A B C cardA cardB cardC =++()()()()card A B card B C card C A card A B C ---+.5.集合12{,,,}n a a a 的⼦集个数共有2n 个;真⼦集有21n -个;⾮空⼦集有21n -个;⾮空的真⼦集有22n -个.6.⼆次函数的解析式的三种形式(1)⼀般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3)零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。
(当已知抛物线与直线y kx d =+相切且切点的横坐标为0x 时,设为此式)7.解连不等式()N f x M <<常有以下转化形式()N f x M <()0()f x NM f x ->-()()f x N f x M>8.⽅程)0(02≠=++a c bx ax 在),(21k k 内有且只有⼀个实根,等价于12()()0f k f k <或122240b k k a b ac ?<-=-=?。
高中数学常用公式、重要结论及典型例题函数与导数(内部资料翻录必究)相关概念1. 函数的定义域:定义域是一个集合,要用集合或区间来表示,如果用区间表示,不能用“或”连接,要用U “”连接。
2. 如()f x 的定义域为[,]a b ,则复合函数(())f g x 的定义域由()a g x b ≤≤求出。
3. 任何一个定义域关于原点对称的函数)(x f ,都可以写成一个奇函数)(x h 与一个偶函数)(x g 之和的形式(事实上,这种表示还是唯一的,令()()()()12h x f x f x =--,()()()()12g x f x f x =+-即可)。
1) 凸函数(凹函数):设函数)(x f 在区间I 有定义,若对12,(0,1)x x I t ∀∈∈、,都有 )()1()())1((2121x f t x tf x t tx f -+≤-+(或)()1()())1((2121x f t x tf x t tx f -+≥-+),则称)(x f 为区间I 上的凸函数(或凹函数)。
2) 凸函数(凹函数)快速判断:如果函数)(x f 的二阶导数存在,则()0f x ''>时,)(x f 是凹函数(图像开口向上);()0f x ''<时,)(x f 是凸函数(图像开口向下)。
此性质往往可以用来快速判断函数图像类选填题。
3) 函数)(x f y =在0x 处可导,如果0()0f x '>,则)(x f 在0x 附近递增;如果0()0f x '<,则)(x f 在0x 附近递减。
此性质往往可以用来速解某些函导混合类选填题难题。
4. 方程)0(02≠=++a c bx ax 在),(21k k 内有且只有一个实根,等价于12()()0f k f k ⋅< 5. 闭区间上二次函数的最值:)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处或区间的两端点处取得,具体如下: (1)当0a >时,若[]q p a bx ,2∈-=,则{}min max ()(),()max (),()2b f x f f x f p f q a =-=; 若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q = (2)当0a <时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =, 若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q = 6. 函数单调性的等价关系(1)设[]1212,,,x x a b x x ∈≠那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数7. 单调性的典型应用:(1)利用单调性求函数值域(2)利用单调性解方程:例如,对于方程2332(2038)484152x x x x x -+=-+- 可将其变形为2323(2038)4(2038)4x x x x x x -++-+=+ 构造函数3()4f x x x =+,原方程变为2(2038)()f x x f x -+=考虑到()f x 为单调递增函数,故必有22038x x x -+=,解得2x =或19x =。
高中数学常用公式及结论1. 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅Ø2.德摩根公式 :();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系:A B ⊆⇔A B A A B B =⇔=U U C B C A ⇔⊆U A C B ⇔=ΦU C A B R ⇔=4.元素个数关系:()()card A B cardA cardB card A B =+- ()card A B C cardA cardB cardC =++()()()()card A B card B C card C A card A B C ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3)零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。
(当已知抛物线与直线y kx d =+相切且切点的横坐标为0x 时,设为此式)7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔()0()f x NM f x ->-()()f x N f x M⇔><⎧⎨⎩.8.方程)0(02≠=++a c bx ax 在),(21k k 内有且只有一个实根,等价于12()()0f k f k <或122240b k k a b ac ⎧<-<⎪⎨⎪∆=-=⎩。
9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a bx ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程2()f x x px q =++=0的实根分布(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或22240()0p m n m p q f n +⎧<-<⎪⎪-≥⎨⎪>⎪⎩或22240()0m n p n p q f m +⎧≤-<⎪⎪-≥⎨⎪>⎪⎩;(3)方程0)(=x f 在区间(,)m -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的不等式恒成立(或有解)的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的不等式()f x t ≥(t 为参数)恒成立的充要条件是min (),()f x t x L ≥∈。
(2)在给定区间),(+∞-∞的子区间L 上含参数的不等式()f x t ≤(t 为参数)恒成立的充要条件是max (),()f x t x L ≤∈。
(3) 在给定区间),(+∞-∞的子区间L 上含参数的不等式()f x t ≥(t 为参数)的有解充要条件是max (),()f x t x L ≥∈。
(4) 在给定区间),(+∞-∞的子区间L 上含参数的不等式()f x t ≤(t 为参数)有解的充要条件是min (),()f x t x L ≤∈。
对于参数a 及函数(),y f x x A =∈.若()a f x ≥恒成立,则max ()a f x ≥;若()a f x ≤恒成立,则min ()a f x ≤;若()a f x ≥有解,则min ()a f x ≥;若()a f x ≤有解,则max ()a f x ≤;若()a f x =有解,则min max ()()f x a f x ≤≤.(若函数(),y f x x A =∈无最大值或最小值的情况,可以仿此推出相应结论).原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互12.真值表15.充要条件(记p 表示条件,q 表示结论) (1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件. (3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.16.函数的单调性的等价关系 (1)设[]1212,,,x x a b x x ∈≠那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(x f 和)(x g 都是增函数,则在公共定义域内,和函数)()(x g x f +也是增函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是增函数,则复合函数)]([x g f y =是增函数;如果函数)(u f y =和)(x g u =在其对应的定义域上一个是减函数而另一个是增函数,则复合函数)]([x g f y =是减函数.18.奇偶函数的图象特征轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;y 轴对称,那么这个函数是偶函数.19.常见函数的图像:20.对于函数y (),)x -恒成立,2b a x +=;两个函数)(a x f y +=与y 2b ax -=对称. 21.若)()(a x f x f +--=,则函数)0,2(a对称;若)()(a x f x f +-=,则函数y a 2的周期函数.22.多项式函数()n n n P x a x a -=+多项式函数()P x 是奇函数⇔(P x )的系数全为零. 多项式函数()P x 是偶函数⇔(P x )的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线)()a x f a x +=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线()()f a mx f b mx +=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数(y f =-0x =(即y 轴)对称. (2)函数()y f mx a =-与函数y =2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=对称.25.若将函数)(x f y =的图象右移b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 0),(=--b y a x f 的图象.26a b =-)(1.27.函数()y f x =与其反函数y f =y x =上。
28.几个常见的函数方程(1)正比例函数()f x cx =⇔(),(1)f x y f c +=. (2)指数函数()xf x a =⇔((1)0f x y a +=≠.(3)对数函数()log a f x x =⇔()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=⇔()()(),(1)f xy f x f y f α'==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,0sin (0)1,lim1x xf x→==.29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2))0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ; 30.分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).31.根式的性质(1)na =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式: log b a N b a N =⇔=(0,1,0)a a N >≠>. 34.对数的换底公式 :log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).对数恒等式:log a Na N =(0a >,且1a ≠, 0N >).推论 log log m na a nb b m=(0a >,且1a ≠, 0N >).35.对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+; (2) log log log a a a MM N N=-; (3)log log ()n a a M n M n R =∈; (4) log log (,)m na a n N N n m R m=∈。