双目立体视觉测量系统的研究与实现
- 格式:pdf
- 大小:334.78 KB
- 文档页数:5
水下机器人双目立体视觉定位系统研究的开题报告(以下为开题报告正文)一、研究背景水下机器人作为一种具有广泛应用前景的智能装备,已经被广泛应用于海洋资源勘探、水下搜救、海洋环保等领域。
水下机器人在进行任务执行时,往往需要精准的定位和导航能力,而水下环境复杂,导致其探测范围受到较大限制,传统的GPS等定位手段在水下难以使用,这就需要开发出一种适用于水下环境的定位系统。
双目立体视觉作为一种非接触式三维测量手段,可以有效地消除传统单目视觉测量的缺陷,提高测量精度和稳定性。
在水下机器人领域,双目立体视觉技术也得到了广泛的应用,并取得了良好的效果。
因此,本文将重点研究水下机器人双目立体视觉定位系统。
二、研究目标本文旨在开发一种适用于水下机器人的双目立体视觉定位系统。
具体目标如下:1. 设计并搭建双目立体视觉系统;2. 研究水下机器人定位算法,提高其精度和稳定性;3. 在实际水下环境中验证水下机器人双目立体视觉定位系统的有效性。
三、研究内容本文研究的具体内容如下:1. 双目立体视觉系统的设计和搭建根据水下机器人的实际需求,设计一个适用于水下环境的双目立体视觉系统。
该系统应包括可靠的照明设备、高分辨率的相机以及稳定的图像传输设备。
2. 水下机器人定位算法的研究根据水下机器人实际需求,对双目立体视觉数据进行处理,提取出机器人所在位置和姿态的相关信息,并结合陀螺仪、加速度计等其他传感器数据,实现水下机器人的定位和姿态估计。
3. 水下机器人双目立体视觉定位系统的实验验证在实际水下环境中,使用研究开发的双目立体视觉定位系统对机器人进行测试和验证,评估其定位精度和稳定性,为后续实际应用提供可靠的技术保障。
四、研究方法本文将采用以下研究方法:1. 理论研究和文献综述对现有的双目立体视觉技术进行深入学习和分析,找出适用于水下机器人的双目立体视觉算法,并针对性地进行研究。
2. 硬件开发和系统集成根据研究开发需求,设计并搭建一个适用于水下环境的双目立体视觉系统,并将其集成到水下机器人中。
基于双目立体视觉的深度感知技术研究共3篇基于双目立体视觉的深度感知技术研究1随着计算机科学技术的不断发展,双目立体视觉深度感知技术成为研究的热点之一。
本文将阐述该技术的发展历程和应用情况,并探讨当前的研究进展和发展趋势。
一、发展历程早期的双目立体视觉技术主要是通过人工对图像进行匹配来获取深度信息。
这种方法需要大量的人工投入,且匹配结果依赖于操作员的经验和技能,难以应用于实际生产中。
为了解决这一问题,研究者开始采用计算机算法来进行深度感知。
二、应用情况1. 机器人导航双目立体视觉技术在机器人导航中得到了广泛的应用。
机器人可以通过摄像机获取环境深度信息,从而避开障碍物,按照预设路径进行移动。
2. 三维建模双目立体视觉技术可以用于三维场景的建模。
通过获取物体的深度信息,可以建立物体的三维模型,从而更好地理解其形状和结构。
3. 自动驾驶技术自动驾驶技术需要实时获取道路和控制车辆的距离信息。
双目立体视觉技术可以快速获取道路和障碍物的深度信息,从而实现车辆的自动行驶。
三、研究进展1. 基于神经网络的深度感知近年来,研究者开始采用神经网络算法来提高双目立体视觉技术的准确度和效率。
神经网络可以自动学习和提取深度特征,并可用于深度估计和场景重建。
此外,神经网络还可以通过增加训练数据进行模型优化。
2. 基于时间维度的深度感知时间开销是双目立体视觉技术中的瓶颈之一。
针对这一问题,研究者开始将时间维度引入到深度感知中。
该方法可以在时间和空间上对图像进行标定,从而提高双目立体视觉技术的速度和准确度。
3. 基于多传感器的深度感知双目立体视觉技术只能在有光线的条件下正常工作。
为了提高深度感知在不同环境下的准确度和鲁棒性,研究者开始探索多传感器融合技术。
该技术可以融合不同传感器获取的信息,从而更好地理解物体的深度和形状。
四、发展趋势随着双目立体视觉技术的不断进步,研究者开始探索其应用范围的拓展。
未来,双目立体视觉技术将会更好地与其他技术结合使用,例如虚拟现实、增强现实等。
双目立体视觉测距原理双目立体视觉系统由两个相机组成,每个相机代表一个眼睛。
相机之间的距离通常被称为基线(baseline)。
在观察同一个目标时,两个相机会获取两个稍微不同的图像。
这是因为两个相机的位置不同,导致从不同角度观察到的目标图像有所偏移。
基于这个差异,我们可以使用视差原理来计算目标的距离。
视差是指两个眼睛在看同一个目标时,两个图像中相同物体之间的像素差异。
这个差异是由于目标在三维空间中的位置和相机的视角造成的。
我们可以通过比较两个图像的像素来计算出这个视差。
为了进行视差计算,我们首先需要进行图像配准。
这意味着将两个图像对齐,使得相同的物体在两个图像中位置相同。
这可以通过计算两个图像之间的特征点匹配来实现。
一旦图像对齐完成,我们就可以计算图像中像素之间的视差。
计算视差的常见方法是使用极线约束(Epipolar constraint)和匹配算法。
极线约束是指在双目视觉中,两个相机的对应像素点位于相应极线上。
换句话说,一个像素只能与另一个图像中相同视线上的像素匹配。
这个约束可以减少计算量并提高匹配的准确性。
匹配算法的选择取决于具体的应用需求和计算资源。
一些常见的匹配算法包括块匹配(block matching)、图像金字塔(image pyramid)和灰度共生矩阵(gray-level co-occurrence matrix)方法。
这些算法可以在图像中最佳匹配,并计算出视差值。
一旦获取了视差值,我们可以使用三角测量原理来计算目标的距离。
三角测量基于几何原理,通过知道基线长度和视差值,我们可以计算出目标的距离。
双目立体视觉测距原理有许多应用。
在工业领域,它可以用于机器人导航、三维重建和物体检测。
在医疗领域,双目视觉可以用于辅助手术和视觉康复。
在自动驾驶和无人机等领域,双目视觉可以帮助测量目标距离并进行障碍物检测。
总结起来,双目立体视觉测距原理利用两个相机观察同一目标,并计算出视差值来测量目标的距离。
双目立体视觉技术的实现及其进展摘要:阐述了双目立体视觉技术在国内外应用的最新动态及其优越性。
指出双目体视技术的实现分为图像获取、摄像机标定、特征提取、立体匹配和三维重建几个步骤,详细分析了各个步骤的技术特点、存在的问题和解决方案,并对双目体视技术的发展做了展望。
关键词:双目立体视觉计算机视觉立体匹配摄像机标定特征提取双目立体视觉是计算机视觉的一个重要分支,即由不同位置的两台或者一台摄像机(CCD)经过移动或旋转拍摄同一幅场景,通过计算空间点在两幅图像中的视差,获得该点的三维坐标值。
80年代美国麻省理工学院人工智能实验室的Marr提出了一种视觉计算理论并应用在双目匹配上,使两张有视差的平面图产生在深度的立体图形,奠定了双目立体视觉发展理论基础。
相比其他类的体视方法,如透镜板三维成像、投影式三维显示、全息照相术等,双目视觉直接模拟人类双眼处理景物的方式,可靠简便,在许多领域均极具应用价值,如微操作系统的位姿检测与控制、机器人导航与航测、三维测量学及虚拟现实等。
1 双目体视的技术特点双目标视技术的实现可分为以下步骤:图像获取、摄像机标定、特征提取、图像匹配和三维重建,下面依次介绍各个步骤的实现方法和技术特点。
1.1 图像获取双目体视的图像获取是由不同位置的两台或者一台摄像机(CCD)经过移动或旋转拍摄同一幅场景,获取立体图像对。
其针孔模型如图1。
假定摄像机C1与C2的角距和内部参数都相等,两摄像机的光轴互相平行,二维成像平面X1O1Y1和X2O2Y2重合,P1与P2分别是空间点P在C1与C2上的成像点。
但一般情况下,针孔模型两个摄像机的内部参数不可能完成相同,摄像机安装时无法看到光轴和成像平面,故实际中难以应用。
上海交大在理论上对会摄式双目立体视系统的测量精度与系统结构参数之间的关系作了详尽分析,并通过试验指出,对某一特定点进行三角测量。
该点测量误差与两CCD光轴夹角是---复杂的函数关系;若两摄像头光轴夹角一定,则被测坐标与摄像头坐标系之间距离越大,测量得到点距离的误差就越大。
双目视觉测量系统
双目视觉测量系统工作原理是双目视觉测量的基本原理是由不同位置的2 台摄像机经过移动或旋转拍摄被测物体的同一表面,获取图像对。
通过提取图像上线激光在物体表面投影的中心像素点、像素点的立体匹配,得出测量点在2 幅图像平面上的像素坐标对,利用成像公式计算出被测点的空间坐标。
根据人眼双目成像的原理, 通过双摄像头实现获得立体信息进而提出人脸识别的一种新方法, 并给出实现系统的结构。
专用的全息扫描获得三维数据的方法, 设备昂贵且采样非常不方便,不如本文提出方法耗材简单且取样非常方便。
双目立体视觉传感器的测量原理类似于人类视觉获取信息的方式, 即由两台相对位置固定的摄像机与被测对像构成三角形, 被测对像在两像面上形成立体图像对, 然后利用计算机图像处理技术进行相关特征点匹配, 并通过计算左右两幅图像中相关特征点的视差来获取被测点的空间三维坐标。
双目立体视觉传感器主要是利用三角法测量原理和针孔透视成像理论获得空间被测量特征点在传感器坐标系下的三维坐标, 它主要由左右摆放的两个摄像机组成。
双目立体视觉三维测量原理
1.前言戏说
双目立体视觉是基于视差原理,由多幅图像获取物体三维几何信息的方法。
在机器视觉系统中,双目视觉一般由双摄像机从不同角度同时获取周围景物
的两幅数字图像,或有由单摄像机在不同时刻从不同角度获取周围景物的两
幅数字图像,并基于视差原理即可恢复出物体三维几何信息,重建周围景物
的三维形状与位置。
双目视觉有的时候我们也会把它称为体视,是人类利用双眼获取环境三维信息的主要途径。
从目前来看,随着机器视觉理论的发展,双目立体视觉在
机器视觉研究中发回来看了越来越重要的作用。
本文主要研究了双目视觉的
数学原理。
2.双目立体视觉的数学原理
双目立体视觉是基于视差,由三角法原理进行三维信息的获取,即由两个摄像机的图像平面和北侧物体之间构成一个三角形。
一直两个摄像机之间的。
双目立体视觉问题2008-10-30 20:24双目立体视觉的研究一直是机器视觉中的热点和难点。
使用双目立体视觉系统可以确定任意物体的三维轮廓,并且可以得到轮廓上任意点的三维坐标。
因此双目立体视觉系统可以应用在多个领域。
现说明介绍如何基于HALCON实现双目立体视觉系统,以及立体视觉的基本理论、方法和相关技术,为搭建双目立体视觉系统和提高算法效率。
双目立体视觉是机器视觉的一种重要形式,它是基于视差原理并由多幅图像获取物体三维几何信息的方法。
双目立体视觉系统一般由双摄像机从不同角度同时获得被测物的两幅数字图像,或由单摄像机在不同时刻从不同角度获得被测物的两幅数字图像,并基于视差原理恢复出物体的三维几何信息,重建物体三维轮廓及位置。
双目立体视觉系统在机器视觉领域有着广泛的应用前景。
HALCON是在世界范围内广泛使用的机器视觉软件。
它拥有满足您各类机器视觉应用需求的完善的开发库。
HALCON也包含Blob分析、形态学、模式识别、测量、三维摄像机定标、双目立体视觉等杰出的高级算法。
HALCON支持Linux和Windows,并且可以通过C、C++、C#、Visual Basic和Delphi语言访问。
另外HALCON与硬件无关,支持大多数图像采集卡及带有DirectShow和IEEE 1394驱动的采集设备,用户可以利用其开放式结构快速开发图像处理和机器视觉应用软件。
一.双目立体视觉相关基本理论说明1.1 双目立体视觉原理双目立体视觉三维测量是基于视差原理,图1所示为简单的平视双目立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b。
摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图1所示。
事实上摄像机的成像平面在镜头的光心后,图1中将左右成像平面绘制在镜头的光心前f处,这个虚拟的图像平面坐标系O1uv的u轴和v轴与和摄像机坐标系的x轴和y轴方向一致,这样可以简化计算过程。
左右图像坐标系的原点在摄像机光轴与平面的交点O1和O2。
《基于双目立体视觉定位和识别技术的研究》篇一一、引言随着科技的飞速发展,计算机视觉技术在众多领域中得到了广泛的应用。
其中,双目立体视觉定位和识别技术以其高精度、高效率的特点,在机器人导航、无人驾驶、三维重建等领域中发挥着越来越重要的作用。
本文旨在研究基于双目立体视觉的定位和识别技术,分析其原理、方法及在各领域的应用,以期为相关研究提供参考。
二、双目立体视觉原理双目立体视觉技术基于人类双眼的视觉原理,通过两个相机从不同角度获取物体的图像信息,然后利用图像处理技术对两幅图像进行匹配、计算,从而得到物体的三维空间信息。
该技术主要包括相机标定、图像预处理、特征提取与匹配、三维重建等步骤。
三、双目立体视觉定位技术双目立体视觉定位技术是利用双目相机获取的图像信息,通过图像处理算法对物体进行定位。
该技术主要包括以下步骤:1. 相机标定:确定相机内参和外参,包括相机的焦距、光心位置、畸变系数等。
2. 图像预处理:对两幅图像进行去噪、平滑等处理,以便更好地提取特征。
3. 特征提取与匹配:利用特征提取算法(如SIFT、SURF等)提取两幅图像中的特征点,并通过匹配算法(如暴力匹配、FLANN匹配等)找到对应的特征点。
4. 三维定位:根据匹配的特征点,利用三角测量法等算法计算物体的三维空间坐标。
四、双目立体视觉识别技术双目立体视觉识别技术是在定位技术的基础上,进一步对物体进行分类、识别。
该技术主要包括以下步骤:1. 特征描述与分类:根据提取的特征点,建立物体的特征描述符,并通过分类器(如支持向量机、神经网络等)进行分类。
2. 模式识别:利用机器学习等技术对物体进行识别,包括目标检测、语义分割等。
3. 深度学习应用:利用深度学习算法(如卷积神经网络等)对物体进行更精确的识别和分类。
五、应用领域双目立体视觉定位和识别技术在众多领域中得到了广泛的应用,主要包括以下几个方面:1. 机器人导航与无人驾驶:通过双目相机获取周围环境的信息,实现机器人的自主导航和无人驾驶。
双目立体视觉测距原理双目视觉测距原理的基础是视差。
视差是指当两个眼睛观察同一物体时,由于视角的不同,物体在两个眼睛中的位置差异。
这种差异可以用来推算物体距离的远近。
视差的计算过程主要包括两个步骤:一是根据两个图像的相似性找到对应的点,即建立左右视差对应关系;二是通过计算视差值来推算物体的距离。
下面将详细介绍这两个步骤。
在实际应用中,首先需要对场景进行双目摄像机的标定。
这个过程通常包括获取标定板的图像、提取标定板的特征点、计算标定矩阵等步骤。
标定完成后,就可以进行双目视觉测距了。
第一步是建立左右视差对应关系。
通过双目摄像机获取到的两个图像,我们需要找到对应的特征点,从而建立左右视差对应关系。
常用的特征点匹配算法有SIFT、SURF、ORB等。
这些算法能够在两个图像中寻找到相似的特征点,从而找到对应的关系。
第二步是计算视差值。
在得到视差对应关系后,我们可以通过计算视差值来推算物体的距离。
视差值与物体距离之间存在着一定的数学关系,常用的计算方法是三角测量法。
具体而言,根据两个摄像机之间的基线长度、摄像机的焦距和视差值的大小,可以通过简单的数学关系计算出物体的距离。
双目立体视觉测距原理的优点是可以获得比单目视觉更精确的深度信息。
由于两个摄像机观察角度的差异,双目视觉可以获得更多的深度信息。
此外,双目视觉测距也具有一定的鲁棒性,即在一些复杂场景下仍然可以获得较准确的测距结果。
然而,双目视觉测距原理也存在一些局限性。
首先,双目系统的视差范围有限,当物体距离过远或过近时,视差值会超出可接受的范围,这会导致测量结果不准确。
其次,双目系统对环境光照条件和纹理特征的要求较高,如果环境光照变化大或者物体表面没有足够的纹理信息,会影响特征点的提取和匹配,从而降低测距的精度。
总结而言,双目立体视觉测距原理通过模拟人类双眼视觉系统来获得物体的深度信息。
它的基本原理是通过计算两个眼睛观察同一物体时的视差来推算物体的距离。
虽然存在一些局限性,但双目视觉测距技术已经在实际应用中取得了很大的成功,并且在未来的发展中有着广阔的应用前景。
双目立体视觉分步标定及精度分析双目立体视觉是指通过两个摄像头同时观察同一场景,并通过计算机算法将两个图像进行匹配,从而获取场景的三维信息。
在双目立体视觉中,相机的标定是非常重要的一步,它可以确定相机内外参数,从而实现像素坐标和真实物理坐标之间的转换。
双目立体视觉的标定一般分为两个步骤:相机标定和立体标定。
首先进行相机标定,目的是获取每个相机单独的内外参数。
这个过程中通常使用的是已知尺寸的标定板,通过拍摄一系列不同位置下的标定板图像,计算出相机的内外参数。
获取到每个相机的内外参数之后,就可以进行立体标定了。
立体标定是指将相机的内外参数结合起来,计算出两个摄像头之间的几何关系。
在立体标定中最常用的方法是使用三维世界点与其在两个图像中的对应点,通过三角测量的方法计算出立体相机的关键参数,如基线长度和视差-距离关系。
通过这些参数,可以实现像素坐标和真实三维坐标之间的转换。
在完成双目立体视觉的标定之后,需要对其精度进行分析。
精度分析是评估立体视觉系统的重要步骤,它可以确定系统的测量误差和精度。
在精度分析中,常用的指标有重投影误差、视差图像中的一致性、点云的稠密度等。
重投影误差是通过将立体标定求得的摄像头参数应用到新的图像上,计算重投影点与实际点之间的误差。
重投影误差越小,表示摄像头参数越准确,测量精度越高。
视差图像中的一致性是指在视差图像中,邻近像素点的视差值应保持一致。
如果在同一平面上的相同物体的视差值不一致,说明系统存在误差。
点云的稠密度是通过将立体标定求得的摄像头参数应用到图像上,计算出场景的三维点云分布情况。
点云的稠密度越高,表示系统对场景的三维信息获取越准确。
总之,双目立体视觉的分步标定及精度分析是实现精确测量和三维重建的关键步骤。
通过准确标定摄像头,并对精度进行分析,可以确保双目立体视觉系统的测量精度和稳定性,为后续的应用提供可靠的数据支持。
• 178•如今,三维重构技术广泛应用于工业检测、三维测量、虚拟现实等领域。
同时双目立体视觉也是计算机视觉的一个重要分支。
立体视觉是指从两个不同的角度去观察场景中的同一个物体,来获取不同视角下的二维图像,再运用成像几何原理来计算图像像素之间存在的位置偏差(视差),从而获取物体的三维信息。
本文通过设计一种用于目标空间三维距离、方位信息探测的立体视觉系统及实现方法,根据图像识别结果进而获得目标的三维信息。
一、立体视觉技术概述及应用1.立体视觉技术概述立体视觉技术是计算机视觉领域中一个非常活跃的研究热点,它结合了图像处理、计算机视觉、计算图形学以及生物生理学等诸多领域的理论和方法。
它通过对多张图像的分析处理来获取物体的三维几何信息,尽可能逼真地实现模仿人类的双目视觉的功能。
同时双目立体视觉也是计算机视觉的一个重要分支,即由不同位置的两台或者一台摄像机(CCD)经过移动或旋转拍摄同一幅场景,并通过计算空间点在两幅图像中的视差,获得该点的三维坐标值。
2.本项目研究目的设计一种用于目标空间三维距离、方位信息探测的立体视觉系统及实现方法。
该系统根据双目视觉原理,利用预制三维标定物对图像获取系统的内、外参数进行标定,求出投影变换矩阵,根据图像识别结果运用灰度模板、连续性假设和对极几何约束进行识别目标的特征匹配,进而获得目标的三维信息。
3.该技术当前发展状况立体视觉技术在国内外科学研究上都有广泛应用。
在国外,华盛顿大学与微软公司合作为火星卫星“探测者”号研制了宽基线立体视觉系统,使“探测者”号能够在火星上对其即将跨越的几千米内的地形进行精确的定位导航。
国内,维视图像公司采用双目ccd 相机,从工业相机内参标定、镜头畸变标定、立体匹配、特征点分割处理等方面给出了详细的数学模型和算法接口。
其双目标定软件ccas 可以实现机器人导航、微操作系统的参数检测、三维测量和虚拟现实等应用。
4.发展趋势1)探索新的适用于全面立体视觉的计算理论和匹配择有效的匹配准则和算法结构,以解决存在灰度失真,几何畸变(透视,旋转,缩放等),噪声干扰,及遮掩景物的匹配问题;2)算法向并行化发展,提高速度,减少运算量,增强系统的实用性。
双目立体视觉SLAM研究双目立体视觉SLAM(Simultaneous Localization and Mapping)是一种使用双目摄像头进行地图构建和定位的方法。
通过分析双目摄像头获取的图像以及其之间的视差信息,可以在未知环境中同时进行地图构建和机器人自身的定位。
双目立体视觉SLAM已经在机器人导航和智能车辆等领域展示出了很大的潜力,并在其中取得了很大的成功。
双目摄像头由两个摄像头组成,分别被放置在机器人的两侧。
这样做的好处是可以获取不同视角的图像,并基于两图像之间的视差信息来计算物体的深度信息。
通过物体的深度信息,可以推算出物体在空间中的位置。
双目立体视觉SLAM利用这些信息来构建三维地图,并同时对机器人的位置进行定位。
在进行双目立体视觉SLAM之前,首先需要进行摄像头的标定。
标定过程通常包括获取摄像头的内外参数以及相对位姿。
内参数包括焦距、主点位置、畸变系数等,而外参数则包括摄像头之间的相对位置和姿态信息。
标定完成后,就可以开始进行地图构建和定位。
地图构建是双目立体视觉SLAM的核心任务之一、通过分析双目图像对中的像素位移,可以计算出场景中物体的深度信息。
通过对多个图像对的深度信息进行融合,可以得到一个相对准确的三维地图。
地图构建通常使用一些特征点或者特征描述子来实现,例如SIFT、ORB等。
这些算法能够在不同图像之间找到相匹配的特征点,从而计算出视差信息。
在地图构建的同时,双目立体视觉SLAM还需要对机器人的位置进行定位。
定位过程与地图构建是相辅相成的。
通过分析机器人当前图像对与地图中已知特征点的相匹配程度,可以估计机器人当前的位置。
机器人的姿态信息也会受到图像对中相对位置的影响。
因此,双目立体视觉SLAM 通常是一个迭代的过程,不断更新地图和机器人的位置。
双目立体视觉SLAM面临一些困难和挑战。
首先,双目摄像头在使用过程中可能会出现在姿态变化、畸变、遮挡等问题,这些问题会对地图构建和定位的准确性产生影响。