爆破破岩机理
- 格式:pptx
- 大小:4.76 MB
- 文档页数:92
隧道钻爆法施工作业钻爆作业过程简述…开挖作业基本要求:1.按设计要求开挖出断面(包括形状、尺寸、表面平整、超欠挖等要求);2.石碴块度适中,便于装碴运输;3.钻眼工作量少,少占作业循环时间;4.尽量减小对围岩的震动破坏.一、爆破破岩作用机理及有关概念(一)无限介质中的爆破作用(图7-1)1.压缩粉碎区~半径为的区域.2.抛掷区~与之间的范围.3.松动区~与之间的区域.4.震动区~与之间的范围。
(二)爆破基本概念1.临空面:指暴露在大气中的开挖面.在爆破中的作用:临空面越多,爆破威力越大。
2.爆破漏斗(图7—2)爆破漏斗:在只有一个临空面的情况下,爆破形成圆锥形的爆破凹坑。
爆破漏斗由以下几何要素组成:①最小抵抗线:药包中心到临空面的最短距离②爆破漏斗半径③破裂半径:药包中心到爆破漏斗边沿的距离④漏斗深度⑤压缩圈半径其中,最关键的是。
3.爆破作用指数爆破作用指数:爆破漏斗半径与最小抵抗线的比值。
对于爆破效果有重要影响,注意到取决于,可见最小抵抗线是关键因素. (三)柱状药包爆破特点适用于隧道爆破的是柱状药包。
特点:柱状药包爆炸应力波的传播方向,是以药包轴线为轴线,沿着垂直于药包表面的方向往四周传播。
所以,这对于仅在孔口有一个临空面的爆破,是十分不利的.动脑筋,多设置临空面…二、钻孔机具(一)凿岩机(钻机)按使用动力可分为风动凿岩机、内燃凿岩机、电动凿岩机和液压凿岩机四种。
目前在隧道开挖中,广泛使用的是风动凿岩机和液压凿岩机.1.风动凿岩机(见图7—3)俗称风钻。
以压缩空气为动力。
既可单人操纵,也可装在台车上使用,但以前者为主。
优点:①结构简单,操作方便;②不怕超负荷和反复起动,在多水、多尘等不良环境中仍能正常工作。
缺点:①压缩空气供应设备复杂;②能量利用率低;③噪音大。
2.液压凿岩机由液压马达提供动力。
只能用于台车。
优点:①动力消耗少,能量利用率高,其动力消耗仅为风动凿岩机的1/3~1/2;②凿岩速度高.液压凿岩机凿岩速度比风动凿岩机高50%~150%。
爆破破岩机理【转发】:一、爆生气体膨胀压力作用破坏论Kutter和Hagan从静力学的观点出发,提出了“气楔作用”(PneumaticWedgtng)这种假说,认为炸药爆炸后产生的高温高压的气体,由于膨胀而产生的推力作用在炸药周围的岩壁上,引起岩体质点的径向位移,从而在岩体中形成剪切应力。
当这种剪切应力超过岩体的极限抗剪强度时,就会引起岩体的破坏。
当爆生气体的膨胀推力足够大时,还会引起自由面附近的岩体隆起、鼓开并沿径向方向抛掷。
这种假说认为,动能仅占炸药总能量的5%~15%,绝大部分能量包含在爆生气体产物中,另一方面,岩体爆破时岩石发生破裂和破碎所需的时间小于爆生气体作用于岩体的时间。
二、应力波反射拉伸作用破坏论以Coates和Hin。
为代表的这种假说,从爆轰动力学的观点出发,认为炸药爆炸后,强大的冲击波冲击和压缩周围的岩体,在岩体中激发出强烈的压缩应力波。
当压缩应力波传播到自由面时,从自由面处反射而形成拉伸波。
当拉伸波的强度超过岩体的极限抗拉强度时,从自由面处开始向爆源方向产生拉伸片裂作用。
三、应力波和爆生气体联合作用破坏论以Fairhurst为代表的这种假说认为,爆破时岩体的破坏是应力波和爆生气体共同作用的结果。
但在解释破碎岩体的主导原因时存在不同观点。
一种观点认为,应力波在破碎岩体时不起主导作用,只是在形成初始径向裂隙时起先锋作用,岩体的破碎主要依靠爆生气体的膨胀推力和尖劈作用;另一种观点则认为,爆破时破碎岩体的主导作用取决于岩体的性质,即取决于岩体的波阻抗。
对于波阻抗为(10一15)× 10^5g/(cm^2.s)的高波阻抗的岩体,即极致密坚韧的岩体,爆炸应力波在其中的传播性能好,波速高。
爆破时岩体的破碎主要由应力波引起。
对于波阻抗为(2一5)× 10^5 g/(cm^2. s) 低波阻抗的松软而具有塑性的岩体,爆炸应力波在其中的传播性能较差,波速低,爆破时岩体的破碎主要依靠爆生气体的膨胀压力;对于波阻抗为(5~10)× 10 ^5g/〈cm^2.S )的中等波阻抗的中等坚硬的岩体,应力波和爆生气体同样起重要作用。
培训笔记(三)——破岩机理一、破岩过程一阶段:炸药爆炸阶段二阶段:冲击波反射阶段三阶段:气体膨胀阶段二、破岩理论1.爆炸气体产物膨胀压力破坏理论:岩石主要由于装药空间内爆炸气体产物的压力作用而破坏。
2.冲击波引起应力波反射破坏理论:岩石的破坏主要是由自由面上应力波反射转变成的拉应力波造成的。
3.爆炸气体膨胀压力和冲击波所引起的应力波共同作用理论:爆破时岩石的破坏是爆炸气体和冲击波共同作用的结果,它们各自在岩石破坏过程的不同阶段起重要作用。
三、波阻抗:即岩石密度与冲击波在岩石中传播速度的乘积。
岩石按波阻抗值分为三类:1、岩石波阻抗为10X105~25X105(g/cm2·s);2、岩石波阻抗为5X105~10X105(g/cm2·s);3、岩石波阻抗为2X105~5X105(g/cm2·s)。
四、爆破内部作用1.压缩区受到爆炸冲击波的强动作用,炮孔壁周围的介质被粉碎或强烈压缩,形成压缩区或粉碎区成压缩区或粉碎区。
2.破碎区爆炸冲击波在岩石中形成新鲜裂纹或激活原生裂纹,爆炸气体的高压气楔作用,对裂纹进行扩展,形成破碎区。
3.震动区在破坏区以外的岩体,只发生弹性震动。
五、爆破漏斗:当药包产生外部作用时,在地表会形成一个爆破坑,称为爆破漏斗。
1、爆破漏斗的构成要素(1)自由面;(2)最小抵抗线;(3)爆破漏斗底圆半径;(4)爆破作用半径;(5)爆破漏斗深度;(6)爆破漏斗可见深度;(7)爆破漏斗张开角。
图7-6 爆破漏斗2、爆破作用指数n=r/W在最小抵抗线相同的情况下,爆破作用愈强,爆破漏斗底圆半径愈大。
根据n的大小爆破漏斗分为:(1)标准抛掷(n=1);(2)加强抛掷(n>1);(3)减弱抛掷(0.75<n<1);(4)松动爆破(0<n<0.75)。
隧道光面爆破和预裂爆破的原理一、爆破原理1、光面爆破作用原理:光面爆破的破岩机理十分复杂,目前仍在探索中。
尽管在理论上还很成熟,但在定性分析方面已有共识。
一般认为炸药起爆时,对岩体产生两种效应,主要是爆炸气体膨胀做功所起的作用。
光面爆破是周边眼同时起爆,各炮眼的冲击波向四周作径向传播,相邻炮眼的冲击相遇,产生应力波德叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心连线上形成裂缝,随后,爆炸气的膨胀令裂缝进一步扩展,形成平整的爆裂面。
2、预裂爆破作原理:主要指预裂爆破成缝机理。
为了保证预裂爆破成功,首要的条件是不压坏预裂孔壁,其次是沿预孔连线方向成缝。
当炸药爆炸后,产生的冲击压力和高压气体的作用,将会使孔壁产生剧烈破坏。
要想不压坏孔壁必须采用不偶令装药法,即药包直径小于钻孔直径。
试验发现,当药包与孔壁之间存在空气间隙时,由于空气的缓冲作用,使孔壁所受压力大大降低。
试验得出,当不偶令系数M=2.5时,作用在炮孔内壁的最大切向应力只相当于不偶令系数为1时的大约1/16。
因此,完全有可能利用现有的常用炸药,用不偶令装药来降低孔壁压力,把几万个大气压降到每平方厘米只有几千或几百会斤的压力值。
当降低的压力值小于或极接近于岩石的极限抗压强度时,便可使孔壁不受爆破压缩破坏或者只受少量的振动。
在利用不偶令装药保证孔壁不受破坏的前提下,第二个条件就是怎样保证在预定的方向成缝。
实践经验证明,只需要调整相邻炮孔的距离或孔内装药量便可达到成缝的目的。
二、技术措施1、光面爆破的主要技术措施如下:(1)根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。
(2)严格控制周边眼的装药量,尽可能将药量沿眼大均匀分布。
(3)周边眼宜使用小直径药卷和低猛度、低爆速的炸药。
为满足装药结构要求,可借助导爆索(传爆线)来实现客气间隔装药。
(4)采用毫秒微差有序起爆。
隧道光面爆破和预裂爆破的原理一、爆破原理1、光面爆破作用原理:光面爆破的破岩机理十分复杂,目前仍在探索中。
尽管在理论上还很成熟,但在定性分析方面已有共识。
一般认为炸药起爆时,对岩体产生两种效应,主要是爆炸气体膨胀做功所起的作用。
光面爆破是周边眼同时起爆,各炮眼的冲击波向四周作径向传播,相邻炮眼的冲击相遇,产生应力波德叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心连线上形成裂缝,随后,爆炸气的膨胀令裂缝进一步扩展,形成平整的爆裂面。
2、预裂爆破作原理:主要指预裂爆破成缝机理。
为了保证预裂爆破成功,首要的条件是不压坏预裂孔壁,其次是沿预孔连线方向成缝。
当炸药爆炸后,产生的冲击压力和高压气体的作用,将会使孔壁产生剧烈破坏。
要想不压坏孔壁必须采用不偶令装药法,即药包直径小于钻孔直径。
试验发现,当药包与孔壁之间存在空气间隙时,由于空气的缓冲作用,使孔壁所受压力大大降低。
试验得出,当不偶令系数M=2.5时,作用在炮孔内壁的最大切向应力只相当于不偶令系数为1时的大约1/16。
因此,完全有可能利用现有的常用炸药,用不偶令装药来降低孔壁压力,把几万个大气压降到每平方厘米只有几千或几百会斤的压力值。
当降低的压力值小于或极接近于岩石的极限抗压强度时,便可使孔壁不受爆破压缩破坏或者只受少量的振动。
在利用不偶令装药保证孔壁不受破坏的前提下,第二个条件就是怎样保证在预定的方向成缝。
实践经验证明,只需要调整相邻炮孔的距离或孔内装药量便可达到成缝的目的。
二、技术措施1、光面爆破的主要技术措施如下:(1)根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。
(2)严格控制周边眼的装药量,尽可能将药量沿眼大均匀分布。
(3)周边眼宜使用小直径药卷和低猛度、低爆速的炸药。
为满足装药结构要求,可借助导爆索(传爆线)来实现客气间隔装药。
(4)采用毫秒微差有序起爆。
1.岩石爆破破坏原因的理论学说和破坏过程。
理论1“爆生气体膨胀作用理论:炸药爆炸引起岩石破坏,主要是高温高压气体产物对岩石膨胀做功的结果;2爆炸应力波反射拉伸作用理论:岩石的破坏主要是由于岩石中爆炸应力波在自由面反射后形成反射拉伸波的作用,岩石中的拉应力大于其抗拉强度二产生的,岩石是被拉断的;3爆生气体和应力波综合作用理论:实际爆破中,爆生气体膨胀和爆炸应力波都对岩石破坏起作用,不能绝对分开,而应该是两种作用综合的结果,因而加强了岩石破碎效果,比如冲击波对岩石的破碎,作用时间短,而爆生气体的作用时间长,爆生气体膨胀促进了裂隙的发展,同样,反射拉伸波也同样加强了径向裂隙的扩展。
过程1.炮孔周围岩石的压碎作用2.景象裂隙作用3。
卸载引起的岩石内部环状裂隙作用 4。
反射拉伸引起的“片落”和引起径向裂隙的延伸 5。
爆炸气体扩展应力波所产生的裂隙。
2。
巷道掘进爆破中炮眼形式:掏槽眼:用于爆出新自由面,为辅助眼/周边眼爆破创造有利条件,直接影响循环进尺,掘进效果;周边眼:控制爆破后的巷道断面形状、大小和轮廓,使之符合设计要求;(顶眼、底眼、周边眼)辅助眼:破碎岩石的主要炮眼,利用掏槽眼爆破后创造的平行于炮眼的自由面,爆破条件大大改善;3.中深孔爆破设计的基本内容:确定台阶高度,网孔参数,装药结构,装填长度,起爆方法,起爆顺序,炸药的单位消耗量4炸药爆炸与燃烧区别燃烧与爆炸传播速度截然不同,燃烧几毫米到几百米每秒,亚音速,爆炸通常几千米每秒1。
从传播连续进行的机理来看,燃烧的能量通过热传导,辐射和气体产物的扩散传到下一层炸药,激起未反应炸药产生化学反应,是燃烧连续进行,爆炸,能量以压缩波的形式提供给前沿冲击波,维持前沿冲击波的强度,然后前沿冲击波冲击压缩激起下一层炸药进行化学反应,是爆轰连续进行;2从反应产物的压力来看,燃烧产物压力很低,对外界显示不出力的作用,爆炸产物有强烈的力效应3从反应产物质点运动方向,燃烧产物质点运动方向与燃烧传播的方向相反,二爆炸产物质点运动方向与爆炸传播方向相同;4从炸药本身条件,燃烧随装药密度的增加,燃烧速度下降,而爆轰速度随密度增加而增加;5从外界条件,燃烧易受外界压力和初温影响,爆炸基本不受外界条件影响;5氧平衡:指炸药中所含的氧用以完全氧化其所含的可燃元素后氧的剩余情况的衡量指标。
第35卷第4期2020年12月矿业工程研究Mineral Engineering ResearchVol.35No.4Dec.20200oi:1043522/j.c56i.l674-5276.2020.04401现场混装乳化炸药爆破破岩机理分析及其工程应用卢军!,马元军(葛洲坝易普力四川爆破工程有限公司,四川成都610000)摘要:为提高现场混装乳化炸药爆破效果,以某石灰石矿为背景,采用理论分析方法研究其爆轰波、爆破冲击波及爆破压缩波的作用机理,计算得到其对爆破大块率的影响,并提出合适的布孔方式及孔网参数.研究表明:某石灰石矿山采用现场混装乳化炸药爆破时,炮孔中的爆轰压力为10.04GPa,炸药对周边岩体的爆破初始冲击压力为1349GPa,爆破冲击压力及拉伸应力对岩体的影响区域分别为14,14m;采用梅花形布孔,孔网参数设置为5mx4m时,爆破块度分布更集中,块度破碎更充分,大块率较参数优化前降低1347%.关键词:现场混装乳化炸药;爆破冲击;孔网参数;布孔方式;大块率中图分类号:TD2354文献标志码:A文章编号:1672-9102(2020)04-0001-05Mechanism Analysis and Engineering Application of Blasting Fragmentation for On-sitt Mixed Emulsion ExplosivesLu Jun,MaYuanjun(Gezhouba Explosive Sichuan Blasting Engineering Co.,Ltd.,Chengdu610000,China)Abstract:In order to improve the blasting effect of on-site mixed emulsion explosive,taking a limestone mine as the reseerch background,the action mechanism of detonation wave,blasting shock wave and blasting compression wave are studied by theoreticcl analysit method.The influence of blasting bouldeo ratio is obtained by celculation,the appropaaie I io I c arrangemeni mode and I o I c network parametera are proposed.R cu O s show that the detonation passua in the blast hok is10.04GPa and the initim impact pressure on surrounding rock mass is1349GPa.The aree of impact pressure and hnsile stress on rock masses is14and1.1m especthely. When plum blossom shaped holes are used and the hcOe network parametere are set at5mX4m,the blasting fraamentation distriVuhon is more concentrated and the fragmentation is more sufficient,the block ratio is decreesed by13.47%compared with that before optimization.Keywords:on-site mixed emulsion explosives%blasting impact%hcOe network parametere%hcOe arangement%block ratio自1627年,奥地利人葛期帕尔•温德首次将炸药应用于煤矿开采以来,经过几百年的发展,爆破法已成为矿山开采最主要的方法[1].伴随着爆破法的推广应用,工业炸药也陆续更新换代,最初的黑火药,逐步由代那买特、硝铵炸药所替代•硝铵炸药由于安全、可靠、威力大,特别是现场混装乳化炸药生产工艺简单,其制造、运输、使用等环节均为炸药半成品,无雷管、机械等感度,安全可靠,且生产工艺高效、环保,因此广泛应用于露天大型矿山爆破开采.收稿日期:2020-08-16通信作者$E-maiV****************2矿业工程研究2020年第35卷现场混装乳化炸药流动性大,主要呈耦合装药结构,其配方可以根据矿岩的性质调整,因此研究其与矿岩匹配性对于爆破效果提升至关重要.国内外大量学者分别从现场混装乳化炸药原材料性质'$,3(、配方'#旳、装药结构'7,8]等方面研究了其对爆破效果的影响,并提出了针对性的措施•但是针对现场混装乳化炸药爆区爆破参数的设计仍采用传统的经验公式⑼,对于现场混装乳化炸药破岩机理及影响范围研究较少,相关爆破参数的优选理论支撑不足•基于此,本文以某石灰石矿山为背景,研究现场混装乳化炸药爆破应力波传播规律,分析其破岩机理,为爆破参数的优化提供理论依据・1现场混装乳化炸药爆轰冲击性能分析某石灰石矿山采用现场混装乳化炸药进行爆破作业,工艺简单.首先在地面集中制备站制备水相(硝酸铵水溶液)、油相(柴油及乳化剂)、敏化剂(亚硝酸钠),然后将水相、油相、敏化剂分别装入BCRH-15型现场混装乳化炸药车的不同罐体内,现场混装乳化炸药车进入爆破区域后,通过螺杆泵将水相、油相搅拌均匀,形成W/O型抗水乳胶基质,输入炮孔时添加敏化剂,10~15min后现场混装乳化炸药在炮孔中敏化发泡,成为具备爆炸性能的乳化炸药•具体配比:水相溶液中!(硝酸铵):!(水)=82%:18%,油相溶液中!柴油):!(SP-80)=80%:20%,敏化剂中!(亚硝酸钠):!(水)=25%:75%,炸药密度为1.15g/cm3,水相吸晶点温度为63°C.现场混装乳化炸药装药完成后,在起爆具爆炸能作用下,炸药爆炸并以较快的速度达到爆轰,其爆轰波传播过程符合ZND模型,如图1所示.爆轰波在炮孔传播过程中,以D表示爆轰波速度,以p H,P h,“H,$H,e H及P o,P o,"0,$0,%)分别表示爆轰产物及炸药的密度、压力、运动速度、温度和比热力学能(如图1所示)•在爆轰波传播过程中,爆轰波阵面前后单位质量炸药遵循质量、动量及能量守恒定律'10(:&H'&0=(e H-e0)+(*H-*0);(1)p(")==P((2)P h_P0=p(D~"0)("h-"0)-(3)式中:&0,&h分别为炸药、爆轰产物单位质量热力学能,E*0,*h分别为炸药、爆轰产物单位质量的化学能,J.采用Microtrap孔内爆速仪对现场混装乳化炸药爆速进行测试,得到"=6051.6m/s.将相关参数代入式(1)~式(3),可得现场混装乳化炸药爆轰压力ph=10.04GPa.1—爆轰产物;2—反应区;3—现场混装乳化炸药;4—压力曲线;5—(C-J)面;6—冲击波面图1柱状耦合装药爆轰ZND模型2现场混装乳化炸药爆破应力波传播特征2.1爆轰波对岩体初始冲击荷载现场混装乳化炸药装入炮孔后呈流体状,根据应力波传播特征,爆轰波在炮孔壁发生透射及反射,透射波向岩体内部继续传播,反射波则在爆轰产物中传播,如图2所示.透射波向岩体深处传播,对周边岩体产生动力扰动,因此,研究爆轰波对岩体的冲击荷载实际上就是研究爆轰波作用于孔壁的透射波的冲击荷载.第#期卢军,等:现场混装乳化炸药爆破破岩机理分析及其工程应用31—爆轰产物;2—现场混装乳化炸药;3—炮孔壁;4—爆轰波头;5—入射波;6—反射波;7—透射波图2柱状装药爆轰波冲击荷载透射波均遵循质量、动量和能量守恒,参照式(1)~式(3),得到透射波压力(岩体初始冲击荷载)为1+N-—式中:P2为爆轰波对岩体初始冲击荷载,MPa;N为比例系数,该石灰石属中风化灰岩,取1.2;P s为岩体密度,取2670kg/m3;为岩体中弹性波波速,取4644m/s.将相关参数代入式!4),计算得到p=13.79GPa.2.2现场混装乳化炸药爆破应力波衰减规律炸药爆炸后,产生大量高温高压气体作用于炮孔周边的岩体,在距炮孔中心较近的范围内(—7.0),岩体变形过程复杂,呈类似流体变形状态,在该区域内,高温高压气体的能量快速释放,影响范围较小•在r#7R a附近,爆轰波产生的冲击波在岩体中很快形成陡峭的波阵面[11],具有较高的冲击压力,冲击波继续传播的过程中,冲击压力开始衰减,当冲击荷载衰减至小于岩体抗压强度时,冲击压力转换为压缩应力,压缩应力对岩体压缩产生拉应力,压缩应力小于岩体抗压强度,不会使岩体产生破坏,但是因压缩产生的拉应力大于岩体抗拉强度,促使岩体出现拉伸破坏.根据文献[10,11]爆破应力波衰减理论公式,分别得到爆破压缩应力P及切向拉应力#的特征方程:P2二);(5式中:P为压缩应力,MPa;为径向压应力,MPa;#为初始冲击压力,MPa;-为比距离;$为压力衰减指数,爆破冲击波的衰减指数$#3;A r为爆破应力计算点与爆轰波波阵面的相对距离,!r=r-7R%,其中r 为爆破应力计算点距炮孔中心的距离,m;R%为炮孔半径,.%=0.069m.式中:#为切向拉应力,MPa;"为岩石泊松比,取0.28.将相关参数代入式!5)~式(7),得到爆破压应力、拉应力与距炮孔中心距离的反比关系如图3所示.现场混装乳化炸药爆破后,首先产生爆破冲击压力,爆破冲击波压力P由13.79GPa迅速衰减至40.20MPa (图3a所示),衰减的距离为1.0m,此后爆破冲击波继续衰减形成爆破压缩波,爆破压缩波压应力小于岩体抗压强度,不会对岩体产生破坏,但是压缩产生横向拉应力,导致岩体破坏,拉应力由6.9MPa逐步衰减至2.0MPa时(图3b所示),拉应力对岩体不再产生破坏,拉应力破岩范围为1.1m,爆破应力破岩范围为2.1m.4矿业工程研究2020年第35卷3工程应用3.1方案优化根据经验,某石灰石矿爆破孔排距设计范围为(4~6) mx ( 3~5) m ,为提高爆破效果,一般采用大孔距、 小排距•选取几种典型的爆破参数及炮孔布置形式进行混装乳化炸药破岩机理分析.不同的布孔方式下爆破应力破岩范围如图4所示.当孔排距为5 mX4 m 时,梅花形布孔方式对比长方 形布孔,相邻炮孔起爆后,中间区域未受冲击,且拉裂的区域较小并呈狭长分布,该区域产生爆破大块率的 概率较小,更利于控制爆破块度.(a )梅花形布孔(b )长方形布孔图4不同布孔方式爆破应力破岩范围当炮孔采用梅花形布孔时,不同孔排距导致相邻炮孔间未受扰动区域面积各不相同,如图5所示.当孔排 距6 mX4 m 时(如图5a ),相邻炮孔间未受扰动的区域最大,大块率发生概率最大;当孔排距4 mX4 m 时(如 图5c ),相邻炮孔破裂区域重叠,可能导致炮孔爆炸能更多应用于岩石过度破碎,产生大量粉矿,不利于铲装; 当孔排距5mX4 m 时(如图5b ),能量利用率最高,且炮孔间岩石破碎较充分,发生大块率概率较小.(a) 6 m X 4 m (b) 5 m x 4 m图5不同爆破参数爆破应力破岩范围4m(c) 4 m x 4 m因此,基于现场混装乳化炸药爆破应力破岩机理,采用孔排距为5 mX4 m 的梅花形布孔方式,更利于 充分破岩, 提高爆破效果.第4期卢军,等:现场混装乳化炸药爆破破岩机理分析及其工程应用53.2应用效果分析为进一步直观对比分析不同孔网参数条件下混装乳化炸药爆破时,该石灰石矿大块率的分布特征,选 取常用的6 mX4 m 和优化推荐的5 mX4 m 孔网参数进行爆破效果对比分析,爆破单耗均取04 kg/m 3.进 行混装乳化炸药装药并起爆后,利用爆破块度软件对爆堆表面大块率进行分析,如图6所示.(a)原参数爆破块度 (b)优化后爆破块度图6爆破参数优化前后岩石爆破块度对2种爆破参数起爆后大块率进行分析后,其爆破块度累计质量百分比如图7所示.参数优化前后,爆破块度 在矿山要求的10 - 100 mm 内所占比例分别为72.13%, 8244%,超过100 mm 的所占比例分别为27.47% ,1440%. 由此可见,基于现场混装乳化炸药破岩机理,优化爆破孔 网参数后,爆破块度分布更集中,大块率降低13.57%.4结论1)分析并计算得到现场混装乳化炸药耦合柱状装药结构爆轰压力及其对周边岩体爆破冲击压力,为现场混装 乳化炸药爆轰能定量计算及配方优化提供了思路.00O O O OO OOO O987654321 %、£0皿*径44除图7参数优化前后爆破块度对比2)现场混装乳化炸药爆破冲击压力随着应力波向外传播,冲击压力逐步衰减为压缩应力,冲击压力对周边岩体产生冲击破碎,压缩产生的拉应力对周边岩体产生拉裂破碎.3)研究表明梅花形布孔较长方形布孔爆破效果更佳,针对某石灰石矿提出了梅花形布孔适合的孔网 参数,有效降低了爆破大块率.参考文献:[1] 李有良,郝志坚,姜庆洪.工业炸药生产技术'M ].北京:北京理工大学出版社,2015.[2] 卢文川,孟昭禹,马军,等.乳化剂和油相材料对现场混装乳化炸药基质稳定性的影响'J ].爆破器材,2019,48(6) $7-12.[3] 张家田,高锡敏,黄胜松.混装乳化炸药敏华助剂对爆破效果的影响研究'J ].采矿技术,2020,20(5):161-163.[4] 李杰,刘露,赵明生,等.基于混装乳化炸药配方调整改善爆破效果的研究[J].矿业研究与开发,2020,40(5) $27-31.[5] Huang S S , Zhao M S , Zhang Y P , st aO Experimental Study on the Performance oO on-site Mixed Emulsion Explosives andRock Impedancc Matching [ J ]. American Journal oO Scientific Research and Essays , 2020,5( 26) : 1-7.[6] 黄麟,田丰,田惺哲,等.抗低温地下混装乳化炸药工艺配方研究[J ].工程爆破,2018,24(5):35-39.[7] 余红兵,赵明生,周桂松,等.混装乳化炸药不同孔径水孔装药结构研究'J ].爆破,2018,35(4):104-123.[8] 李斌,马元军,胡劲松,等.某铁矿大孔径中深孔爆破装药结构对比试验[J ].现代矿业,2019,35( 12):117-119.[9] 汪旭光.爆破手册'M ].北京:冶金工业出版社,2010.[10] 戴俊.岩石动力学特征与爆破理论'M ] 4匕京:冶金工业出版社,2014.[11] 杨仁树,丁晨曦,王雁冰,等.爆炸应力波与爆生气体对被爆介质作用效应研究[J ].岩石力学与工程学报,2016,35(s2) :3501-3505.。