焊接机器人的研究现状与发展方向
- 格式:pdf
- 大小:319.13 KB
- 文档页数:3
焊接技术的发展趋势与前景展望随着工业化进程的不断推进,焊接技术作为一种重要的连接工艺,在制造业中发挥着不可替代的作用。
焊接技术的发展趋势与前景备受关注,下面将从材料、设备和自动化等方面进行论述。
一、材料的发展随着科学技术的进步和工业材料的不断创新,新型材料的出现对焊接技术提出了新的挑战和需求。
例如,高强度钢、铝合金、镍基合金等材料的应用广泛推动了焊接技术的发展。
传统的焊接方法在处理这些新材料时可能会出现一些问题,如焊接变形、裂纹等。
因此,研发新的焊接工艺和技术,提高焊接接头的质量和可靠性,成为了当前焊接技术发展的重要方向。
二、设备的发展随着科技的不断进步,焊接设备也得到了快速的发展。
传统的手工焊接已经无法满足大规模生产的需求,自动化焊接设备的应用逐渐增多。
例如,焊接机器人的出现使得焊接过程更加精确和高效。
焊接机器人具有高度灵活性和重复性,可以在狭小空间内完成复杂的焊接任务,大大提高了焊接的质量和效率。
同时,激光焊接、电弧焊接等新型焊接设备也得到了广泛应用。
这些设备的出现使得焊接技术更加多样化,满足了不同行业和领域的需求。
三、自动化的发展随着工业自动化的普及和应用,焊接技术也趋向于自动化和智能化。
自动化焊接系统的出现使得焊接过程更加稳定、高效和安全。
通过传感器、控制系统和计算机技术的应用,可以实现焊接参数的实时监测和调整,提高焊接的一致性和可靠性。
同时,智能化焊接系统的发展也成为了焊接技术前景的一大亮点。
例如,通过人工智能技术的应用,焊接机器人可以学习和适应不同的焊接任务,提高生产的柔性和适应性。
总之,焊接技术的发展趋势与前景展望令人振奋。
随着材料、设备和自动化技术的不断创新,焊接技术将逐渐实现高效、高质量和智能化的发展。
这将为制造业的发展提供更多机遇和挑战。
然而,我们也需要深入研究和探索,不断推动焊接技术的创新和进步,以满足不断变化的市场需求。
只有不断追求创新和发展,焊接技术才能在未来的工业领域中发挥更加重要的作用。
机器人技术:现状与前景近年来,随着人工智能技术的不断发展,机器人技术也逐渐成为科技界和商业界的热点话题。
机器人技术的发展对于促进人类生产、生活和科学研究等领域的进步有着重要的意义。
本文将就机器人技术的现状和前景展开探讨。
一、机器人技术现状目前,机器人技术已经相当成熟,不仅被应用到工业生产领域,还被广泛应用到服务、医疗、科学等领域。
以下将分别从这四个领域讨论机器人技术现状。
1、工业生产在工业生产领域,机器人技术早已被广泛应用。
许多厂商已经在生产线上使用机器人完成了一系列工作,如焊接、搬运、包装、涂装等工作,而且准确率及速度也有较大提高。
此外,随着4.0工业的推动,一些新的型号的机器人也逐渐涌现。
2、服务在服务领域,机器人技术的应用相对来说较新颖,但在近几年逐步得到了扩展。
一些餐厅、酒店等场所已经开始使用机器人服务员,配合人工智能技术完成点餐、送菜、收拾餐盘等工作。
还有一些创新型机器人设计了人脸识别、语音识别等功能,使机器人更像人类一样完成沟通服务。
3、医疗在医疗领域,机器人技术也得到了广泛的应用。
例如,手术机器人被广泛应用于手术室,以完成高精度的手术和创面的缝合。
另外,还有一些机器人被设计成为移动病床,帮助医护人员将病人转移至指定区域。
此外,一些医疗机构还开发了监测患者的机器人,协助护士完成定时监测和报告。
4、科学在科学领域,机器人技术的应用也随着科学技术的发展逐渐得到扩展。
例如探空机器人、探测机器人、火星车、机器人摄像头等等,跨越了环境极端、接近危险、未知区域等领域,大大提高了科学探索的效率和安全性。
二、机器人技术未来发展趋势机器人技术的发展趋势可以从以下角度分析。
1、机器人智能度提高机器人智能度的提高是未来机器人领域的重要趋势。
目前的“智能机器人”只是单一的任务执行机器人。
未来的机器人智能度将会提高到“多重智能”水平,也就是说它不仅可以执行任务,还具备了分析、决策、学习和交流的能力。
这样的机器人将具备更多的实用性和应用性,可以更好的帮助人类生产生活。
25I ntelligent manufacturing智能制造双齿辊破碎机智能焊接机器人的研究与应用刘敬玉1,刘志华1,李忠飞1,赵星宇2,陈 仁21.内蒙古电投能源股份有限公司北露天煤矿公司,内蒙古 霍林郭勒 029200;2.北京瓦特曼智能科技有限公司,北京 100071摘 要:矿山开采过程中需要对矿石进行一次和二次破碎,由于矿石里面参杂石块、木块、铁块等杂物,矿石的硬度也很大,破碎机齿辊很容易磨损,所以在使用过程中需要经常性的对齿辊维修补焊,然而目前国内都采用人工补焊的方式进行修复,补焊环境恶劣,补焊过程危险,劳动强度大,无机器人辅助,智能化程度较低,急需解决当下人员维修难度大和强度大的问题,本文通过3D视觉、人工智能、自动控制技术等智能化装备系统与当前破碎机维修工艺深度融合,构建双齿辊破碎机智能焊接机器人系统,实现破碎机齿辊维修全过程、全生命周期的智能化、安全化和高效化,降低维修成本,提高智慧矿山产业的核心竞争力。
关键词:破碎;焊接;智能中图分类号:TD451 文献标识码:A 文章编号:1002-5065(2024)04-0025-3Research and Application of Intelligent Welding Robot for Double-geared Roller CrusherLIU Jing-yu 1,LIU Zhi-hua 1,LI Zhong-fei 1,ZHAO Xing-yu 2,CHEN Ren 21.North Opencast Coal Mine of Inner Mongolia Dian Tou Energy Corporation Limited, Tongliao 029200,China;2.WHITMAN LIMITED,Beijing 100071,ChinaAbstract: During the mining process, it is necessary to perform primary and secondary crushing on the ore. Due to the presence of debris such as stones, wood blocks, and iron blocks, the hardness of the ore is also high, and the toothed rollers of the crusher are prone to wear and tear. Therefore, frequent maintenance and welding of the toothed rollers are required during use. However, currently in China, manual welding is used for repair. The welding environment is harsh, the welding process is dangerous, labor intensity is high, and there is no robot assistance. The degree of intelligence is low, and it is urgent to solve the problem of high difficulty and intensity of personnel maintenance. This article deeply integrates intelligent equipment systems such as 3D vision, artificial intelligence, and automatic control technology with the current crusher maintenance process to build a double toothed roller crusher intelligent welding robot system. Realize the intelligence of the entire process and life cycle of crusher tooth roller maintenance To ensure safety and efficiency, reduce maintenance costs, and enhance the core competitiveness of the smart mining industry.Keywords: Crushing;Welding;Intelligence收稿日期:2023-12作者简介:刘敬玉,男,生于1977年6月,高级工程师,本科,研究方向:采矿工程与绿色低碳开采领域,露天煤矿采矿管理。
机器人技术的应用及未来发展趋势机器人技术在现代社会中起到了越来越重要的作用,其在工业制造、医疗保健、科学研究等多个领域得到广泛应用。
本文将从机器人技术当前的应用现状入手,探讨其未来的发展趋势。
一、机器人技术的应用现状1. 工业制造领域机器人在工业制造领域中有着广泛的应用。
传统的工业机器人主要用于物料搬运、焊接、喷涂等重复性的操作。
随着人工智能的发展,机器人的应用范围不断拓展,如机器人视觉技术的发展,可以实现对产品尺寸、形状、表面质量等要素的检测;机器人柔性化制造技术的发展,可以实现多品种、小批量的生产,提高生产效率和生产质量。
此外,还有一些新型的机器人,如协作机器人、移动机器人等,可以与人类进行更为智能和灵活的互动,实现人机合作。
2. 医疗保健领域机器人技术在医疗保健领域中也有广泛的应用。
如手术机器人可以通过微创手术技术,降低手术风险和恢复时间;康复机器人可以协助患者进行康复训练,帮助他们恢复肢体功能;护理机器人可以陪伴老人、残疾人等特殊人群,提供日常照料服务。
同时,机器人技术还可以在疾病预防、医学影像、药物研发等方面发挥作用。
3. 科学研究领域机器人技术在科学研究中也占有重要的地位。
例如,探险机器人可以在极地、深海等环境下进行探测和研究;天文探测机器人可以观测和研究太阳系和星系的结构和演化;人形机器人则可以在人类工程学中模拟人类的行为和动作,促进人机交互的机制研究。
二、机器人技术的未来发展趋势1. 人工智能的应用将更加广泛人工智能是机器人技术发展的一个重要方向。
随着机器学习、深度学习等技术的不断发展,人工智能将被广泛应用于机器人技术的许多领域,如视觉、语音、动作控制等。
同时,人工智能也将使机器人实现更为智能化、自主化的能力,减少对人类干预的依赖。
2. 机器人的灵活程度将进一步提高目前的工业机器人大多数只能进行单一的工作,而随着机器人柔性化制造技术和协作机器人技术的不断发展,机器人将具备更高的任务适应能力,能够依据任务需求自主决策,实现人机协作。
机器人焊接技术论文(2)机器人焊接技术论文篇二智能化机器人焊接技术研究进展摘要:随着先进制造技术的发展,焊接技术的自动化、智能化得到了显著提升,无论是焊接精度、效率都得到了快速发展与提高,可以说未来智能化机器人焊接技术的发展是大势所趋,必然会在大部分的制造业中取代传统的手工焊接。
本文通过对现代智能化机器人焊接技术研究进展,由此进一步探讨和研究未来的智能化焊接技术发展趋势。
关键词:智能化;机器人焊接技术;发展趋势;制造业引言现代科学技术的发展,传统焊接技术也已经发生了天翻地覆的变化,已经从过去单纯的手工式的焊接转变而智能化的操作,并且随着先进制造技术的发展,焊接技术的自动化、智能化得到了显著提升,无论是焊接精度、效率都得到了快速发展与提高,可以说未来智能化机器人焊接技术的发展是大势所趋,必然会在大部分的制造业中取代传统的手工焊接。
从上世纪六十年代至今,焊接机器人控制与发展主要经历了三个阶段,包括示教再现阶段、离线编程阶段和自主编程阶段。
而现代计算机控制技术以及智能化微处理技术的发展,也进一步提升了智能化机器人焊接技术的发展速率,未来的智能化机器人不仅仅是能够按照预先的编程进行运行和焊接,同时也能够实现多项命令下的同时操作以及良好的应变能力,由此更加智能化、柔性化的进行加工和生产。
1.人焊接智能化技术的主要构成现代焊接技术具有典型多学科交叉融合的特点,将现代智能技术引入到传统焊接应用中国,通过微处理技术和计算机技术,将预先程序事先植入到焊接机器人中,从而实现了其行为的自主性,由此使得其能够执行一系列复杂的动作,并且由于计算机的操控可以对其行为以及环境进行实时监控,从而保证了行为的有效性以及故障的可追溯性。
可以说智能化机器人焊接技术是多种技术的集成,实现了远程监控管理、统一调度规划等多项功能,让现代焊接效率更高,流程更清晰,分工更明确,同时也更加便于管理与协调,仅仅需要通过改变一定的程序就能够实现整体的焊接模式和机器人行为,无疑与传统单一的机器人焊接而言有了长足的进步。
机器人技术的现状及前景展望随着科技的快速发展,机器人技术也愈加成熟,开始在不同的领域发挥越来越重要的作用,如工业制造,医疗卫生,交通运输等。
机器人技术不仅在工业生产上提高生产能力,而且在服务业的普及和发展方面也逐渐受到了广泛的关注和追捧。
一、目前机器人技术的状况机器人是一种为人工设计,可重复执行任务的自动化系统。
现在已有成千上万种不同类型的机器人在世界各地的厂房、医院和各种机构中被广泛使用。
以制造和工业领域为例,机器人技术的应用已成为推动制造业不断升级的重要力量。
大型汽车制造商采用机器人替代人工完成车身和底盘的焊接和喷涂工作,机器人在生产中比人力操作更加精准和高效。
此外,机器人技术在协助废弃物处理、建筑设计、农业劳动力等领域也已经有所应用。
在医疗卫生领域,机器人便可用于手术和救援等重要任务。
假如地震等灾难发生后,如何迅速救援被困者的生命成为一项非常困难的任务,这时机器人恰好弥补了这一缺陷,可以通过随时的监测,迅速搜索并救助被困民众。
不仅如此,医薬科技的发展也利用了机器人技术,比如运用画中人工智能机器人来深读和感知肺部图像数据,以便进行临床辅助诊断。
机器人技术不断渗透到日常生活的方方面面,能为人们带来更便利高效的服务。
二、机器人技术的前景机器人技术的进一步发展将在未来的生活中扮演重要的角色。
一些研究者预测,未来的生活将会有很多机器人协助人们完成日常事务和工作,这些机器人将会在家庭、商店和办公室等不同场合得到应用。
机器人技术的发展也意味着在一些原来不可能完成的任务现在也有新的机会。
比如在天文学和空间航天探索等领域,机器人技术开始扮演重要的角色,完成人类无法完成的任务。
机器人是未来的趋势,也是未来的发展方向。
随着社会进步,机器人技术的应用越来越广泛,不断提高生产效率和劳动生产率的同时,也在不断创造新的就业机会。
机器人应用在生产制造和服务领域,不仅减轻了人力的压力,而且极大地提高了人们的生活品质,如保洁机器人、餐厅服务机器人、康复护理机器人等等。
机器人技术的发展趋势和应用场景随着时代的进步与科技的不断发展,机器人技术的应用领域也在不断扩大,其前景和应用前景也越来越广泛。
今天,我们将一起来探讨机器人技术的发展趋势和应用场景。
一、机器人技术的发展趋势1. 智能化和自主化智能和自主是机器人技术未来的主要发展方向。
通过不断提高自身的智能化水平,机器人能够自主、自动化地完成更多的任务。
例如,在工业生产领域,机器人将能够更加自主地完成与人类类似的工作,不需要人为干预。
2. 感知和交互感知和交互也是机器人技术未来的主要发展方向。
随着人工智能和人机交互技术的发展,机器人将能够更加准确地感知环境和动态,更加灵活地完成运动和动作。
与此同时,机器人也将更加灵活地与人类互动,为人类带来更多便利和效益。
3. 系统化和集成化系统化和集成化是机器人技术未来的主要发展方向之一。
随着不同领域的机器人技术逐渐成熟,机器人的应用场景也在不断扩大。
机器人技术的集成化将会为机器人应用场景的扩大提供更加全面的支持。
二、机器人技术的应用场景1. 工业生产工业生产是目前机器人应用最广泛的领域之一。
随着智能化和自主化技术的不断发展,机器人将取代人类完成越来越多的繁琐重复的工作。
例如,在汽车制造领域,机器人已经取代人类完成大部分组装和焊接工作。
在这个领域中,机器人的使用将会越来越广泛。
2. 医疗护理医疗护理是未来机器人技术的重要领域之一。
在这个领域,机器人将帮助医疗工作人员完成一些繁琐工作,例如搬运医疗设备、监测病人情况等等。
此外,机器人还将在病人护理、病人陪护等方面发挥重要作用。
3. 家庭服务家庭服务是机器人技术未来的重要领域之一。
在这个领域中,机器人将为人类提供更多的便利和效益。
例如,机器人可以在家庭中完成家务劳动、清洁卫生等工作。
此外,机器人还将在老年人护理、儿童照顾等方面为人类提供有力支持。
4. 农业生产农业生产是机器人技术新兴的领域之一。
在这个领域中,机器人将能够更加自主地完成一些繁琐重复的工作,例如农田管理、作物收割等。
电焊机行业现状及发展趋势(3)——电焊机行业“十一五”规划( 报批稿)3.电焊机发展趋势随着市场竞争的日益加剧,适者生存,优胜劣汰将成为电焊机行业结构调整的必然趋势。
有些电焊机企业在竞争中发展壮大,甚至发展成大集团;有些企业将面临破产,或被兼并、收购,从而退出电焊机行业。
但无论是从目前电焊机产量构成比的发展趋势,还是从电焊机的技术发展方向上看,我国电焊机今后将向高效、节能、机电一体化和成套方面发展。
3.1 弧焊设备弧焊设备是量大面广的焊接设备。
弧焊设备从焊机自动化程度上分,有手工焊机、半自动焊机、自动化焊机、机器人焊机、智能化焊机;从电源性质上分,有交流焊机、直流焊机、交直流两用弧焊机;从控制方式上分,有晶闸管焊机、IGBT逆变焊机、数字式焊机、微机(单片)控制弧焊机;从使用方式上分,有焊条电弧焊机、气体保护焊机、埋弧焊机。
a. 目前,在我国弧焊设备正在逐渐赶上和接近国际水平,我国弧焊设备生产品种多,产品齐全。
电流从10多安到1250安、从书包大小到大型埋弧焊机、从手工操作到智能化焊接机器人都有生产;IGBT逆变和单片机控制技术在弧焊设备中普遍应用,并制成较为通用的控制器,但晶闸管焊机仍然具有稳定的市场;CO2焊机、MIG焊机更多的采用一脉一滴的精确控制技术,使焊接飞溅更少,焊缝成形更加美观,焊接质量得到提高;数字式焊机的研制受到很多科研院所、大型企业的重视,并得到更多生产厂家的认知和欢迎;专家系统、智能化焊机、焊接质量监控与跟踪系统(如弧长跟踪,焊缝摆动装置,机械、光学、电子式焊缝跟踪等)的研究更加深入,应用越来越普遍;弧焊机器人在自动化生产、困难及有危害性生产环境中扮演着更加重要的角色;在弧焊设备的研制过程中,环保意识逐渐加强,软开关技术、焊接设备的电磁兼容性、无铅化生产、高频防护、防触电装置受到许多研究者、厂商、使用者的重视;绝大部分焊接生产厂家通过了ISO9000质量体系及3C强制性产品认证,加强内部管理、提高产品质量、树立品牌意识、提高市场竞争力已成为广大焊接设备生产厂家的自觉行动。
焊接机器人的工程应用本文介绍了我国焊接机器人的应用状况、应用焊接机器人的意义和焊接机器人应用工程几个方面的情况,同时介绍了焊接机器人的4种最新的应用技术。
国焊接机器人技术的发展我国开发工业机器人晚于美国和日本,起于20世纪70年代,早期是大学和科研院所的自发性的研究。
到80年代中期,全国没有一台工业机器人问世。
而在国外,工业机器人已经是个非常成熟的工业产品,在汽车行业得到了广泛的应用。
鉴于当时的国外形势,国家“七五”攻关计划将工业机器人的开发列入了计划,对工业机器人进行了攻关,特别是把应用作为考核的重要容,这样就把机器人技术和用户紧密结合起来,使中国机器人在起步阶段就瞄准了实用化的方向。
与此同时于1986年将发展机器人列入国家“863”高科技计划。
在国家“863”计划实施五周年之际,同志提出了“发展高科技,实现产业化”的目标。
在国市场发展的推动下,以与对机器人技术研究的技术储备的基础上,863主题专家组与时对主攻方向进行了调整和延伸,将工业机器人与应用工程作为研究开发重点之一,提出了以应用带动关键技术和基础研究的发展方针,以后又列入国家“八五”和“九五”中。
经过十几年的持续努力,在国家的组织和支持下,我国焊接机器人的研究在基础技术、控制技术、关键元器件等方面取得了重大进展,并已进入使用化阶段,形成了点焊、弧焊机器人系列产品,能够实现小批量生产。
我国焊接机器人的应用状况我国焊接机器人的应用主要集中在汽车、摩托车、工程机械、铁路机车等几个主要行业。
汽车是焊接机器人的最大用户,也是最早用户。
早在70年代末,电焊机厂与电动工具研究所,合作研制的直角坐标机械手,成功地应用于牌轿车底盘的焊接。
“一汽”是我国最早引进焊接机器人的企业,1984起先后从KUKA公司引进了3台点焊机器人,用于当时“红旗牌”轿车的车身焊接和“解放牌”车身顶盖的焊接。
1986年成功将焊接机器人应用于前围总成的焊接,并于1988年开发了机器人车身总焊线。
第3卷第3期2021年3月Vol.3No.3Mar2021智能建筑与工程机械Intelligent Building and Construction Machinery工程机械与智控焊接机器人应用与发展超势研究林森,厚俊臣,金子旭,岳宗言,瞿红,史丽翠(哈尔滨工业大学,黑龙江哈尔滨150000)摘要:随着机籌人技术在各舒业中的迅猛发展,以及人工费用的逐年提高,机器替换人类工作已成为促进社会离速发展的必然趋势。
为促进焊接机器人在焊接领域实现优质、髙效、成本低廉的自动化、柔性化及智能化焊接JOL,同时适应未来发展需求本文结合最前沿科技,综述了国内外堺接机器人技术应用柢况玖及烬接机器人的未来发展方向,以供參考。
关键词:焊接机器人;技术;智能;发展方向中图分类号:TP242文献标识码:A文章编号:2096-6903(2021)03-0046-030前盲焊接工作是一项工作环境恶劣、工作强度大、专业技能要求严格且对操作人员会产生潜在危害,但在制造领域又不可或缺的工作山畫在此背景下焊接机器人应运而生,其出现有效解决了这种供需矛盾,并且可以节省大量人力、物力,使操作者投入到更具创造力的工作叭从20世纪60年代研发并逐渐投入使用幵始,其关键技术也得到不断提升,使其具备工作稳定性能、加工精度高、生产效率高等优点。
可代替工人在情况复杂和未知的环境下工作,基于此特点,焊接机器人在工业生产中得到推广和应用。
1焊接MS人需求分析目前世界拥有80余万台工业机器人,焊接机器人占比可达40%以上。
焊接工艺被作为工业生产的“裁缝”,是工业生产中非常重要的手段,根据CRIA公布的2019年中国机器人的市场数据显示,2019年国产焊接机器人的销量约3765台,焊接和钎焊机器人是国产机器人应用的第二大领域,销量同比增24.5%,约占总销量的16.9%。
另外70%以上的市场麵依然被国外品牌占据。
目前中国投入使用的焊接机器从要产自日本、欧洲和国内。
行业智能焊接技术方案第1章引言 (3)1.1 背景与意义 (3)1.2 研究目标与内容 (3)第2章智能焊接技术概述 (4)2.1 焊接技术发展历程 (4)2.2 智能焊接技术特点 (4)2.3 国内外研究现状 (5)第3章焊接系统设计 (5)3.1 选型与配置 (5)3.1.1 类型选择 (5)3.1.2 配置 (5)3.2 焊接工艺参数优化 (5)3.2.1 焊接电流 (5)3.2.2 焊接电压 (5)3.2.3 焊接速度 (6)3.2.4 气体保护 (6)3.3 传感器与执行器设计 (6)3.3.1 传感器设计 (6)3.3.2 执行器设计 (6)3.3.3 控制系统设计 (6)第4章智能焊接控制策略 (6)4.1 焊接过程建模 (6)4.1.1 焊接物理过程的数学描述 (6)4.1.2 焊接参数对焊缝质量的影响分析 (7)4.2 控制算法研究 (7)4.2.1 智能控制算法选取 (7)4.2.2 焊接参数自适应控制策略 (7)4.2.3 控制算法的仿真与实验验证 (7)4.3 焊接路径规划 (7)4.3.1 焊接路径规划方法 (7)4.3.2 基于视觉传感的焊接路径实时调整 (7)4.3.3 焊接路径规划的优化算法 (7)第5章焊接质量检测与评估 (7)5.1 焊接缺陷类型及成因 (7)5.1.1 焊缝成形不良 (7)5.1.2 气孔 (8)5.1.3 夹杂 (8)5.1.4 裂纹 (8)5.1.5 未焊透 (8)5.2 检测方法与技术 (8)5.2.1 视觉检测 (8)5.2.3 超声波检测 (8)5.2.4 磁粉检测 (8)5.3 质量评估与优化 (8)5.3.1 焊接缺陷识别与分析 (8)5.3.2 焊接参数优化 (9)5.3.3 检测方法与设备改进 (9)5.3.4 质量控制体系建立 (9)第6章焊接工艺参数自适应控制 (9)6.1 自适应控制理论 (9)6.1.1 自适应控制概述 (9)6.1.2 自适应控制器设计 (9)6.2 焊接参数在线监测 (9)6.2.1 焊接参数监测方法 (9)6.2.2 焊接参数监测系统设计 (9)6.3 工艺参数自适应调整 (10)6.3.1 工艺参数自适应调整策略 (10)6.3.2 实例验证与分析 (10)6.3.3 工艺参数自适应调整在焊接生产中的应用 (10)第7章焊接系统的智能故障诊断 (10)7.1 故障诊断方法概述 (10)7.1.1 故障诊断的基本概念 (10)7.1.2 故障诊断的主要任务 (10)7.2 基于数据的故障诊断 (10)7.2.1 数据采集 (11)7.2.2 数据处理 (11)7.2.3 故障诊断算法 (11)7.3 智能故障诊断技术 (11)7.3.1 人工神经网络 (11)7.3.2 支持向量机 (11)7.3.3 深度学习 (11)第8章焊接系统集成与调试 (11)8.1 系统集成技术 (12)8.1.1 焊接系统设计原则 (12)8.1.2 焊接系统组成 (12)8.1.3 系统集成方案 (12)8.2 焊接工艺参数调试 (12)8.2.1 焊接工艺参数设定 (12)8.2.2 焊接试验与优化 (12)8.2.3 焊接工艺参数库建立 (12)8.3 系统功能测试与优化 (12)8.3.1 焊接质量检测 (12)8.3.2 系统稳定性测试 (12)8.3.3 系统功能优化 (12)第9章智能焊接技术在典型行业的应用案例 (13)9.1 汽车制造行业 (13)9.1.1 应用案例一:某知名汽车品牌白车身焊接生产线 (13)9.1.2 应用案例二:新能源汽车电池壳体焊接 (13)9.2 船舶制造行业 (13)9.2.1 应用案例一:大型船舶分段焊接 (13)9.2.2 应用案例二:船舶舾装件焊接 (13)9.3 轨道交通行业 (13)9.3.1 应用案例一:高速列车车体焊接 (13)9.3.2 应用案例二:城市轨道交通车辆转向架焊接 (14)9.3.3 应用案例三:地铁车辆不锈钢车体焊接 (14)第十章智能焊接技术的发展趋势与展望 (14)10.1 技术发展趋势 (14)10.2 市场前景分析 (14)10.3 挑战与机遇并存 (14)10.4 展望未来研究方向 (15)第1章引言1.1 背景与意义我国制造业的快速发展,行业在生产过程中发挥着越来越重要的作用。
焊接机器人技术在汽车制造中的应用研究一、引言汽车制造是现代制造业的重要组成部分,焊接工艺是汽车制造过程中的一项重要环节。
传统的汽车制造生产线通常采用手工焊接,这种方式的缺陷在于焊接不稳定,质量不易控制,工作强度大,安全风险高等问题。
而随着自动化技术的发展,焊接机器人技术被广泛应用于汽车制造领域,大大提高了生产效率和焊接质量。
本文就焊接机器人技术在汽车制造中的应用研究进行探讨。
二、焊接机器人技术的基本原理焊接机器人技术是利用预先设定的程序和参数,通过传感器识别焊接零件的位置和形状,实现焊接过程中的动作控制。
焊接机器人通常由机械手臂、控制系统和编程系统三部分组成。
机械手臂是焊接机器人的灵魂,通常由几个活动自由度构成。
机械手臂可以完成各种复杂的动作,高度地模拟了人类手的运动,具有非常广泛的适用性。
控制系统是为焊接机器人提供动力的核心,它包括电机、减速器、传感器、执行机构和动力源等。
焊接机器人的动力源可以是电力、气压或其他燃料,电力驱动的机器人通常是使用直流电机或步进电机。
编程系统是设置焊接参数的过程,随着计算机技术的进步,编程系统变得更加方便和易于操作。
焊接机器人可以通过CAD文件或手工编程进行设置,计算机会将其转换为机器人能够识别和执行的程序。
三、焊接机器人技术在汽车制造领域中的应用1. 汽车车身焊接汽车制造中最常见的焊接作业是汽车车身焊接。
汽车车身焊接在零件加工和装配完成后进行,通常需要焊接多个零件,涉及角度和位置的多次变化。
在传统手工焊接中,具有很高的误差和不稳定性,而采用焊接机器人进行汽车车身焊接则可以保证焊接质量的稳定性,并且提高生产效率。
2. 汽车零部件焊接除了汽车车身焊接,焊接机器人还可以实现汽车零部件的焊接。
通过焊接机器人的系统优势,可以在焊接前完成多个拼接部件的预拼接。
在焊接过程中,机器人可以进行360度的旋转,更好地保证焊接质量和焊接速度。
3. 汽车发动机焊接在汽车发动机制造过程中,焊接技术的难度和要求更高。
工业机器人的发展现状与未来趋势随着科技的飞速发展,工业机器人已经成为现代工业生产的重要组成部分。
它们的出现不仅提高了生产效率,还降低了人力成本和安全风险。
然而,工业机器人的发展并非一帆风顺,它面临着一些挑战和未来发展的趋势。
首先,让我们来了解一下工业机器人的现状。
目前,工业机器人已经广泛应用于汽车制造、电子制造、制造业等行业。
它们能够完成重复性、繁琐的工作,如焊接、装配、喷涂等,大大提高了生产效率和产品质量。
同时,随着人工智能和机器学习的进步,工业机器人的智能化水平也在不断提高。
它们能够通过感知技术和视觉系统来识别和适应环境,取代人工判断和操作。
然而,工业机器人的发展也面临一些挑战。
首先是成本问题。
虽然工业机器人能够降低人力成本,但高昂的机器人设备价格仍然是制约其普及的一大因素。
此外,机器人的维护和保养成本也相对较高。
因此,控制工业机器人的总体成本仍然是一个值得关注的问题。
此外,工业机器人在应对复杂和不确定的工作环境时也存在一定的局限性。
如何让机器人更好地适应复杂的环境,并从中获取准确的信息,成为了一项重要的研究课题。
工业机器人的智能化水平仍然需要进一步提高,以更好地满足不同行业的需求。
在未来,工业机器人的发展趋势将更加多样化和智能化。
首先,工业机器人将趋于更加灵活和可定制化。
传统的工业机器人通常被固定在一个位置,局限了其应用范围。
而灵活性和可定制化的机器人能够根据生产线的变化进行移动和调整,适应不同的任务需求。
这将进一步提升工业机器人的应用价值。
其次,工业机器人将与人类更加紧密地协作。
传统意义上的工业机器人通常是相对独立地进行工作,与人类工作人员之间缺乏沟通和协作。
然而,未来的工业机器人将通过智能化和机器学习的技术,更好地与人类进行交互和协调。
这将为人机合作提供更多的可能性,创造出更高效和安全的生产环境。
最后,工业机器人将更加注重环保和可持续发展。
随着人们对环境保护的重视,工业机器人的研发和应用将趋向于更节能、环保的方向。
工程机械焊接工业现状与发展趋势摘要:随着国民经济的迅速发展,伴随着城市建设的不断加快,机械行业的发展也越来越迅速,特别是在焊接工业方面,它在社会和公众的各种层面上都具有很大的作用。
随着我国工程机械行业的快速发展,对焊接工艺的要求又一次提高,不断考验着现代焊接技术的水平。
所以,本文将分析目前工程机械中焊接技术的具体应用情况,着眼于我国未来焊接技术的发展现状,希望为提高我国焊接技术的应用水平提供一些帮助。
关键词:工程机械;焊接工艺;发展现状;发展趋势伴随着我国的改革开放,社会经济的大发展和大发展,也加快了城镇化的速度,同时,在国内,也出现了一种非常迅速而又异乎寻常的发展。
目前,机械工程类的产品,在我们的生产和生活中,都得到了大量的使用,所以,这也对它的基础技术,即焊接工艺的水平进行了检验。
1、机械焊接的主要概念在现代各国发展和建设过程中,工程装备是一个主要的行业,而在机械制造过程中,焊接技术是一项非常关键的技术,而其技术的技术水准也是一个反映一个国家的综合实力和工业化程度的一个硬标准。
最近几年,伴随着我国的经济和社会的持续发展,以及城镇化的发展,在中国的工程机械加工制造产业中,其焊接技术已经从传统的人工焊接技术过渡到了自动焊接的技术,极大地提升了工作效率,提升了产品利润,也可以减少了企业的生产费用,同时也可以对其进行保护。
在工程机械的建设过程中,建设者必须使用正确的设计图纸为不同的机器组装零件,以便能够高效地开展各项工作。
在这种做法中,工人们使用局部加热的方法将各个组件连接在一起,这种方法称为机械焊接。
在这种焊接的情况下,机械的关系结构比较复杂,会用到不同的焊接方法、不同的尺寸和不同重量类型的零件,这些都是复杂机械焊接的一些主要特点。
2、工程机械焊接工艺的基本焊接结构件及其工艺技术2.1工程机械焊接工艺基本焊接结构及特点在工程机械中,焊装构件的种类有三大类:车身型构件、转台型构件和墙板型构件。
而在工业生产中,由于其自身的特殊性,使其在工业生产中发挥着越来越重要的作用。
焊接技术的发展现状
焊接技术是现代工业生产中常用的金属连接方法之一,其发展已经取得了显著的进展。
以下是焊接技术的发展现状:
1. 自动化和机器人焊接:自动化和机器人焊接技术已经成为焊接领域的主要趋势。
通过引入机器人和自动化系统,可以实现高精度、高效率的焊接过程,并提高工作环境的安全性。
2. 激光焊接:激光焊接技术是一种高能量浓缩焊接方法,具有焊接速度快、热影响区小等优点。
激光焊接可以应用于不同材料的焊接,如金属、塑料等,并且可以实现对复杂形状的焊接。
3. 电弧焊接:电弧焊接是一种传统的焊接方法,广泛应用于制造业中。
随着电力技术的发展,电弧焊接技术也在不断改进,如MIG/MAG焊接、TIG焊接等。
这些改进提高了焊接速度和焊缝质量,并且减少了操作人员的劳动强度。
4. 纳米焊接:随着纳米技术的发展,纳米焊接也成为一个研究热点。
纳米焊接是通过控制纳米材料的相互作用实现的焊接过程,可以在纳米尺度上实现高精度的焊接。
这种技术的发展有望广泛应用于微电子、纳米器件等领域。
5. 轻量化焊接技术:随着汽车、航空航天等行业对材料强度和重量的要求越来越高,轻量化焊接技术成为发展的方向。
轻量化焊接技术包括激光焊接、摩擦搅拌焊接等,可以在不降低材料强度的前提下减少材料的重量。
总之,随着科学技术的不断进步,焊接技术的发展也在不断提升。
自动化和机器人焊接、激光焊接、电弧焊接、纳米焊接和轻量化焊接技术等都为焊接领域带来了新的发展机遇和挑战。
今后,随着科技的不断发展,焊接技术有望在工业生产中发挥更重要的作用。
机器人工程行业的发展趋势与职业前景随着科技的日新月异,机器人工程领域正迅速发展。
机器人技术的广泛应用和持续创新使得该行业呈现出良好的发展前景。
本文将探讨机器人工程行业的发展趋势以及相关职业的前景。
一、市场需求与应用领域1.1 市场需求:机器人工程行业具有广泛的市场需求。
在工业领域,机器人可以取代人力完成重复、危险和高强度劳动,提高生产效率和质量。
在服务领域,例如医疗、餐饮、零售等行业,机器人的应用也越来越普遍,可以提供更高效的服务,满足消费者的多样化需求。
1.2 应用领域:机器人工程行业在各个领域都有应用。
例如,在制造业中,机器人可以用于装配、焊接、喷涂等工序,提高生产效率和产品质量;在医疗领域,机器人可以用于手术、康复辅助等,提高医疗水平和患者的治疗效果;在农业领域,机器人可以应用于种植、采摘等环节,提高农作物的产量和质量。
可以预见,未来机器人工程行业的应用领域还将继续扩大。
二、技术发展趋势2.1 人工智能技术:随着人工智能技术的不断进步,机器人的智能化和自主性将得到提升。
传统的机器人通常需要通过程序来执行特定任务,而人工智能技术将使机器人能够学习和适应环境,具备更高的智能水平。
2.2 机器人感知技术:机器人的感知技术是其实现智能化的基础。
目前,机器人的感知能力相对较弱,但随着传感器技术和图像处理技术的不断进步,机器人的感知范围和准确度将得到大幅提升。
2.3 机器人协同合作技术:未来机器人将不再是单一独立的个体,而是具备协同合作能力。
机器人之间能够相互协作,共同完成复杂的任务,这将进一步提高机器人在实际应用中的效能和灵活性。
三、职业前景与发展方向3.1 机器人工程师:机器人工程师是机器人工程行业不可或缺的人才。
他们负责机器人的设计、制造、优化和维护,需要掌握机械设计、电子工程、控制系统等方面的知识。
随着机器人应用领域的扩大,机器人工程师的需求将越来越大。
3.2 人工智能专家:随着机器人智能化水平的提高,人工智能专家将成为机器人工程领域的重要角色。
现代焊接2009年第5期总第77期J-1焊接作为工业上的“裁缝”,是工业生产中非常重要的加工手段,焊接质量的好坏对产品质量起决定性的影响作用。然而,由于焊接烟尘、弧光、金属飞溅的存在,焊接的工作环境又非常恶劣。随着先进制造技术的发展,实现焊接产品制造的自动化、柔性化与智能化已经成为必然趋势,采用机器人焊接已经成为焊接技术自动化的主要标志。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,当前对机器人技术的研究十分活跃。工业机器人先后经历从第一代示教再现机器人、第二代离线编程机器人,到现在的第三代智能机器人三个过程。从目前国内外的研究现状来看,焊接机器人技术研究主要集中在焊缝跟踪技术、离线编程与路径规划技术、多机器人协调控制技术、专1焊接机器人技术的研究现状用弧焊电源技术、焊接机器人系统仿真技术、机器人用焊接工艺方法、遥控焊接技术等七个方面。焊接机器人施焊过程中,由于焊接环境各种因素的影响,如强弧光辐射、高温、烟尘、飞溅、坡口状况、加工误差、夹具装夹精度、表面状态和工件热变形等,实际焊接条件的变化往往会导致焊炬偏离焊缝,从而造成焊接质量下降甚至失败。焊缝跟踪技术的研究就是根据焊接条件的变化,要求弧焊机器人能够实时检测出焊缝的偏差,并调整焊接路径和焊接参数,保证焊接质量的可靠性。焊缝跟踪技术的研究以传感器技术与控制理论方法为主,其中传感器技术的研究又以电弧传感器和光学传感器为主。电弧传感器是从焊接电弧自身直接提取焊缝位置偏差信号,实时性好,焊枪运动灵活,符合焊接过程低成本自动化的要求,适用于熔化极焊接场合。电弧传感的基本原理是利用焊炬与工件距离的变化而引起的焊接参数变化,来探测焊炬高度和左右偏差。电弧传1.1焊缝跟踪技术的研究焊接机器人的研究现状与发展方向作者简介:宋金虎(1967-),男,山东潍坊人,山东交通职业学院副教授、高级工程师。山东交通职业学院宋金虎[摘要][关键词]本文综述了国内外焊接机器人技术的研究现状,并展望了焊接机器人技术的发展趋势。焊接机器人;研究现状;发展趋势焊接行业热点话题、重点方向的专题阐述与分析感器一般分为三类:并列双丝电弧传感器、摆动电弧传感器、旋转式扫描电弧传感器,其中旋转电弧传感器比前两者的偏差检测灵敏度高,控制性能较好。光学传感器的种类很多,主要包括红外、光电、激光、视觉、光谱和光纤式,光学传感器的研究又以视觉传感器为主,视觉传感器所获得的信息量大,结合计算机视觉和图像处理的最新技术,大大增强弧焊机器人的外部适应能力。激光跟踪传感器具有优越的性能,成为最有前途、发展最快的焊接传感器。另一方面,由于近代模糊数学和神经网络的出现以及应用到焊接这个复杂的非线性系统中,使得焊缝跟踪进入了智能焊缝跟踪的新时代。
机器人离线编程系统是机器人编程语言的拓广,它利用计算机图形学的成果,建立起机器人及其工作环境的模型,利用一些规划算法,通过对图形的控制和操作,在不使用实际机器人的情况下进行轨迹规划,进而产生机器人程序。自动编程技术的核心
1.2离线编程与路径规划技术的研究
PresentsituationanddevelopmentdirectionofweldingrobotsMODERNWELDINGTECHNOLOGYTOPICSUMMARYJ-2009年第5期总第77期2现代焊接
专题综述TopicSummary
是焊接任务、焊接参数、焊接路径和轨迹的规划技术。针对弧焊应用,自动编程技术可以表述为在编程各阶段中,能够辅助编程者完成独立的、具有一定实施目的和结果的编程任务的技术,具有智能化程度高、编程质量和效率高等特点。离线编程技术的理想目标是实现全自动编程,即只需输入工件的模型,离线编程系统中的专家系统会自动制定相应的工艺过程,并最终生成整个加工过程的机器人程序。目前,还不能实现全自动编程,自动编程技术是当前研究的重点。多机器人系统是指为完成某一任务由若干个机器人通过合作与协调组合成一体的系统。它包含两方面的内容,即多机器人合作与多机器人协调。当给定多机器人系统某项任务时,首先面临的问题是如何组织多个机器人去完成任务,如何将总体任务分配给各个成员机器人,即机器人之间怎样进行有效的合作。当以某种机制确定了各自任务与关系后,问题变为如何保持机器人间的运动协调一致,即多机器人协调。对于由紧耦合子任务组成的复杂任务而言,协调问题尤其突出。智能体技术是解决这一问题最有力的工具,多智能体系统是研究在一定的网络环境中,各个分散的、相对独立的智能子系统之间通过合作,共同完成一个或多个控制作业任务的技术。多机器人焊接的协调控制是目前的一个研究热点问题。在焊接机器人系统中,电器性能良好的专用弧焊电源直接影响焊接机器人的使用性能。目前,弧焊机器人1.3多机器人协调控制技术的研究1.4专用弧焊电源的研究一般采用熔化极气体保护焊(MIG焊、MAG焊、CO焊)或非熔化极气体保护焊(TIG、等离子弧焊)方法,熔化极气体保护焊焊接电源主要使用晶闸管电源与逆变电源。近年来,弧焊逆变器的技术已趋于成熟,机器人用的专用弧焊逆变电源大多为单片微机控制的晶体管式弧焊逆变器,并配以精细的波形控制和模糊控制技术,工作频率在20 ̄50kHz,最高的可达200kHz,焊接系统具有十分优良的动特性,非常适合机器人自动化和智能化焊接。还有一些特殊功能的电源,如适合铝及其铝合金TIG焊的方波交流电源、带有专家系统的焊接电源等。目前,有一种采用模糊控制方法的焊接电源,可以更好保证焊缝熔宽和熔深的基本一致,不仅焊缝表面美观,而且还能减少焊接缺陷。弧焊电源不断向数字化方向发展,其特点是焊接参数稳定,受网路电压波动、温升、元器件老化等因素的影响很小,具有较高的重复性,焊接质量稳定、成形良好。另外,利用DSP的快速响应,可以通过主控制系统的指令精确控制逆变电源的输出,使之具有输出多种电流波形和弧压高速稳定调节的功能,适应多种焊接方法对电源的要求。机器人在研制、设计和试验过程中,经常需要对其运动学、动力学性能进行分析以及进行轨迹规划设计,而机器人又是多自由度、多连杆空间机构,其运动学和动力学问题十分复杂,计算难度和计算量都很大。若将机械手作为仿真对象,运用计算机图形技术与CAD技术和机器人学理论在计算机中形成几何图形,并用动画显21.5仿真技术的研究示,然后对机器人的机构设计、运动学正反解分析、操作臂控制以及实际工作环境中的障碍避让和碰撞干涉等诸多问题进行模拟仿真,这样就可以很好地解决研发机械手过程中出现的问题。
目前,弧焊机器人普遍采用气体保护焊方法,主要是熔化极气体保护焊,其次是钨极氩弧焊、等离子弧焊、切割及机器人激光焊,数量有限、比例较低。国外先进国家的弧焊机器人已普遍采用高速、高效气体保护焊接工艺,如双丝气体保护焊、T.I.M.E焊、热丝TIG焊、热丝等离子弧焊等先进的工艺方法,这些工艺方法不仅有效地保证了优良的焊接接头,还使焊接速度和熔敷效率提高数倍至几十倍。
遥控焊接是指人在离开现场的安全环境中对焊接设备和焊接过程进行远程监视和控制,从而完成完整的焊接工作。在核电站设备的维修、海洋工程建设以及未来的空间站建设中都要用到焊接,这些环境中的焊接工作不适合人类亲临现场,而目前的技术水平还不可能实现完全的自主焊接,因此需要采用遥控焊接技术。目前,美国、欧洲、日本等国对遥控焊接进行了深入的研究,国内哈尔滨工业大学也正在进行这方面的研究。
为了适应工业生产系统向大型、复杂、动态和开放方向发展的需要,国际机器人界都在加大科研力度,对机器人技术进行深入研究。从机器人技术发展趋势看,智能化控制技术将
1.6机器人用焊接工艺方法的研究1.7遥控焊接技术的研究2焊接机器人的技术展望
MODERNWELDINGTECHNOLOGY是焊接机器人技术发展的主要方向。焊接机器人视觉控制技术是通过对焊接区图像进行采集,产生视频信号送至图像处理机,对图像进行快速处理并提取跟踪特征参量,进行数据识别和计算,通过逆运动学求解得到机器人各关节位置给定值,最后控制高精度的末端执行机构,调整机器人的位姿。视觉控制的关键在于视觉测量,在焊接过程中视觉技术分为直接视觉传感和间接视觉传感两种形式。直接视觉传感技术是一种常用的非接触式传感形式,其主要优点是不接触工件,不干扰正常的焊接过程,获取的信息量大、通用性强。早先,研究人员直接利用电弧光照射熔池前方的工件间隙获取焊接区焊缝信息,根据熔池前方不同远近处电弧光强度的闪烁来实现焊接过程中的焊缝跟踪。典型的例子是利用带有CCD摄像机的微型计算机控制系统对焊接熔池行为进行观察和控制。现在,基于激光三角形的视觉系统具有高度的灵活性,价格低、精度高,获取信息能力强,且不受周围噪声和电弧产生的高温影响,其获得的信息可以用于多种自适应功能。弧焊中使用激光视觉系统可以抗电弧辐射、火焰、热金属飞溅、振动、冲击和高温,这种传感器正在成为智能自适应焊接机器人焊接优先选用的视觉系统。由于焊接机器人系统具有非线性和时变特点,难以用精确的数学模型进行描述,用传统的控制方法难以实现最佳控制,而模糊控制具有自适应和鲁棒性等特点,它为机器人焊接控2.1视觉控制技术2.2模糊控制技术制提供了一个理想的控制方法。模糊控制是智能控制的较早形式,它吸取了人的思维具有模糊性的特点,使用模糊数学中的隶属函数、模糊关系、模糊推理和决策等工具,巧妙地综合了人们的直觉经验,从而在其他经典控制理论和现代控制理论不太奏效的场合能够实现较满意的控制。其将模糊控制理论和实际焊接过程相结合,发展成为专用焊接控制器,进一步发展成为了通用型焊接模糊控制器。模糊控制具有较完善的控制规则,但模糊控制综合定量知识的能力较差,当对象动态特性发生变化,或者受到随机干扰的影响都会影响模糊控制的效果。因此,在模糊控制理论方面,人们对常规模糊控制进行了改进,设计了一些高性能模糊控制器,有效解决精度较低、自适应能力有限及设备产生振荡现象等问题。神经网络控制是研究和利用人脑的某些结构、机理以及人的知识和经验对系统进行控制,它是神经网络作为人工智能的一种途径在控制领域的渗透。用神经网络设计的控制系统适应性、鲁棒性均较好,能处理时变、多因素、非线性等复杂焊接过程的控制问题。人工神经网络具有很强的自学习、自适应能力,信息存储量大,容错性好,能够实现并行联想搜索解空间和完成自适应推理,提高智能系统的智能水平、知识处理能力及强壮性。因此,在机器人焊接质量控制中可采用神经网络建立焊接过程模型,从而解决线性控制方法所不能克服的问题,弥补传统专家系统以及模糊控制的不足,现在焊接机器人神经网络2.3神经网络控制技术现代焊接2009年第5期总第77期J-3专题综述TopicSummary控制系统中使用较多的是前馈式多层神经网络。