2018届一轮复习人教版第24讲动量动量定理动量守恒定律课件(27张)
- 格式:ppt
- 大小:482.00 KB
- 文档页数:27
动量守恒定律一、冲量、动量和动量定理1.冲量(1)定义:力和力的的乘积.(2)公式:I=,适用于求恒力的冲量.(3)方向:与相同.2.动量(1)定义:物体的与的乘积.(2)表达式:(3)单位:.符号:(4)特征:动量是状态量,是,其方向和方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体.(2)表达式: .(3)矢量性:动量变化量方向与的方向相同,可以在某一方向上用动量定理.二、动量守恒定律1.系统:相互作用的几个物体构成系统.系统中各物体之间的相互作用力称为内力,外部其他物体对系统的作用力叫做外力.2.定律内容:如果一个系统作用,或者所受的为零,这个系统的总动量保持不变.3.动量守恒定律的不同表达形式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(3)Δp=0,系统总动量的增量为零.4.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.三、碰撞1.概念:碰撞指的是物体间相互作用持续时间很短,物体间相互作用力很大的现象,在碰撞过程中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.解析碰撞的三个依据(1)动量守恒:p1+p2=p1′+p2′.(2)动能不增加:E k1+E k2≥E k1′+E k2′或p212m1+p222m2≥p1′22m1+p2′22m2.(3)速度要符合情景①如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞.②碰撞后,原来在前面的物体速度一定增大,且速度大于或等于原来在后面的物体的速度,即v前′≥v后′.③如果碰前两物体是相向运动,则碰后两物体的运动方向不可能都不改变.除非两物体碰撞后速度均为零.2.分类(1)弹性碰撞:这种碰撞的特点是系统的机械能守恒,相互作用过程中遵循的规律是动量守恒和机械能守恒.(2)非弹性碰撞:在碰撞过程中机械能损失的碰撞,在相互作用过程中只遵循动量守恒定律.(3)完全非弹性碰撞:这种碰撞的特点是系统的机械能损失最大,作用后两物体粘合在一起,速度相等,相互作用过程中只遵循动量守恒定律.3.碰撞问题的探究(1)弹性碰撞的求解求解:两球发生弹性碰撞时应满足动量守恒和动能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v1′+m2v2′12m1v21=12m1v1′2+12m2v2′2解得:v1′=m1-m2v1m1+m2,v2′=2m1v1m1+m2(2)弹性碰撞的结论①当两球质量相等时,v1′=0,v2′=v1,两球碰撞后交换了速度.②当质量大的球碰质量小的球时,v1′>0,v2′>0,碰撞后两球都沿速度v1的方向运动.③当质量小的球碰质量大的球时,v1′<0,v2′>0,碰撞后质量小的球被反弹回来.★要点一基本概念的理解【典型例题】【例1】关于物体的动量,下列说法中正确的是( )A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的加速度不变,其动量一定不变C.动量越大的物体,其速度一定越大D.物体的动量越大,其惯性也越大【例2】下列论述中错误的是( )A.相互作用的物体,如果所受合外力为零,则它们的总动量保持不变B.动量守恒是指相互作用的各个物体在相互作用前后的动量不变C.动量守恒是相互作用的各个物体组成的系统在相互作用前的动量之和与相互作用之后的动量之和是一样的D.动量守恒是相互作用的物体系在相互作用过程中的任何时刻动量之和都是一样的★要点二动量守恒的判断【典型例题】【例1】(多选)木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上.在b上施加向左的水平力F使弹簧压缩,如图所示.当撤去外力F后,下列说法中正确的是( )A.a尚未离开墙壁前,a和b组成的系统动量守恒B.a尚未离开墙壁前,a和b组成的系统动量不守恒C.a离开墙壁后,a、b组成的系统动量守恒D.a离开墙壁后,a、b组成的系统动量不守恒解析BC [在a离开墙壁前、弹簧伸长的过程中,对a和b构成的系统,由于受到墙给a的弹力作用,所以a、b构成的系统动量不守恒,因此B选项正确,A选项错误;a离开墙壁后,a、b构成的系统所受合外力为零,因此动量守恒,故C选项正确,D选项错误.] 【例2】(多选)如图,A、B两物体的中间用一段细绳相连并有一压缩的弹簧,放在平板小车C上后,A、B、C均处于静止状态.若地面光滑,则在细绳被剪断后,A、B从C上未滑离之前,A、B在C上向相反方向滑动的过程中( )A.若A、B与C之间的摩擦力大小相同,则A、B及弹簧组成的系统动量守恒,A、B、C及弹簧组成的系统动量守恒B.若A、B与C之间的摩擦力大小相同,则A、B及弹簧组成的系统动量不守恒,A、B、C 及弹簧组成的系统动量守恒C.若A、B与C之间的摩擦力大小不相同,则A、B及弹簧组成的系统动量不守恒,A、B、C及弹簧组成的系统动量不守恒D.若A、B与C之间的摩擦力大小不相同,则A、B及弹簧组成的系统动量不守恒,A、B、C及弹簧组成的系统动量守恒解析当A、B两物体及弹簧组成一个系统时,弹簧的弹力为内力,而A、B与C之间的摩擦力为外力.当A、B与C之间的摩擦力大小不相等时,A、B及弹簧组成的系统所受合外力不为零,动量不守恒;当A、B与C之间的摩擦力大小相等时,A、B及弹簧组成的系统所受合外力为零,动量守恒.对A、B、C及弹簧组成的系统,弹簧的弹力及A、B与C之间的摩擦力均属于内力,无论A、B与C之间的摩擦力大小是否相等,系统所受的合外力均为零,系统的动量守恒.故选项A、D正确.【对应练习】1. (多选)如图1所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是( )A.两手同时放开后,系统总动量始终为零B.先放开左手,后放开右手,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,只要两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零图12. 质量为M和m0的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图4所示,碰撞时间极短,在此过程中,下列哪个或哪些说法是可能发生的?( )A.M、m0、m速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=Mv1+m0v2+mv3 B.m0的速度不变,M和m的速度变为v1和v2,而且满足Mv=Mv1+mv2C .m 0的速度不变,M 、m 的速度都变为v ′,且满足Mv =(M +m)v ′D .M 、m 0、m 速度均发生变化,M 和m 0速度都变为v ,m 速度变为v 2,而且满足(M +m)v 0=(M +m 0)v 1+mv 2图4解:碰撞的瞬间M 和m 组成的系统动量守恒,m 0的速度在瞬间不变,以M 的初速度方向为正方向,若碰后M 和m 的速度变v 1和v 2,由动量守恒定律得:Mv=Mv 1+mv 2若碰后M 和m 速度相同,由动量守恒定律得:Mv=(M+m )v ′.故BC 正确,AD 错误.故选:BC .★要点三 动量守恒的应用【典型例题】【例1】一质量为2m 的物体P 静止于光滑水平地面上,其截面如图所示.图中ab 为粗糙的水平面,长度为L ;bc 为一光滑斜面,斜面和水平面通过与ab 与bc 均相切的长度可忽略的光滑圆弧连接.现有一质量为m 的木块以大小为v 0的水平初速度从a 点向左运动,在斜面上上升的最大高度为h ,返回后在到达a 点前与物体P 相对静止.重力加速度为g.求:(1)木块在ab 段受到的摩擦力f ;(2)木块最后距a 点的距离s.解析 木块m 和物体P 组成的系统在相互作用过程中遵守动量守恒、能量守恒.(1)以木块开始运动至在斜面上上升到最大高度为研究过程,当木块上升到最高点时两者具有相同的速度,根据动量守恒,有mv 0=(2m +m)v①根据能量守恒,有12mv 20=12(2m +m)v 2+fL +mgh② 联立①②得f =mv 203L -mgh L =mv 20-3mgh 3L③ (2)以木块开始运动至最后与物体P 在水平面ab 上相对静止为研究过程,木块与物体P 相对静止,两者具有相同的速度,根据动量守恒,有mv 0=(2m +m)v④根据能量守恒,有12mv 20=12(2m +m)v 2+f(L +L -s)⑤ 联立③④⑤得s =v 20L -6ghL v 20-3gh【例2】如图,A 、B 、C 三个木块的质量均为m ,置于光滑的水平桌面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连.将弹簧压紧到不能再压缩时用细线(细线未画出)把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体.现A 以初速度v 0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起.以后细线突然断开,弹簧伸展,从而使C 与A 、B 分离.已知C 离开弹簧后的速度恰为v 0.求弹簧释放的势能.解析 设碰后A 、B 和C 的共同速度的大小为v ,由动量守恒定律得3mv =mv 0①设C 离开弹簧时,A 、B 的速度大小为v 1,由动量守恒定律得3mv =2mv 1+mv 0②设弹簧的弹性势能为Ep ,从细线断开到C 与弹簧分开的过程中机械能守恒,有12(3m)v 2+Ep =12(2m)v 21+12mv 20③ 由①②③式得弹簧所释放的势能为Ep =13mv 20④ 【针对练习】1.(多选) 质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间.如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )图1图2A. 12 mv 2B. 12mM m +M v 2C.12N μmgL D .N μmgL 解析 小物块与箱子作用过程中满足动量守恒,小物块最后恰好又回到箱子正中间.二者相对静止,即为共速,设速度为 v 1,mv =(m +M)v 1,系统损失动能ΔE k =12mv 2-12(M +m)v 21=12Mmv 2M +m,A 错误、B 正确;由于碰撞为弹性碰撞,故碰撞时不损失能量,系统损失的动能等于系统产生的热量,即ΔE k =Q =Nμm gL ,C 错误,D 正确.2. 如图2所示,三辆完全相同的平板小车a 、b 、c 成一直线排列,静止在光滑水平面上.c 车上有一小孩跳到b 车上,接着又立即从b 车跳到a 车上.小孩跳离c 车和b 车时对地水平速度相同.他跳到a 车上相对a 车保持静止.此后( )A .a 、b 两车运动速率相等B .a 、c 两车运动速率相等C.三辆车的速率关系v c>v a>v b D.a、c两车运动方向相同3. 如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h.物块B质量是小球的5倍,至于粗糙的水平面上且位于O点正下方,物块与水平面间的动摩擦因数为μ.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为h16.小球与物块均视为质点,不计空气阻力,重力加速度为g,求物块在水平面上滑行的时间t.★要点五动量和能量观点的综合应用【例1】如图所示,在光滑水平面上有一辆质量M=8 kg的平板小车,车上有一个质量m=1.9 kg的木块,木块距小车左端6 m(木块可视为质点),车与木块一起以v=1 m/s的速度水平向右匀速行驶.一颗质量m0=0.1 kg的子弹以v0=179 m/s的速度水平向左飞来,瞬间击中木块并留在其中.如果木块刚好不从车上掉下来,求木块与平板小车之间的动摩擦因数μ.(g =10 m/s2)解析 以子弹和木块组成的系统为研究对象,设子弹射入木块后两者的共同速度为v 1,以水平向左为正方向,则由动量守恒有:m 0v 0-mv =(m +m 0)v 1① 解得v 1=8 m/s它们恰好不从小车上掉下来,则它们相对平板小车滑行距离x =6 m 时它们跟小车具有共同速度v 2,则由动量守恒定律有(m +m 0)v 1-Mv =(m +m 0+M)v 2② 解得v 2=0.8 m/s由能量守恒定律有 μ(m 0+m)gx =12(m +m 0)v 21+12Mv 2-12(m 0+m +M)v 22③由①②③,解得μ=0.54【例2】如图所示,AOB 是光滑水平轨道,BC 是半径为R 的光滑的1/4固定圆弧轨道,两轨道恰好相切.质量为M 的小木块静止在O 点,一个质量为m 的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C(木块和子弹均可以看成质点).求:(1)子弹射入木块前的速度;(2)若每当小木块返回到O 点或停止在O 点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?【针对练习】1. 如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ.使木板与重物以共同的速度v0向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短.求木板从第一次与墙碰撞到再次碰撞所经历的时间.设木板足够长,重物始终在木板上.重力加速度为g.解析第一次与墙碰撞后,木板的速度反向,大小不变,此后木板向左做匀减速运动,速度减到0后向右做加速运动,重物向右做匀减速运动,最后木板和重物达到一共同的速度v,设木板的质量为m,重物的质量为2m,取向右为正方向,由动量守恒定律得2mv0-mv0=3mv①设木板从第一次与墙碰撞到和重物具有共同速度v所用的时间为t1,对木板应用动量定理得,2μmgt1=mv-m(-v0)②由牛顿第二定律得2μmg=ma③式中a为木板的加速度在达到共同速度v时,木板离墙的距离l为l=v0t1-12at21④从开始向右做匀速运动到第二次与墙碰撞的时间为t2=l v ⑤所以,木板从第一次与墙碰撞到再次碰撞所经过的时间为t=t1+t2⑥由以上各式得t=4v03μg.2. 如图7所示,小球a、b用等长细线悬挂于同一固定点O.让球a静止下垂,将球b向右拉起,使细线水平.从静止释放球b,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°.忽略空气阻力,求:(ⅰ)两球a、b的质量之比;(ⅱ)两球在碰撞过程中损失的机械能与球b在碰前的最大动能之比.解析(ⅰ)设球b的质量为m2,细线长为L,球b下落至最低点但未与球a相碰时的速率为v,由机械能守恒定律得m 2gL =12m 2v 2 ①式中g 是重力加速度的大小.设球a 的质量为m 1;在两球碰后的瞬间,两球共同速度为v′,以向左为正.由动量守恒定律得m 2v =(m 1+m 2)v′ ② 设两球共同向左运动到最高处时,细线与竖直方向的夹角为θ,由机械能守恒定律得 12(m 1+m 2)v′2=(m 1+m 2)gL(1-cos θ) ③ 联立①②③式得m 1m 2=11-cos θ-1 ④ 代入题给数据得m 1m 2=2-1 ⑤(ⅱ)两球在碰撞过程中的机械能损失为Q =m 2gL -(m 1+m 2)gL(1-cos θ)⑥ 联立①⑥式,Q 与碰前球b 的最大动能E k (E k =12m 2v 2)之比为Q E k =1-m 1+m 2m 2(1-cos θ)⑦ 联立⑤⑦式,并代入题给数据得Q E k =1-22综合练习:1. (多选)如图所示,光滑水平面上小球A 和B 向同一方向运动,设向右为正方向,已知两小球的质量和运动速度分别为m A =3kg 、m B =2kg 和vA=4m/s 、vB=2m/s .则两将发生碰撞,碰撞后两球的速度可能是( )A .v ′A =3 m/s 、 v ′B =3.5 m/s B .v ′A =3.2 m/s 、v ′B =3.2 m/sC .v ′A =-2 m/s 、 v ′B =11 m/sD .v ′A =5 m/s 、 v ′B =0.5 m/s2. 静止在湖面上的船,有两个人分别向相反方向抛出质量为m 的相同小球,甲向左抛,乙向右抛,甲先抛,乙后抛,抛出后两球相对于岸的速率相同,下列说法中,正确的是( )(设水的阻力不计).A .两球抛出后,船往左以一定速度运动,抛乙球时,乙球受到的冲量大B .两球抛出后,船往右以一定速度运动,抛甲球时,甲球受到的冲量大C .两球抛出后,船的速度为零,抛甲球和抛乙球过程中受到的冲量大小相等D .两球抛出后,船的速度为零,抛甲球时受到的冲量大解:设小船的质量为M ,小球的质量为m ,甲球抛出后,根据动量守恒定律有:mv=(M+m )v ′,v ′的方向向右.乙球抛出后,规定向右为正方向,根据动量守恒定律有:(M+m )v ′=mv+Mv ″,解得v ″为负值,方向向左.根据动量定理得,所受合力的冲量等于动量的变化,对于甲球,动量的变化量为mv ,对于乙球动量的变化量为mv-mv ′,知甲的动量变化量大于乙球的动量变化量,所以抛出时,人给甲球的冲量比人给乙球的冲量大.故D 正确.3. 两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在,其中一人向另一个人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后的速率关系是( )A .若甲最先抛球,则一定是v 甲>v 乙B .若乙最后接球,则一定是v 甲>v 乙C .只有甲先抛球,乙最后接球,才有v 甲>v 乙D .无论怎样抛球和接球,都是v 甲>v 乙解析:系统动量守恒,故最终甲、乙动量大小必相等.谁最后接球谁的质量中包含了球的质量,即质量大,根据动量守恒:m 1v 1=m 2v 2,因此最终谁接球谁的速度小.4. 如图 所示,水平光滑轨道的宽度和弹簧自然长度均为d.m 2的左边有一固定挡板,m 1由图示位置静止释放.当m 1与m 2第一次相距最近时m 1速度为v 1,在以后的运动过程中( )A .m 1的最小速度是0B .m 1的最小速度是m 1-m 2m 1+m 2v 1C .m 2的最大速度是v 1D .m 2的最大速度是m 1m 1+m 2v 15. 如图2所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线、同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)图2解析:设乙船上的人抛出货物的最小速度大小为v min,抛出货物后船的速度为v1,甲船上的人接到货物后船的速度为v2,由动量守恒定律得12m×v0=11m×v1-m×v min①10m×2v0-m×v min=11m×v2②为避免两船相撞应满足v1=v2③联立①②③式得v min=4v0.④6.如图所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=1.5 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止,物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,求(1)物块在车面上滑行的时间t;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v0'不超过多少。
动量动量守恒定律1.理解动量、动量的变化量、动量定理的概念.2.知道动量守恒的条件.3.会利用动量守恒定律分析碰撞、反冲等相互作用问题.考点一动量、冲量、动量定理的理解与应用1.动量(1)定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p来表示.(2)表达式:p=mv.(3)单位:kg·m/s.(4)标矢性:动量是矢量,其方向和速度方向相同.2.冲量(1)定义:力F 与力的作用时间t 的乘积. (2)定义式:I =Ft . (3)单位:N·_s.(4)方向:恒力作用时,与力的方向相同.(5)物理意义:是一个过程量,表示力在时间上积累的作用效果. 3.动量定理(1)内容:物体所受合外力的冲量等于物体的动量的变化量.(2)表达式:⎩⎪⎨⎪⎧Ft =p ′-pI =Δp[例题1] (2024•河南一模)质量相等的A 、B 两个小球处在空中同一高度,将A 球水平向右抛出,同时将B 球斜向上抛出,两小球抛出时的初速度大小相同,两小球在空中运动的轨迹如图,不计空气阻力。
则两小球在空中运动的过程中,下列说法正确的是( )A .相同时间内,速度变化量可能不同B .同一时刻,速度变化快慢可能不同C .抛出后下降到同一高度时,动能一定相同D .相同时间内,重力的冲量大小可能不同[例题2] (2024•开福区校级模拟)一质量为m =1kg 的物体,从距地面高度为0.8m 处以某一未知初速度水平抛出。
落地后不弹起。
假设地面为粗糙刚性水平接触面(与物体发生碰撞的时间极短,不计重力产生的冲量),物体与地面间的动摩擦因数μ=0.5,取重力加速度g =10m/s 2。
下列说法正确的是( )A .物体从抛出到最终停下的过程中,减少的机械能等于与粗糙水平面的摩擦生热B .若物体的初速度为1m/s ,则与地面碰撞的过程中,地面对其冲量的大小为4N •sC .若物体的初速度为3m/s ,则与地面碰撞的过程中,地面对其冲量的大小为2√5N •sD .若物体的初速度变为之前的2倍,物体落地后沿水平运动的距离可能是原来的4倍 [例题3] (2024•宁波二模)如图所示,在水平地面上用彼此平行、相邻间距为l 的水平小细杆构成一排固定的栅栏。
高考第一轮复习----动量第四章动量一.动量和冲量1.动量按定义,物体的质量和速度的乘积叫做动量:⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
⑵冲量是矢量,它的方向由力的方向打算(不能说和力的方向相同)。
假如力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
⑶高中阶段只要求会用1.动量定理物体所受合外力的冲量等于物体的动量变化。
既例2. 以初速度1.动量守恒定律一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
即:2.动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽视不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
3.动量守恒定律的表达形式除了,即4.动量守恒定律的重要意义从现代物理学的理论高度来熟悉,动量守恒定律是物理学中最基本的普适原理之一。
(另一个最基本的普适原理就是能量守恒定律。
)从科学实践的角度来看,迄今为止,人们尚未发觉动量守恒定律有任何例外。
相反,每当在试验中观看到好像是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最终总是以有新的发觉而成功告终。
例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应当沿电子的反方向运动。
但云室照片显示,两者径迹不在一条直线上。
为解释这一反常现象,1930年泡利提出了中微子假说。
由于中微子既不带电又几乎无质量,在试验中极难测量,直到1956年人们才首次证明白中微子的存在。
(2000年高考综合题23 ②就是依据这一历史事实设计的)。
又如人们发觉,两个运动着的带电粒子在电磁相互作用下动量好像也是不守恒的。
这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。
四、动量守恒定律的应用1.碰撞Ⅰ Ⅱ Ⅲ⑶弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能削减全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,此类碰撞问题要考虑三个因素:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其挨次合理。